Abstract

We investigate the dynamical behavior of optical Fabry–Perot resonators consisting of LiNbO3 slabs (x and c cut) that are coated with different (absorbing or lossless) dielectric multilayers deposited on both sides of the slabs. Bistable switching is observed experimentally. The buildup of beam fanning with time leads to destructive interference for a portion of the incident beam, inducing a change in absorption and heating, hence to switching off. As a result, self-pulsations appear whose frequency depends strongly on the input light intensity, the spot size, and the focusing. Switching and self-pulsations are not observed in the case of lossless coatings or for bare LiNbO3 slabs, although strong photorefractive beam fanning is still present. We also study the influence of the incident-beam characteristics (width and focusing) on the beam-fanning process and the pulsating behavior.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, G. D. Body, J. M. Dziedzig, R. G. Smith, A. A. Ballman, J. J. Levenstein, K. Nassan, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
    [CrossRef]
  2. T. J. Hall, R. Jaura, L. M. Connor, P. D. Foote, “The photorefractive effect—a review,” Prog. Quantum Electron. 10, 77–146 (1985).
    [CrossRef]
  3. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
  4. V. V. Voronov, I. R. Dorosh, Yu. S. Kuz'minov, N. V. Tkachenko, “Photoinduced light scattering in BSN:Ce crystals,” (in Russian) Kvant. Elektron. (Moscow) 7(11), 2313–2318 (1980).
  5. J. Feinberg, “Asymmetric self-defocusing in an optical beam from the photorefractive effect,” J. Opt. Soc. Am. 72, 46–51 (1982).
    [CrossRef]
  6. W. P. Brown, G. C. Valley, “Kinky beam paths inside photorefractive crystals,” J. Opt. Soc. Am. B 10, 1901–1906 (1993).
    [CrossRef]
  7. M. Snowbell, M. Horowitz, B. Fischer, “Dynamics of multiple two-wave mixing and fanning in photorefractive materials,” J. Opt. Soc. Am. B 11, 1972–1982 (1994).
    [CrossRef]
  8. J. Jarem, P. P. Banerjee, “Exact, dynamical analysis of the Kukhtarev equations in photorefractive barium titanate using rigorous coupled-wave diffraction theory,” J. Opt. Soc. Am. A 13, 819–831 (1996).
    [CrossRef]
  9. J. Jarem, P. P. Banerjee, “A nonlinear, transient analysis of two- and multi-wave mixing in a photorefractive material using rigorous coupled-wave diffraction theory,” Opt. Commun. 123, 825–842 (1996).
    [CrossRef]
  10. F. V. Karpushko, G. V. Sinitzyn, “An optical logic element for integrated optics in a nonlinear semiconductor interferometer,” (in Russian) Zh. Prikl. Spektrosk. 29, 1323–1326 (1978).
  11. S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A.C. Walker, B. S. Wherrett, A. Hendry, “Room temperature, visible wavelength optical bistability in interference filters,” Opt. Commun. 51, 357–362 (1984).
    [CrossRef]
  12. A. C. Walker, “Reflection bistable etalons with absorbed transmission,” Opt. Commun. 59, 145–150 (1986).
    [CrossRef]
  13. S. D. Smith, A. C. Walker, B. S. Wherrett, F. A. P. Tooley, J. G. H. Mathew, M. R. Taghizadeh, I. Janossy, “Cascadable digital optical logic circuit elements in the visible and infrared: demonstration of some first all-optical circuits,” Appl. Opt. 25, 1586–1593 (1986).
    [CrossRef] [PubMed]
  14. B. S. Wherrett, D. Hutchings, D. Russell, “Optically bistable interference filters: optimization consideration,” J. Opt. Soc. Am. B 3, 351–362 (1986).
    [CrossRef]
  15. A.C. Hutchings, C. H. Wang, B. S. Wherrett, “Optically bistable interference filters: self-consistent modeling of nonlinear optical characteristics and optimization,” J. Opt. Soc. Am. B 8, 618–631 (1991).
    [CrossRef]
  16. R. W. Eason, A. Miller, eds., Nonlinear Optics in Signal Processing, Engineering Aspects in Lasers Series, T. A. Hall, ed. (Chapman & Hall, London, 1993).
  17. P. Mandel, S. D. Smith, B. S. Wherrett, eds., Optical Bistability Towards Optical Computing: The European Joint Optical Bistability Project (North-Holland, Amsterdam, 1987).
  18. I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally induced optical bistability in thin-film devices,” IEEE J. Quantum Electron. QE-21, 1447–1452 (1985).
    [CrossRef]
  19. I. Janossy, J. G. H. Mathew, E. Abraham, S. D. Smith, “Dynamics of thermally induced optical bistability,” IEEE J. Quantum Electron. QE-22, 2224–2229 (1986).
    [CrossRef]
  20. H. Thienpont, W. Peiffer, I. Veretennicoff, C. De Tandt, W. Ranson, R. Vounckx, A. Koster, “Optical logic planes with SIlicon IMpanted OXide technology: a first step towards low-cost smart pixels,” in Proceedings of the International Conference on Frontiers in Information Optics, T. Asakura, ed., Kyoto, Japan, 4–8 April 1994, p. 293.
  21. I. P. Areshev, T. A. Murina, N. N. Rosanov, V. K. Subashiev, “Polarization and amplitude optical multistability in a nonlinear ring cavity,” Opt. Commun. 47, 414–419 (1983).
    [CrossRef]
  22. A. Korpel, A. W. Lohmann, “Polarization and optical bistability,” Appl. Opt. 25, 1528–1529 (1986).
    [CrossRef] [PubMed]
  23. A. W. Lohmann, “Polarization and optical logic,” Appl. Opt. 25, 1594–1597 (1986).
    [CrossRef] [PubMed]
  24. N. I. Zheludev, “Polarization instabilities and multistabilities in nonlinear optics,” (in Russian) Usp. Fiz. Nauk 154(4), 683–717 (1989).
    [CrossRef]
  25. M. Pelt, H. Thienpont, I. Veretennicoff, “Aspects of cascadability and logic of polarization bistable Fabry–Perot resonators,” in Technical Digest of the Fifth European Quantum Electronics Conference EQEC'94 (Institute of Electrical and Electronics Engineers, New York, 1994), p. 65.
  26. K. Panajotov, T. Tenev, G. Zartov, M. Pelt, J. Danckaert, H. Thienpont, I. Veretennicoff, “Polarization driven polarization bistability in anisotropic interference filters,” J. Nonlinear Opt. Phys. Mater. 5, 351–365 (1996).
    [CrossRef]
  27. K. Panajotov, T. Tenev, R. Peyeva, M. Pelt, J. Danckaert, H. Thienpont, I. Veretennicoff, “Coupled thermo-optic multilayer model for intensity and polarization switching in interference filters,” Bulg. J. Phys. 24, 143–155 (1997).
  28. G. Zartov, T. Tenev, K. Panajotov, R. Peyeva, J. Danckaert, H. Thienpont, I. Veretennicoff, “Angular dependencies of thermo-optic bistable switching in interference filters,” in Proceedings of the Tenth ISCMP Conference “Thin Film Materials and Devices—Developments in Science and Technology,”J. M. Marshall, N. Kirov, A. Vavrek, J. M. Maud, eds. (World Scientific, Singapore, 1998), pp. 473–476.
  29. J.-J. Liu, P. P. Banerjee, Q. Wang Song, “Role of diffusive, photovoltaic, and thermal effects in beam fanning in LiNbO3” J. Opt. Soc. Am. B 11, 1688–1693 (1994).
    [CrossRef]
  30. A. Abraham, J. M. Halley, “Some calculations of temperature profiles in thin films with laser heating,” Appl. Phys. A: Solids Surf. 42, 279–285 (1987).
    [CrossRef]
  31. M. Haelterman, G. Vitrant, R. Reinisch, “Transverse effects in nonlinear planar resonators. I. Modal theory,” J. Opt. Soc. Am. B 7, 1309–1318 (1990).
    [CrossRef]
  32. G. Vitrant, M. Haelterman, R. Reinisch, “Transverse effects in nonlinear planar resonators. II. Modal analysis for normal and oblique incidence,” J. Opt. Soc. Am. B 7, 1319–1327 (1990).
    [CrossRef]
  33. M. Haelterman, G. Vitrant, “Drift instability and spatiotemporal dissipative structures in a nonlinear Fabry–Perot resonator under oblique incidence,” J. Opt. Soc. Am. B 9, 1563–1570 (1992).
    [CrossRef]
  34. M. Neviere, E. Popov, R. Reinisch, G. Vitrant, Electromagnetic Resonances in Nonlinear Optics (Gordon & Breach, London, 2000).
  35. J. Danckaert, G. Vitrant, “Modulational instabilities in diffusive Kerr-type resonators,” Opt. Commun. 104, 196–206 (1993).
    [CrossRef]
  36. J. Danckaert, G. Vitrant, R. Reinisch, M. Georgiou, “Nonlinear dynamics in single-mode optical resonators,” Phys. Rev. A 48, 2324–2333 (1993).
    [CrossRef] [PubMed]
  37. J. Danckaert, “Nonlinear planar resonator for optical processing: simple models, including stratification, time, and polarization,” Ph.D. dissertation (Vrije Universiteit, Brussels, Belgium, 1992).

1997

K. Panajotov, T. Tenev, R. Peyeva, M. Pelt, J. Danckaert, H. Thienpont, I. Veretennicoff, “Coupled thermo-optic multilayer model for intensity and polarization switching in interference filters,” Bulg. J. Phys. 24, 143–155 (1997).

1996

K. Panajotov, T. Tenev, G. Zartov, M. Pelt, J. Danckaert, H. Thienpont, I. Veretennicoff, “Polarization driven polarization bistability in anisotropic interference filters,” J. Nonlinear Opt. Phys. Mater. 5, 351–365 (1996).
[CrossRef]

J. Jarem, P. P. Banerjee, “A nonlinear, transient analysis of two- and multi-wave mixing in a photorefractive material using rigorous coupled-wave diffraction theory,” Opt. Commun. 123, 825–842 (1996).
[CrossRef]

J. Jarem, P. P. Banerjee, “Exact, dynamical analysis of the Kukhtarev equations in photorefractive barium titanate using rigorous coupled-wave diffraction theory,” J. Opt. Soc. Am. A 13, 819–831 (1996).
[CrossRef]

1994

1993

W. P. Brown, G. C. Valley, “Kinky beam paths inside photorefractive crystals,” J. Opt. Soc. Am. B 10, 1901–1906 (1993).
[CrossRef]

J. Danckaert, G. Vitrant, “Modulational instabilities in diffusive Kerr-type resonators,” Opt. Commun. 104, 196–206 (1993).
[CrossRef]

J. Danckaert, G. Vitrant, R. Reinisch, M. Georgiou, “Nonlinear dynamics in single-mode optical resonators,” Phys. Rev. A 48, 2324–2333 (1993).
[CrossRef] [PubMed]

1992

1991

1990

1989

N. I. Zheludev, “Polarization instabilities and multistabilities in nonlinear optics,” (in Russian) Usp. Fiz. Nauk 154(4), 683–717 (1989).
[CrossRef]

1987

A. Abraham, J. M. Halley, “Some calculations of temperature profiles in thin films with laser heating,” Appl. Phys. A: Solids Surf. 42, 279–285 (1987).
[CrossRef]

1986

1985

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally induced optical bistability in thin-film devices,” IEEE J. Quantum Electron. QE-21, 1447–1452 (1985).
[CrossRef]

T. J. Hall, R. Jaura, L. M. Connor, P. D. Foote, “The photorefractive effect—a review,” Prog. Quantum Electron. 10, 77–146 (1985).
[CrossRef]

1984

S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A.C. Walker, B. S. Wherrett, A. Hendry, “Room temperature, visible wavelength optical bistability in interference filters,” Opt. Commun. 51, 357–362 (1984).
[CrossRef]

1983

I. P. Areshev, T. A. Murina, N. N. Rosanov, V. K. Subashiev, “Polarization and amplitude optical multistability in a nonlinear ring cavity,” Opt. Commun. 47, 414–419 (1983).
[CrossRef]

1982

1980

V. V. Voronov, I. R. Dorosh, Yu. S. Kuz'minov, N. V. Tkachenko, “Photoinduced light scattering in BSN:Ce crystals,” (in Russian) Kvant. Elektron. (Moscow) 7(11), 2313–2318 (1980).

1978

F. V. Karpushko, G. V. Sinitzyn, “An optical logic element for integrated optics in a nonlinear semiconductor interferometer,” (in Russian) Zh. Prikl. Spektrosk. 29, 1323–1326 (1978).

1966

A. Ashkin, G. D. Body, J. M. Dziedzig, R. G. Smith, A. A. Ballman, J. J. Levenstein, K. Nassan, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Abraham, A.

A. Abraham, J. M. Halley, “Some calculations of temperature profiles in thin films with laser heating,” Appl. Phys. A: Solids Surf. 42, 279–285 (1987).
[CrossRef]

Abraham, E.

I. Janossy, J. G. H. Mathew, E. Abraham, S. D. Smith, “Dynamics of thermally induced optical bistability,” IEEE J. Quantum Electron. QE-22, 2224–2229 (1986).
[CrossRef]

Areshev, I. P.

I. P. Areshev, T. A. Murina, N. N. Rosanov, V. K. Subashiev, “Polarization and amplitude optical multistability in a nonlinear ring cavity,” Opt. Commun. 47, 414–419 (1983).
[CrossRef]

Ashkin, A.

A. Ashkin, G. D. Body, J. M. Dziedzig, R. G. Smith, A. A. Ballman, J. J. Levenstein, K. Nassan, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Ballman, A. A.

A. Ashkin, G. D. Body, J. M. Dziedzig, R. G. Smith, A. A. Ballman, J. J. Levenstein, K. Nassan, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Banerjee, P. P.

Body, G. D.

A. Ashkin, G. D. Body, J. M. Dziedzig, R. G. Smith, A. A. Ballman, J. J. Levenstein, K. Nassan, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Brown, W. P.

Connor, L. M.

T. J. Hall, R. Jaura, L. M. Connor, P. D. Foote, “The photorefractive effect—a review,” Prog. Quantum Electron. 10, 77–146 (1985).
[CrossRef]

Danckaert, J.

K. Panajotov, T. Tenev, R. Peyeva, M. Pelt, J. Danckaert, H. Thienpont, I. Veretennicoff, “Coupled thermo-optic multilayer model for intensity and polarization switching in interference filters,” Bulg. J. Phys. 24, 143–155 (1997).

K. Panajotov, T. Tenev, G. Zartov, M. Pelt, J. Danckaert, H. Thienpont, I. Veretennicoff, “Polarization driven polarization bistability in anisotropic interference filters,” J. Nonlinear Opt. Phys. Mater. 5, 351–365 (1996).
[CrossRef]

J. Danckaert, G. Vitrant, R. Reinisch, M. Georgiou, “Nonlinear dynamics in single-mode optical resonators,” Phys. Rev. A 48, 2324–2333 (1993).
[CrossRef] [PubMed]

J. Danckaert, G. Vitrant, “Modulational instabilities in diffusive Kerr-type resonators,” Opt. Commun. 104, 196–206 (1993).
[CrossRef]

G. Zartov, T. Tenev, K. Panajotov, R. Peyeva, J. Danckaert, H. Thienpont, I. Veretennicoff, “Angular dependencies of thermo-optic bistable switching in interference filters,” in Proceedings of the Tenth ISCMP Conference “Thin Film Materials and Devices—Developments in Science and Technology,”J. M. Marshall, N. Kirov, A. Vavrek, J. M. Maud, eds. (World Scientific, Singapore, 1998), pp. 473–476.

J. Danckaert, “Nonlinear planar resonator for optical processing: simple models, including stratification, time, and polarization,” Ph.D. dissertation (Vrije Universiteit, Brussels, Belgium, 1992).

De Tandt, C.

H. Thienpont, W. Peiffer, I. Veretennicoff, C. De Tandt, W. Ranson, R. Vounckx, A. Koster, “Optical logic planes with SIlicon IMpanted OXide technology: a first step towards low-cost smart pixels,” in Proceedings of the International Conference on Frontiers in Information Optics, T. Asakura, ed., Kyoto, Japan, 4–8 April 1994, p. 293.

Dorosh, I. R.

V. V. Voronov, I. R. Dorosh, Yu. S. Kuz'minov, N. V. Tkachenko, “Photoinduced light scattering in BSN:Ce crystals,” (in Russian) Kvant. Elektron. (Moscow) 7(11), 2313–2318 (1980).

Dziedzig, J. M.

A. Ashkin, G. D. Body, J. M. Dziedzig, R. G. Smith, A. A. Ballman, J. J. Levenstein, K. Nassan, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Feinberg, J.

Fischer, B.

Foote, P. D.

T. J. Hall, R. Jaura, L. M. Connor, P. D. Foote, “The photorefractive effect—a review,” Prog. Quantum Electron. 10, 77–146 (1985).
[CrossRef]

Georgiou, M.

J. Danckaert, G. Vitrant, R. Reinisch, M. Georgiou, “Nonlinear dynamics in single-mode optical resonators,” Phys. Rev. A 48, 2324–2333 (1993).
[CrossRef] [PubMed]

Haelterman, M.

Hall, T. J.

T. J. Hall, R. Jaura, L. M. Connor, P. D. Foote, “The photorefractive effect—a review,” Prog. Quantum Electron. 10, 77–146 (1985).
[CrossRef]

Halley, J. M.

A. Abraham, J. M. Halley, “Some calculations of temperature profiles in thin films with laser heating,” Appl. Phys. A: Solids Surf. 42, 279–285 (1987).
[CrossRef]

Hendry, A.

S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A.C. Walker, B. S. Wherrett, A. Hendry, “Room temperature, visible wavelength optical bistability in interference filters,” Opt. Commun. 51, 357–362 (1984).
[CrossRef]

Horowitz, M.

Hutchings, A.C.

Hutchings, D.

Janossy, I.

S. D. Smith, A. C. Walker, B. S. Wherrett, F. A. P. Tooley, J. G. H. Mathew, M. R. Taghizadeh, I. Janossy, “Cascadable digital optical logic circuit elements in the visible and infrared: demonstration of some first all-optical circuits,” Appl. Opt. 25, 1586–1593 (1986).
[CrossRef] [PubMed]

I. Janossy, J. G. H. Mathew, E. Abraham, S. D. Smith, “Dynamics of thermally induced optical bistability,” IEEE J. Quantum Electron. QE-22, 2224–2229 (1986).
[CrossRef]

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally induced optical bistability in thin-film devices,” IEEE J. Quantum Electron. QE-21, 1447–1452 (1985).
[CrossRef]

Jarem, J.

J. Jarem, P. P. Banerjee, “Exact, dynamical analysis of the Kukhtarev equations in photorefractive barium titanate using rigorous coupled-wave diffraction theory,” J. Opt. Soc. Am. A 13, 819–831 (1996).
[CrossRef]

J. Jarem, P. P. Banerjee, “A nonlinear, transient analysis of two- and multi-wave mixing in a photorefractive material using rigorous coupled-wave diffraction theory,” Opt. Commun. 123, 825–842 (1996).
[CrossRef]

Jaura, R.

T. J. Hall, R. Jaura, L. M. Connor, P. D. Foote, “The photorefractive effect—a review,” Prog. Quantum Electron. 10, 77–146 (1985).
[CrossRef]

Karpushko, F. V.

F. V. Karpushko, G. V. Sinitzyn, “An optical logic element for integrated optics in a nonlinear semiconductor interferometer,” (in Russian) Zh. Prikl. Spektrosk. 29, 1323–1326 (1978).

Korpel, A.

Koster, A.

H. Thienpont, W. Peiffer, I. Veretennicoff, C. De Tandt, W. Ranson, R. Vounckx, A. Koster, “Optical logic planes with SIlicon IMpanted OXide technology: a first step towards low-cost smart pixels,” in Proceedings of the International Conference on Frontiers in Information Optics, T. Asakura, ed., Kyoto, Japan, 4–8 April 1994, p. 293.

Kuz'minov, Yu. S.

V. V. Voronov, I. R. Dorosh, Yu. S. Kuz'minov, N. V. Tkachenko, “Photoinduced light scattering in BSN:Ce crystals,” (in Russian) Kvant. Elektron. (Moscow) 7(11), 2313–2318 (1980).

Levenstein, J. J.

A. Ashkin, G. D. Body, J. M. Dziedzig, R. G. Smith, A. A. Ballman, J. J. Levenstein, K. Nassan, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Liu, J.-J.

Lohmann, A. W.

Mathew, J. G. H.

I. Janossy, J. G. H. Mathew, E. Abraham, S. D. Smith, “Dynamics of thermally induced optical bistability,” IEEE J. Quantum Electron. QE-22, 2224–2229 (1986).
[CrossRef]

S. D. Smith, A. C. Walker, B. S. Wherrett, F. A. P. Tooley, J. G. H. Mathew, M. R. Taghizadeh, I. Janossy, “Cascadable digital optical logic circuit elements in the visible and infrared: demonstration of some first all-optical circuits,” Appl. Opt. 25, 1586–1593 (1986).
[CrossRef] [PubMed]

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally induced optical bistability in thin-film devices,” IEEE J. Quantum Electron. QE-21, 1447–1452 (1985).
[CrossRef]

S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A.C. Walker, B. S. Wherrett, A. Hendry, “Room temperature, visible wavelength optical bistability in interference filters,” Opt. Commun. 51, 357–362 (1984).
[CrossRef]

Murina, T. A.

I. P. Areshev, T. A. Murina, N. N. Rosanov, V. K. Subashiev, “Polarization and amplitude optical multistability in a nonlinear ring cavity,” Opt. Commun. 47, 414–419 (1983).
[CrossRef]

Nassan, K.

A. Ashkin, G. D. Body, J. M. Dziedzig, R. G. Smith, A. A. Ballman, J. J. Levenstein, K. Nassan, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Neviere, M.

M. Neviere, E. Popov, R. Reinisch, G. Vitrant, Electromagnetic Resonances in Nonlinear Optics (Gordon & Breach, London, 2000).

Panajotov, K.

K. Panajotov, T. Tenev, R. Peyeva, M. Pelt, J. Danckaert, H. Thienpont, I. Veretennicoff, “Coupled thermo-optic multilayer model for intensity and polarization switching in interference filters,” Bulg. J. Phys. 24, 143–155 (1997).

K. Panajotov, T. Tenev, G. Zartov, M. Pelt, J. Danckaert, H. Thienpont, I. Veretennicoff, “Polarization driven polarization bistability in anisotropic interference filters,” J. Nonlinear Opt. Phys. Mater. 5, 351–365 (1996).
[CrossRef]

G. Zartov, T. Tenev, K. Panajotov, R. Peyeva, J. Danckaert, H. Thienpont, I. Veretennicoff, “Angular dependencies of thermo-optic bistable switching in interference filters,” in Proceedings of the Tenth ISCMP Conference “Thin Film Materials and Devices—Developments in Science and Technology,”J. M. Marshall, N. Kirov, A. Vavrek, J. M. Maud, eds. (World Scientific, Singapore, 1998), pp. 473–476.

Peiffer, W.

H. Thienpont, W. Peiffer, I. Veretennicoff, C. De Tandt, W. Ranson, R. Vounckx, A. Koster, “Optical logic planes with SIlicon IMpanted OXide technology: a first step towards low-cost smart pixels,” in Proceedings of the International Conference on Frontiers in Information Optics, T. Asakura, ed., Kyoto, Japan, 4–8 April 1994, p. 293.

Pelt, M.

K. Panajotov, T. Tenev, R. Peyeva, M. Pelt, J. Danckaert, H. Thienpont, I. Veretennicoff, “Coupled thermo-optic multilayer model for intensity and polarization switching in interference filters,” Bulg. J. Phys. 24, 143–155 (1997).

K. Panajotov, T. Tenev, G. Zartov, M. Pelt, J. Danckaert, H. Thienpont, I. Veretennicoff, “Polarization driven polarization bistability in anisotropic interference filters,” J. Nonlinear Opt. Phys. Mater. 5, 351–365 (1996).
[CrossRef]

M. Pelt, H. Thienpont, I. Veretennicoff, “Aspects of cascadability and logic of polarization bistable Fabry–Perot resonators,” in Technical Digest of the Fifth European Quantum Electronics Conference EQEC'94 (Institute of Electrical and Electronics Engineers, New York, 1994), p. 65.

Peyeva, R.

K. Panajotov, T. Tenev, R. Peyeva, M. Pelt, J. Danckaert, H. Thienpont, I. Veretennicoff, “Coupled thermo-optic multilayer model for intensity and polarization switching in interference filters,” Bulg. J. Phys. 24, 143–155 (1997).

G. Zartov, T. Tenev, K. Panajotov, R. Peyeva, J. Danckaert, H. Thienpont, I. Veretennicoff, “Angular dependencies of thermo-optic bistable switching in interference filters,” in Proceedings of the Tenth ISCMP Conference “Thin Film Materials and Devices—Developments in Science and Technology,”J. M. Marshall, N. Kirov, A. Vavrek, J. M. Maud, eds. (World Scientific, Singapore, 1998), pp. 473–476.

Popov, E.

M. Neviere, E. Popov, R. Reinisch, G. Vitrant, Electromagnetic Resonances in Nonlinear Optics (Gordon & Breach, London, 2000).

Ranson, W.

H. Thienpont, W. Peiffer, I. Veretennicoff, C. De Tandt, W. Ranson, R. Vounckx, A. Koster, “Optical logic planes with SIlicon IMpanted OXide technology: a first step towards low-cost smart pixels,” in Proceedings of the International Conference on Frontiers in Information Optics, T. Asakura, ed., Kyoto, Japan, 4–8 April 1994, p. 293.

Reinisch, R.

J. Danckaert, G. Vitrant, R. Reinisch, M. Georgiou, “Nonlinear dynamics in single-mode optical resonators,” Phys. Rev. A 48, 2324–2333 (1993).
[CrossRef] [PubMed]

G. Vitrant, M. Haelterman, R. Reinisch, “Transverse effects in nonlinear planar resonators. II. Modal analysis for normal and oblique incidence,” J. Opt. Soc. Am. B 7, 1319–1327 (1990).
[CrossRef]

M. Haelterman, G. Vitrant, R. Reinisch, “Transverse effects in nonlinear planar resonators. I. Modal theory,” J. Opt. Soc. Am. B 7, 1309–1318 (1990).
[CrossRef]

M. Neviere, E. Popov, R. Reinisch, G. Vitrant, Electromagnetic Resonances in Nonlinear Optics (Gordon & Breach, London, 2000).

Rosanov, N. N.

I. P. Areshev, T. A. Murina, N. N. Rosanov, V. K. Subashiev, “Polarization and amplitude optical multistability in a nonlinear ring cavity,” Opt. Commun. 47, 414–419 (1983).
[CrossRef]

Russell, D.

Sinitzyn, G. V.

F. V. Karpushko, G. V. Sinitzyn, “An optical logic element for integrated optics in a nonlinear semiconductor interferometer,” (in Russian) Zh. Prikl. Spektrosk. 29, 1323–1326 (1978).

Smith, R. G.

A. Ashkin, G. D. Body, J. M. Dziedzig, R. G. Smith, A. A. Ballman, J. J. Levenstein, K. Nassan, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Smith, S. D.

I. Janossy, J. G. H. Mathew, E. Abraham, S. D. Smith, “Dynamics of thermally induced optical bistability,” IEEE J. Quantum Electron. QE-22, 2224–2229 (1986).
[CrossRef]

S. D. Smith, A. C. Walker, B. S. Wherrett, F. A. P. Tooley, J. G. H. Mathew, M. R. Taghizadeh, I. Janossy, “Cascadable digital optical logic circuit elements in the visible and infrared: demonstration of some first all-optical circuits,” Appl. Opt. 25, 1586–1593 (1986).
[CrossRef] [PubMed]

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally induced optical bistability in thin-film devices,” IEEE J. Quantum Electron. QE-21, 1447–1452 (1985).
[CrossRef]

S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A.C. Walker, B. S. Wherrett, A. Hendry, “Room temperature, visible wavelength optical bistability in interference filters,” Opt. Commun. 51, 357–362 (1984).
[CrossRef]

Snowbell, M.

Subashiev, V. K.

I. P. Areshev, T. A. Murina, N. N. Rosanov, V. K. Subashiev, “Polarization and amplitude optical multistability in a nonlinear ring cavity,” Opt. Commun. 47, 414–419 (1983).
[CrossRef]

Taghizadeh, M. R.

S. D. Smith, A. C. Walker, B. S. Wherrett, F. A. P. Tooley, J. G. H. Mathew, M. R. Taghizadeh, I. Janossy, “Cascadable digital optical logic circuit elements in the visible and infrared: demonstration of some first all-optical circuits,” Appl. Opt. 25, 1586–1593 (1986).
[CrossRef] [PubMed]

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally induced optical bistability in thin-film devices,” IEEE J. Quantum Electron. QE-21, 1447–1452 (1985).
[CrossRef]

S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A.C. Walker, B. S. Wherrett, A. Hendry, “Room temperature, visible wavelength optical bistability in interference filters,” Opt. Commun. 51, 357–362 (1984).
[CrossRef]

Tenev, T.

K. Panajotov, T. Tenev, R. Peyeva, M. Pelt, J. Danckaert, H. Thienpont, I. Veretennicoff, “Coupled thermo-optic multilayer model for intensity and polarization switching in interference filters,” Bulg. J. Phys. 24, 143–155 (1997).

K. Panajotov, T. Tenev, G. Zartov, M. Pelt, J. Danckaert, H. Thienpont, I. Veretennicoff, “Polarization driven polarization bistability in anisotropic interference filters,” J. Nonlinear Opt. Phys. Mater. 5, 351–365 (1996).
[CrossRef]

G. Zartov, T. Tenev, K. Panajotov, R. Peyeva, J. Danckaert, H. Thienpont, I. Veretennicoff, “Angular dependencies of thermo-optic bistable switching in interference filters,” in Proceedings of the Tenth ISCMP Conference “Thin Film Materials and Devices—Developments in Science and Technology,”J. M. Marshall, N. Kirov, A. Vavrek, J. M. Maud, eds. (World Scientific, Singapore, 1998), pp. 473–476.

Thienpont, H.

K. Panajotov, T. Tenev, R. Peyeva, M. Pelt, J. Danckaert, H. Thienpont, I. Veretennicoff, “Coupled thermo-optic multilayer model for intensity and polarization switching in interference filters,” Bulg. J. Phys. 24, 143–155 (1997).

K. Panajotov, T. Tenev, G. Zartov, M. Pelt, J. Danckaert, H. Thienpont, I. Veretennicoff, “Polarization driven polarization bistability in anisotropic interference filters,” J. Nonlinear Opt. Phys. Mater. 5, 351–365 (1996).
[CrossRef]

H. Thienpont, W. Peiffer, I. Veretennicoff, C. De Tandt, W. Ranson, R. Vounckx, A. Koster, “Optical logic planes with SIlicon IMpanted OXide technology: a first step towards low-cost smart pixels,” in Proceedings of the International Conference on Frontiers in Information Optics, T. Asakura, ed., Kyoto, Japan, 4–8 April 1994, p. 293.

G. Zartov, T. Tenev, K. Panajotov, R. Peyeva, J. Danckaert, H. Thienpont, I. Veretennicoff, “Angular dependencies of thermo-optic bistable switching in interference filters,” in Proceedings of the Tenth ISCMP Conference “Thin Film Materials and Devices—Developments in Science and Technology,”J. M. Marshall, N. Kirov, A. Vavrek, J. M. Maud, eds. (World Scientific, Singapore, 1998), pp. 473–476.

M. Pelt, H. Thienpont, I. Veretennicoff, “Aspects of cascadability and logic of polarization bistable Fabry–Perot resonators,” in Technical Digest of the Fifth European Quantum Electronics Conference EQEC'94 (Institute of Electrical and Electronics Engineers, New York, 1994), p. 65.

Tkachenko, N. V.

V. V. Voronov, I. R. Dorosh, Yu. S. Kuz'minov, N. V. Tkachenko, “Photoinduced light scattering in BSN:Ce crystals,” (in Russian) Kvant. Elektron. (Moscow) 7(11), 2313–2318 (1980).

Tooley, F. A. P.

Valley, G. C.

Veretennicoff, I.

K. Panajotov, T. Tenev, R. Peyeva, M. Pelt, J. Danckaert, H. Thienpont, I. Veretennicoff, “Coupled thermo-optic multilayer model for intensity and polarization switching in interference filters,” Bulg. J. Phys. 24, 143–155 (1997).

K. Panajotov, T. Tenev, G. Zartov, M. Pelt, J. Danckaert, H. Thienpont, I. Veretennicoff, “Polarization driven polarization bistability in anisotropic interference filters,” J. Nonlinear Opt. Phys. Mater. 5, 351–365 (1996).
[CrossRef]

H. Thienpont, W. Peiffer, I. Veretennicoff, C. De Tandt, W. Ranson, R. Vounckx, A. Koster, “Optical logic planes with SIlicon IMpanted OXide technology: a first step towards low-cost smart pixels,” in Proceedings of the International Conference on Frontiers in Information Optics, T. Asakura, ed., Kyoto, Japan, 4–8 April 1994, p. 293.

M. Pelt, H. Thienpont, I. Veretennicoff, “Aspects of cascadability and logic of polarization bistable Fabry–Perot resonators,” in Technical Digest of the Fifth European Quantum Electronics Conference EQEC'94 (Institute of Electrical and Electronics Engineers, New York, 1994), p. 65.

G. Zartov, T. Tenev, K. Panajotov, R. Peyeva, J. Danckaert, H. Thienpont, I. Veretennicoff, “Angular dependencies of thermo-optic bistable switching in interference filters,” in Proceedings of the Tenth ISCMP Conference “Thin Film Materials and Devices—Developments in Science and Technology,”J. M. Marshall, N. Kirov, A. Vavrek, J. M. Maud, eds. (World Scientific, Singapore, 1998), pp. 473–476.

Vitrant, G.

J. Danckaert, G. Vitrant, “Modulational instabilities in diffusive Kerr-type resonators,” Opt. Commun. 104, 196–206 (1993).
[CrossRef]

J. Danckaert, G. Vitrant, R. Reinisch, M. Georgiou, “Nonlinear dynamics in single-mode optical resonators,” Phys. Rev. A 48, 2324–2333 (1993).
[CrossRef] [PubMed]

M. Haelterman, G. Vitrant, “Drift instability and spatiotemporal dissipative structures in a nonlinear Fabry–Perot resonator under oblique incidence,” J. Opt. Soc. Am. B 9, 1563–1570 (1992).
[CrossRef]

M. Haelterman, G. Vitrant, R. Reinisch, “Transverse effects in nonlinear planar resonators. I. Modal theory,” J. Opt. Soc. Am. B 7, 1309–1318 (1990).
[CrossRef]

G. Vitrant, M. Haelterman, R. Reinisch, “Transverse effects in nonlinear planar resonators. II. Modal analysis for normal and oblique incidence,” J. Opt. Soc. Am. B 7, 1319–1327 (1990).
[CrossRef]

M. Neviere, E. Popov, R. Reinisch, G. Vitrant, Electromagnetic Resonances in Nonlinear Optics (Gordon & Breach, London, 2000).

Voronov, V. V.

V. V. Voronov, I. R. Dorosh, Yu. S. Kuz'minov, N. V. Tkachenko, “Photoinduced light scattering in BSN:Ce crystals,” (in Russian) Kvant. Elektron. (Moscow) 7(11), 2313–2318 (1980).

Vounckx, R.

H. Thienpont, W. Peiffer, I. Veretennicoff, C. De Tandt, W. Ranson, R. Vounckx, A. Koster, “Optical logic planes with SIlicon IMpanted OXide technology: a first step towards low-cost smart pixels,” in Proceedings of the International Conference on Frontiers in Information Optics, T. Asakura, ed., Kyoto, Japan, 4–8 April 1994, p. 293.

Walker, A. C.

Walker, A.C.

S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A.C. Walker, B. S. Wherrett, A. Hendry, “Room temperature, visible wavelength optical bistability in interference filters,” Opt. Commun. 51, 357–362 (1984).
[CrossRef]

Wang, C. H.

Wang Song, Q.

Wherrett, B. S.

Yeh, P.

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).

Zartov, G.

K. Panajotov, T. Tenev, G. Zartov, M. Pelt, J. Danckaert, H. Thienpont, I. Veretennicoff, “Polarization driven polarization bistability in anisotropic interference filters,” J. Nonlinear Opt. Phys. Mater. 5, 351–365 (1996).
[CrossRef]

G. Zartov, T. Tenev, K. Panajotov, R. Peyeva, J. Danckaert, H. Thienpont, I. Veretennicoff, “Angular dependencies of thermo-optic bistable switching in interference filters,” in Proceedings of the Tenth ISCMP Conference “Thin Film Materials and Devices—Developments in Science and Technology,”J. M. Marshall, N. Kirov, A. Vavrek, J. M. Maud, eds. (World Scientific, Singapore, 1998), pp. 473–476.

Zheludev, N. I.

N. I. Zheludev, “Polarization instabilities and multistabilities in nonlinear optics,” (in Russian) Usp. Fiz. Nauk 154(4), 683–717 (1989).
[CrossRef]

Appl. Opt.

Appl. Phys. A: Solids Surf.

A. Abraham, J. M. Halley, “Some calculations of temperature profiles in thin films with laser heating,” Appl. Phys. A: Solids Surf. 42, 279–285 (1987).
[CrossRef]

Appl. Phys. Lett.

A. Ashkin, G. D. Body, J. M. Dziedzig, R. G. Smith, A. A. Ballman, J. J. Levenstein, K. Nassan, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Bulg. J. Phys.

K. Panajotov, T. Tenev, R. Peyeva, M. Pelt, J. Danckaert, H. Thienpont, I. Veretennicoff, “Coupled thermo-optic multilayer model for intensity and polarization switching in interference filters,” Bulg. J. Phys. 24, 143–155 (1997).

IEEE J. Quantum Electron.

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally induced optical bistability in thin-film devices,” IEEE J. Quantum Electron. QE-21, 1447–1452 (1985).
[CrossRef]

I. Janossy, J. G. H. Mathew, E. Abraham, S. D. Smith, “Dynamics of thermally induced optical bistability,” IEEE J. Quantum Electron. QE-22, 2224–2229 (1986).
[CrossRef]

J. Nonlinear Opt. Phys. Mater.

K. Panajotov, T. Tenev, G. Zartov, M. Pelt, J. Danckaert, H. Thienpont, I. Veretennicoff, “Polarization driven polarization bistability in anisotropic interference filters,” J. Nonlinear Opt. Phys. Mater. 5, 351–365 (1996).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Kvant. Elektron. (Moscow)

V. V. Voronov, I. R. Dorosh, Yu. S. Kuz'minov, N. V. Tkachenko, “Photoinduced light scattering in BSN:Ce crystals,” (in Russian) Kvant. Elektron. (Moscow) 7(11), 2313–2318 (1980).

Opt. Commun.

J. Jarem, P. P. Banerjee, “A nonlinear, transient analysis of two- and multi-wave mixing in a photorefractive material using rigorous coupled-wave diffraction theory,” Opt. Commun. 123, 825–842 (1996).
[CrossRef]

S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A.C. Walker, B. S. Wherrett, A. Hendry, “Room temperature, visible wavelength optical bistability in interference filters,” Opt. Commun. 51, 357–362 (1984).
[CrossRef]

A. C. Walker, “Reflection bistable etalons with absorbed transmission,” Opt. Commun. 59, 145–150 (1986).
[CrossRef]

I. P. Areshev, T. A. Murina, N. N. Rosanov, V. K. Subashiev, “Polarization and amplitude optical multistability in a nonlinear ring cavity,” Opt. Commun. 47, 414–419 (1983).
[CrossRef]

J. Danckaert, G. Vitrant, “Modulational instabilities in diffusive Kerr-type resonators,” Opt. Commun. 104, 196–206 (1993).
[CrossRef]

Phys. Rev. A

J. Danckaert, G. Vitrant, R. Reinisch, M. Georgiou, “Nonlinear dynamics in single-mode optical resonators,” Phys. Rev. A 48, 2324–2333 (1993).
[CrossRef] [PubMed]

Prog. Quantum Electron.

T. J. Hall, R. Jaura, L. M. Connor, P. D. Foote, “The photorefractive effect—a review,” Prog. Quantum Electron. 10, 77–146 (1985).
[CrossRef]

Usp. Fiz. Nauk

N. I. Zheludev, “Polarization instabilities and multistabilities in nonlinear optics,” (in Russian) Usp. Fiz. Nauk 154(4), 683–717 (1989).
[CrossRef]

Zh. Prikl. Spektrosk.

F. V. Karpushko, G. V. Sinitzyn, “An optical logic element for integrated optics in a nonlinear semiconductor interferometer,” (in Russian) Zh. Prikl. Spektrosk. 29, 1323–1326 (1978).

Other

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).

R. W. Eason, A. Miller, eds., Nonlinear Optics in Signal Processing, Engineering Aspects in Lasers Series, T. A. Hall, ed. (Chapman & Hall, London, 1993).

P. Mandel, S. D. Smith, B. S. Wherrett, eds., Optical Bistability Towards Optical Computing: The European Joint Optical Bistability Project (North-Holland, Amsterdam, 1987).

M. Pelt, H. Thienpont, I. Veretennicoff, “Aspects of cascadability and logic of polarization bistable Fabry–Perot resonators,” in Technical Digest of the Fifth European Quantum Electronics Conference EQEC'94 (Institute of Electrical and Electronics Engineers, New York, 1994), p. 65.

H. Thienpont, W. Peiffer, I. Veretennicoff, C. De Tandt, W. Ranson, R. Vounckx, A. Koster, “Optical logic planes with SIlicon IMpanted OXide technology: a first step towards low-cost smart pixels,” in Proceedings of the International Conference on Frontiers in Information Optics, T. Asakura, ed., Kyoto, Japan, 4–8 April 1994, p. 293.

G. Zartov, T. Tenev, K. Panajotov, R. Peyeva, J. Danckaert, H. Thienpont, I. Veretennicoff, “Angular dependencies of thermo-optic bistable switching in interference filters,” in Proceedings of the Tenth ISCMP Conference “Thin Film Materials and Devices—Developments in Science and Technology,”J. M. Marshall, N. Kirov, A. Vavrek, J. M. Maud, eds. (World Scientific, Singapore, 1998), pp. 473–476.

M. Neviere, E. Popov, R. Reinisch, G. Vitrant, Electromagnetic Resonances in Nonlinear Optics (Gordon & Breach, London, 2000).

J. Danckaert, “Nonlinear planar resonator for optical processing: simple models, including stratification, time, and polarization,” Ph.D. dissertation (Vrije Universiteit, Brussels, Belgium, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Output intensity Iout plotted versus the input intensity Iin. Self-pulsations appear in the switched-on state. The inset shows self-induced pulsations in time at a constant input intensity Iin. The structure was (HL)3(8M)(LiNbO3)(8M)(LH)3. The LiNbO3 was x cut; λ = 514.5 nm; M denotes ZnSe; f = 70 mm.

Fig. 2
Fig. 2

Particular realizations of pulsations of the output intensity Iout over time. The structure was (HL)3(8M)(LiNbO3)(8M)(LH)3. The LiNbO3 was x cut; λ = 514.5 nm; M denotes ZnSe; f = 70 mm.

Fig. 3
Fig. 3

Space distribution of the light transmitted through the sample in a self-pulsating regime. Thirty frames were captured with a CCD camera over the course of 2 s. The structure was (HL)3(8M)(LiNbO3)(8M)(LH)3. The LiNbO3 was x cut; λ = 514.5 nm; M denotes ZnSe; f = 70 mm; Iin=100mW;θ=1.3°.

Fig. 4
Fig. 4

Space distribution, after the development of the beam-fanning process, of the transmitted light behind a 0.7-mm LiNbO3 x-cut slab that was irradiated by extraordinary light from a He–Ne laser (λ = 632.8 nm; Iin=20 mW; f=70 mm) at normal incidence.

Fig. 5
Fig. 5

Space distribution of the transmitted light behind a 0.7-mm LiNbO3 x-cut slab that was irradiated by extraordinary light from a He–Ne laser (λ=632.8nm; Iin=20 mW; f=250 mm) at normal incidence for (a) 0 s, (b) 20 s, (c) 40 s, (d) 60 s after the beginning of irradiation.

Fig. 6
Fig. 6

Self-pulsations of the transmitted intensity at a constant input intensity. The samples had a central layer of x-cut LiNbO3 and absorptive coatings and were irradiated by a focused He–Ne laser light of λ=632.8 nm and Iin=20 mW: (a) Ordinary-polarized light with f=250 mm and θ=1.35°. (b) Extraordinary-polarized light with f=250 mm and θ=0.76°. (c) This plot is a continuation of plot (b). (d) Extraordinary-polarized light with f=250 mm and θ=0.73°. (e) Extraordinary-polarized light with f=500 mm and θ=2.3°. The structure of the sample was (HL)3(8M)(LiNbO3)(8M)(LH)3. The LiNbO3 was x cut, and M denotes ZnSe.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

(HL)N(mM)(LiNbO3)(mM)(LH)N,
Δn=(Δn)DIFF+(Δn)PV+(Δn)TH=1/2ne3r33(EDIFF1+EPV1)+(dn/dT)ΔT,

Metrics