Abstract

The asymptotic description of the coupled spatial and temporal evolution of a pulsed ultrawideband electromagnetic beam field as it propagates through a dispersive, attenuative material that occupies the half-space zz0 is obtained from the angular spectrum of plane waves representation. This angular-spectrum representation expresses the wave field as a superposition of both homogeneous and inhomogeneous plane waves. The paraxial approximation of the spatial part of this representation for nontruncated beam fields results in a description that explicitly displays the temporal evolution of the pulsed-beam field through a single-contour integral that is of the same form as that obtained for a pulsed plane-wave field propagating in the positive z direction in a lossy, dispersive medium. The accuracy of this paraxial approximation is shown to improve as the material’s attenuation increases.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (40)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription