Abstract

We have developed an optical cross-sectional imaging method for turbid media with the aid of a pulse ultrasound wave. Observation of deep regions in turbid media, such as tissue samples, is difficult owing to the rapid dispersion of an incoming laser beam by scattering. A pulse ultrasound wave, which is less scattered in tissues, can indicate the measuring point on the basis of the change of the optical scattering properties in a localized region. A depth-resolving capability can be achieved from the time-dependent measurement of the scattered-light intensity as the pulse ultrasound wave propagates in the sample. We verified the method by observing absorptive objects embedded in silicone rubber and by obtaining the cross-sectional image of an absorbing object surrounded by a strong scattering medium.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
    [CrossRef] [PubMed]
  3. M. Maris, E. Gratton, J. Maier, W. Mantulin, B. Chance, “Functional near-infrared imaging of deoxygenated hemoglobin during exercise of the finger extensor muscles using the frequency-domain technique,” Bioimaging 2, 174–183 (1994).
    [CrossRef]
  4. B. Fishkin, O. Coquoz, E. R. Anderson, M. Brenner, B. J. Tromberg, “Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject,” Appl. Opt. 36, 10–20 (1997).
    [CrossRef] [PubMed]
  5. L. Wang, S. Jacques, X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
    [CrossRef] [PubMed]
  6. L. Wang, X. Zhao, “Ultrasound modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media,” Appl. Opt. 36, 7277–7282 (1997).
    [CrossRef]
  7. S. Lévêque, A. C. Boccara, M. Lebec, H. Saint–Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
    [CrossRef]
  8. M. Hisaka, T. Sugiura, S. Kawata, “Ultrasound-assisted optical reflectometry in highly scattering media,” Jpn. J. Appl. Phys. Part 2 38, L1478–1481 (1999).
    [CrossRef]
  9. L. Wang, G. Ku, “Frequency-swept ultrasound-modulated optical tomography of scattering media,” Opt. Lett. 23, 975–977 (1998).
    [CrossRef]
  10. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941) pp. 205–207.
  11. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1989), pp. 87–90.

1999 (2)

M. Hisaka, T. Sugiura, S. Kawata, “Ultrasound-assisted optical reflectometry in highly scattering media,” Jpn. J. Appl. Phys. Part 2 38, L1478–1481 (1999).
[CrossRef]

S. Lévêque, A. C. Boccara, M. Lebec, H. Saint–Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

1998 (1)

1997 (2)

1995 (1)

1994 (1)

M. Maris, E. Gratton, J. Maier, W. Mantulin, B. Chance, “Functional near-infrared imaging of deoxygenated hemoglobin during exercise of the finger extensor muscles using the frequency-domain technique,” Bioimaging 2, 174–183 (1994).
[CrossRef]

1992 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Anderson, E. R.

Boccara, A. C.

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1989), pp. 87–90.

Brenner, M.

Chance, B.

M. Maris, E. Gratton, J. Maier, W. Mantulin, B. Chance, “Functional near-infrared imaging of deoxygenated hemoglobin during exercise of the finger extensor muscles using the frequency-domain technique,” Bioimaging 2, 174–183 (1994).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Coquoz, O.

Fishkin, B.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gratton, E.

M. Maris, E. Gratton, J. Maier, W. Mantulin, B. Chance, “Functional near-infrared imaging of deoxygenated hemoglobin during exercise of the finger extensor muscles using the frequency-domain technique,” Bioimaging 2, 174–183 (1994).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hisaka, M.

M. Hisaka, T. Sugiura, S. Kawata, “Ultrasound-assisted optical reflectometry in highly scattering media,” Jpn. J. Appl. Phys. Part 2 38, L1478–1481 (1999).
[CrossRef]

Huang, D.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Jacques, S.

Kawata, S.

M. Hisaka, T. Sugiura, S. Kawata, “Ultrasound-assisted optical reflectometry in highly scattering media,” Jpn. J. Appl. Phys. Part 2 38, L1478–1481 (1999).
[CrossRef]

Ku, G.

Lebec, M.

Lévêque, S.

Lin, C. P.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Maier, J.

M. Maris, E. Gratton, J. Maier, W. Mantulin, B. Chance, “Functional near-infrared imaging of deoxygenated hemoglobin during exercise of the finger extensor muscles using the frequency-domain technique,” Bioimaging 2, 174–183 (1994).
[CrossRef]

Mantulin, W.

M. Maris, E. Gratton, J. Maier, W. Mantulin, B. Chance, “Functional near-infrared imaging of deoxygenated hemoglobin during exercise of the finger extensor muscles using the frequency-domain technique,” Bioimaging 2, 174–183 (1994).
[CrossRef]

Maris, M.

M. Maris, E. Gratton, J. Maier, W. Mantulin, B. Chance, “Functional near-infrared imaging of deoxygenated hemoglobin during exercise of the finger extensor muscles using the frequency-domain technique,” Bioimaging 2, 174–183 (1994).
[CrossRef]

Puliafito, C. A.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Saint–Jalmes, H.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941) pp. 205–207.

Sugiura, T.

M. Hisaka, T. Sugiura, S. Kawata, “Ultrasound-assisted optical reflectometry in highly scattering media,” Jpn. J. Appl. Phys. Part 2 38, L1478–1481 (1999).
[CrossRef]

Swanson, E. A.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tromberg, B. J.

Wang, L.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1989), pp. 87–90.

Zhao, X.

Appl. Opt. (2)

Bioimaging (1)

M. Maris, E. Gratton, J. Maier, W. Mantulin, B. Chance, “Functional near-infrared imaging of deoxygenated hemoglobin during exercise of the finger extensor muscles using the frequency-domain technique,” Bioimaging 2, 174–183 (1994).
[CrossRef]

Jpn. J. Appl. Phys. Part 2 (1)

M. Hisaka, T. Sugiura, S. Kawata, “Ultrasound-assisted optical reflectometry in highly scattering media,” Jpn. J. Appl. Phys. Part 2 38, L1478–1481 (1999).
[CrossRef]

Opt. Lett. (4)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (2)

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941) pp. 205–207.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1989), pp. 87–90.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup of the optical cross-sectional imaging with pulse ultrasound wave assistance.  

Fig. 2
Fig. 2

Cross-sectional observation of an absorbing object embedded in silicone rubber. The cross-sectional plot of the signal at (a) the absorbing object and (b) the cross-sectional image are shown. The equivalent distance from the surface of sample is shown at the right-hand side of the graph. The gray-level scale shows the normalized ac signal.

Fig. 3
Fig. 3

Reference images and plot taken at various conditions for comparison with the image in Fig. 2. The cross-sectional image of the same sample in Fig. 2 observed (a) without a pulse ultrasound wave and (b) the dc signal along the y-axis are shown. (c) The cross-sectional image of the sample that contains no absorbing object is also shown.

Fig. 4
Fig. 4

The ac signal of a series of samples that contain absorbing objects located at different depths. The depth of the absorbing objects are 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, and 8.0 mm in the samples that are labeled (a)–(g). The raw data of each observation are superposed in plot (h). The envelope of the plot exhibits the system response in the axial direction.

Fig. 5
Fig. 5

Cross-sectional image of an absorbing object embedded in highly scattering media. (a) The absorbing object is observed at a 4.5-mm depth in the cross-sectional image. (b) The surface plot shows the signal modulation in the area within the dashed rectangle in (a).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δm=AW(m2+2)46m[(n0m)2+2]2 Δρ,

Metrics