Abstract

An analytical solution is developed to quantify a site-specific fluorophore lifetime perturbation that occurs, for example, when the local metabolic status is different from that of surrounding tissue. This solution may be used when fluorophores are distributed throughout a highly turbid media and the site of interest is embedded many mean scattering distances from the source and the detector. The perturbation in lifetime is differentiated from photon transit delays by random walk theory. This analytical solution requires a priori knowledge of the tissue-scattering and absorption properties at the excitation and emission wavelengths that may be obtained from concurrent time-resolved reflection measurements. Additionally, the solution has been compared with the exact, numerically solved solution. Thus the presented solution forms the basis for practical lifetime imaging in turbid media such as tissue.

© 2001 Optical Society of America

Full Article  |  PDF Article

Corrections

David Hattery, Victor Chernomordik, Murray Loew, Israel Gannot, and Amir Gandjbakhche, "Analytical solutions for time-resolved fluorescence lifetime imaging in a turbid medium such as tissue: errata," J. Opt. Soc. Am. A 20, 1833-1833 (2003)
https://www.osapublishing.org/josaa/abstract.cfm?uri=josaa-20-9-1833

References

  • View by:
  • |
  • |
  • |

  1. G. A. Wagnieres, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
    [CrossRef] [PubMed]
  2. M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
    [CrossRef] [PubMed]
  3. R. Weissleder, C. H. Tung, U. Mahmood, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999).
    [CrossRef] [PubMed]
  4. R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “In vivo absorption spectrum of disulphonated aluminium phthalocyanine in a murine tumour model,” J. Photochem. Photobiol. B 34, 229–235 (1996).
    [CrossRef] [PubMed]
  5. C. Klinteberg, A. M. K. Enejder, I. Wang, S. Andersson-Engels, S. Svanberg, K. Svanberg, “Kinetic fluorescence studies of 5-aminolaevulinic acid-induced protoporphyrin IX accumulation in basal cell carcinomas,” J. Photochem. Photobiol. B 49, 120–128 (1999).
    [CrossRef]
  6. K. Dowling, M. J. Dayel, S. C. W. Hyde, P. M. W. French, M. J. Lever, J. D. Hares, A. K. L. Dymoke-Bradshaw, “High resolution time-domain fluorescence lifetime imaging for biomedical applications,” J. Mod. Opt. 46, 199–206 (1999).
    [CrossRef]
  7. R. F. Bonner, R. Nossal, S. Havlin, G. H. Weiss, “Model for photon migration in turbid biological media,” J. Opt. Soc. Am. A 4, 423–432 (1987).
    [CrossRef] [PubMed]
  8. A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities embedded in tissues,” Med. Phys. 22, 185–191 (1994).
  9. J. A. Moon, J. Reintjes, “Image resolution by use of multiply scattered light,” Opt. Lett. 19, 521–523 (1994).
    [CrossRef] [PubMed]
  10. A. H. Gandjbakhche, G. H. Weiss, “Random walk and diffusion-like model of photon migration in turbid media,” in Progress in Optics, E. Wolf, ed. (Elsevier North-Holland, Amsterdam, 1995), Vol. 34, pp. 333–402.
  11. E. M. Sevick-Muraca, C. Hutchinson, “Probability description of fluorescent and phosphorescent signal generation in tissues and other random media,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2387, 62–70 (1995).
    [CrossRef]
  12. J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993).
    [CrossRef] [PubMed]
  13. M. S. Patterson, B. Pogue, “A mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissue,” Appl. Opt. 33, 1963 (1994).
    [CrossRef] [PubMed]
  14. E. M. Sevick-Muraca, C. L. Burch, “Origin of phosphorescence signals reemitted from tissues,” Opt. Lett. 19, 1928–1930 (1994).
    [CrossRef] [PubMed]
  15. A. H. Gandjbakhche, R. F. Bonner, R. Nossal, G. H. Weiss, “Effects of multiple-passage probabilities on fluorescent signals from biological media,” Appl. Opt. 36, 4613–4619 (1997).
    [CrossRef] [PubMed]
  16. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,” Appl. Opt. 36, 2260–2272 (1997).
    [CrossRef] [PubMed]
  17. C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime-based sensing in tissues: a computational study,” Biophys. J. 68, 1574–1582 (1995).
    [CrossRef] [PubMed]
  18. J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
    [CrossRef] [PubMed]
  19. R. H. Mayer, J. S. Reynolds, E. M. Sevick-Muraca, “Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999).
    [CrossRef]
  20. D. Y. Paithankar, E. M. Sevick-Muraca, “Fluorescence lifetime imaging with frequency-domain photon migration measurement,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca, D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, DC., 1996), pp. 184–194.
  21. H. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt. 37, 5337–5343 (1998).
    [CrossRef]
  22. A. E. Cerussi, J. S. Maier, S. Fantini, M. A. Franceschini, W. W. Mantulin, E. Gratton, “Experimental verification of a theory for the time-resolved fluorescence spectroscopy of thick tissues,” Appl. Opt. 36, 116–124 (1997).
    [CrossRef] [PubMed]
  23. X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).
    [CrossRef] [PubMed]
  24. J. Wu, Y. Wang, L. Perelman, “Three-dimensional imaging of objects embedded in turbid media with fluorescence and Raman spectroscopy,” Appl. Opt. 34, 3425–3430 (1995).
    [CrossRef] [PubMed]
  25. A. H. Gandjbakhche, R. F. Bonner, R. Nossal, G. H. Weiss, “Absorptivity contrast in transillumination imaging of tissue abnormalities,” Appl. Opt. 35, 1767–1774 (1996).
    [CrossRef] [PubMed]
  26. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Kluwer Academic/Plenum, New York, 1999).
  27. A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, R. Nossal, “Time-dependence contrast functions for quantitative imaging in time-resolved transillumination experiments,” Appl. Opt. 37, 1973–1981 (1998).
    [CrossRef]
  28. R. R. Anderson, J. A. Parrish, “The optics of human skin,” J. Invest. Derm. 77, 13–19 (1981).
    [CrossRef] [PubMed]

2000 (1)

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

1999 (5)

R. Weissleder, C. H. Tung, U. Mahmood, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999).
[CrossRef] [PubMed]

C. Klinteberg, A. M. K. Enejder, I. Wang, S. Andersson-Engels, S. Svanberg, K. Svanberg, “Kinetic fluorescence studies of 5-aminolaevulinic acid-induced protoporphyrin IX accumulation in basal cell carcinomas,” J. Photochem. Photobiol. B 49, 120–128 (1999).
[CrossRef]

K. Dowling, M. J. Dayel, S. C. W. Hyde, P. M. W. French, M. J. Lever, J. D. Hares, A. K. L. Dymoke-Bradshaw, “High resolution time-domain fluorescence lifetime imaging for biomedical applications,” J. Mod. Opt. 46, 199–206 (1999).
[CrossRef]

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

R. H. Mayer, J. S. Reynolds, E. M. Sevick-Muraca, “Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999).
[CrossRef]

1998 (3)

1997 (3)

1996 (3)

1995 (2)

C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime-based sensing in tissues: a computational study,” Biophys. J. 68, 1574–1582 (1995).
[CrossRef] [PubMed]

J. Wu, Y. Wang, L. Perelman, “Three-dimensional imaging of objects embedded in turbid media with fluorescence and Raman spectroscopy,” Appl. Opt. 34, 3425–3430 (1995).
[CrossRef] [PubMed]

1994 (4)

1993 (1)

1987 (1)

1981 (1)

R. R. Anderson, J. A. Parrish, “The optics of human skin,” J. Invest. Derm. 77, 13–19 (1981).
[CrossRef] [PubMed]

Anderson, R. R.

R. R. Anderson, J. A. Parrish, “The optics of human skin,” J. Invest. Derm. 77, 13–19 (1981).
[CrossRef] [PubMed]

Andersson-Engels, S.

C. Klinteberg, A. M. K. Enejder, I. Wang, S. Andersson-Engels, S. Svanberg, K. Svanberg, “Kinetic fluorescence studies of 5-aminolaevulinic acid-induced protoporphyrin IX accumulation in basal cell carcinomas,” J. Photochem. Photobiol. B 49, 120–128 (1999).
[CrossRef]

Boas, D. A.

Bonner, R. F.

Burch, C. L.

Canti, G.

R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “In vivo absorption spectrum of disulphonated aluminium phthalocyanine in a murine tumour model,” J. Photochem. Photobiol. B 34, 229–235 (1996).
[CrossRef] [PubMed]

Cerussi, A. E.

Chance, B.

Chen, A. U.

Chernomordik, V.

Cornell, K. K.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Cubeddu, R.

R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “In vivo absorption spectrum of disulphonated aluminium phthalocyanine in a murine tumour model,” J. Photochem. Photobiol. B 34, 229–235 (1996).
[CrossRef] [PubMed]

Dayel, M. J.

K. Dowling, M. J. Dayel, S. C. W. Hyde, P. M. W. French, M. J. Lever, J. D. Hares, A. K. L. Dymoke-Bradshaw, “High resolution time-domain fluorescence lifetime imaging for biomedical applications,” J. Mod. Opt. 46, 199–206 (1999).
[CrossRef]

Dowling, K.

K. Dowling, M. J. Dayel, S. C. W. Hyde, P. M. W. French, M. J. Lever, J. D. Hares, A. K. L. Dymoke-Bradshaw, “High resolution time-domain fluorescence lifetime imaging for biomedical applications,” J. Mod. Opt. 46, 199–206 (1999).
[CrossRef]

Dymoke-Bradshaw, A. K. L.

K. Dowling, M. J. Dayel, S. C. W. Hyde, P. M. W. French, M. J. Lever, J. D. Hares, A. K. L. Dymoke-Bradshaw, “High resolution time-domain fluorescence lifetime imaging for biomedical applications,” J. Mod. Opt. 46, 199–206 (1999).
[CrossRef]

Enejder, A. M. K.

C. Klinteberg, A. M. K. Enejder, I. Wang, S. Andersson-Engels, S. Svanberg, K. Svanberg, “Kinetic fluorescence studies of 5-aminolaevulinic acid-induced protoporphyrin IX accumulation in basal cell carcinomas,” J. Photochem. Photobiol. B 49, 120–128 (1999).
[CrossRef]

Fantini, S.

Feld, M. S.

Franceschini, M. A.

French, P. M. W.

K. Dowling, M. J. Dayel, S. C. W. Hyde, P. M. W. French, M. J. Lever, J. D. Hares, A. K. L. Dymoke-Bradshaw, “High resolution time-domain fluorescence lifetime imaging for biomedical applications,” J. Mod. Opt. 46, 199–206 (1999).
[CrossRef]

Gandjbakhche, A. H.

Gratton, E.

Gurfinkel, M.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Gust, J. D.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Hares, J. D.

K. Dowling, M. J. Dayel, S. C. W. Hyde, P. M. W. French, M. J. Lever, J. D. Hares, A. K. L. Dymoke-Bradshaw, “High resolution time-domain fluorescence lifetime imaging for biomedical applications,” J. Mod. Opt. 46, 199–206 (1999).
[CrossRef]

Havlin, S.

Hawrysz, D. J.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Hebden, J. C.

Hutchinson, C.

E. M. Sevick-Muraca, C. Hutchinson, “Probability description of fluorescent and phosphorescent signal generation in tissues and other random media,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2387, 62–70 (1995).
[CrossRef]

Hutchinson, C. L.

C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime-based sensing in tissues: a computational study,” Biophys. J. 68, 1574–1582 (1995).
[CrossRef] [PubMed]

Hyde, S. C. W.

K. Dowling, M. J. Dayel, S. C. W. Hyde, P. M. W. French, M. J. Lever, J. D. Hares, A. K. L. Dymoke-Bradshaw, “High resolution time-domain fluorescence lifetime imaging for biomedical applications,” J. Mod. Opt. 46, 199–206 (1999).
[CrossRef]

Jiang, H.

Klinteberg, C.

C. Klinteberg, A. M. K. Enejder, I. Wang, S. Andersson-Engels, S. Svanberg, K. Svanberg, “Kinetic fluorescence studies of 5-aminolaevulinic acid-induced protoporphyrin IX accumulation in basal cell carcinomas,” J. Photochem. Photobiol. B 49, 120–128 (1999).
[CrossRef]

Lakowicz, J. R.

C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime-based sensing in tissues: a computational study,” Biophys. J. 68, 1574–1582 (1995).
[CrossRef] [PubMed]

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Kluwer Academic/Plenum, New York, 1999).

Lever, M. J.

K. Dowling, M. J. Dayel, S. C. W. Hyde, P. M. W. French, M. J. Lever, J. D. Hares, A. K. L. Dymoke-Bradshaw, “High resolution time-domain fluorescence lifetime imaging for biomedical applications,” J. Mod. Opt. 46, 199–206 (1999).
[CrossRef]

Li, X. D.

Mahmood, U.

R. Weissleder, C. H. Tung, U. Mahmood, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999).
[CrossRef] [PubMed]

Maier, J. S.

Mantulin, W. W.

Mayer, R. H.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

R. H. Mayer, J. S. Reynolds, E. M. Sevick-Muraca, “Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999).
[CrossRef]

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Moon, J. A.

Moore, A. L.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Moore, T. A.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Muggenburg, B.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Musolino, M.

R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “In vivo absorption spectrum of disulphonated aluminium phthalocyanine in a murine tumour model,” J. Photochem. Photobiol. B 34, 229–235 (1996).
[CrossRef] [PubMed]

Nikula, K.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Nossal, R.

O’Leary, M. A.

Paithankar, D. Y.

D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,” Appl. Opt. 36, 2260–2272 (1997).
[CrossRef] [PubMed]

D. Y. Paithankar, E. M. Sevick-Muraca, “Fluorescence lifetime imaging with frequency-domain photon migration measurement,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca, D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, DC., 1996), pp. 184–194.

Pandey, R.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Parrish, J. A.

R. R. Anderson, J. A. Parrish, “The optics of human skin,” J. Invest. Derm. 77, 13–19 (1981).
[CrossRef] [PubMed]

Patterson, M. S.

Perelman, L.

Pifferi, A.

R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “In vivo absorption spectrum of disulphonated aluminium phthalocyanine in a murine tumour model,” J. Photochem. Photobiol. B 34, 229–235 (1996).
[CrossRef] [PubMed]

Pogue, B.

Pogue, B. W.

Ralston, W.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Rava, R. P.

Reintjes, J.

Reynolds, J. S.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

R. H. Mayer, J. S. Reynolds, E. M. Sevick-Muraca, “Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999).
[CrossRef]

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

R. H. Mayer, J. S. Reynolds, E. M. Sevick-Muraca, “Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999).
[CrossRef]

D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,” Appl. Opt. 36, 2260–2272 (1997).
[CrossRef] [PubMed]

C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime-based sensing in tissues: a computational study,” Biophys. J. 68, 1574–1582 (1995).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, C. L. Burch, “Origin of phosphorescence signals reemitted from tissues,” Opt. Lett. 19, 1928–1930 (1994).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, C. Hutchinson, “Probability description of fluorescent and phosphorescent signal generation in tissues and other random media,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2387, 62–70 (1995).
[CrossRef]

D. Y. Paithankar, E. M. Sevick-Muraca, “Fluorescence lifetime imaging with frequency-domain photon migration measurement,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca, D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, DC., 1996), pp. 184–194.

Snyder, P. W.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Star, W. M.

G. A. Wagnieres, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
[CrossRef] [PubMed]

Svanberg, K.

C. Klinteberg, A. M. K. Enejder, I. Wang, S. Andersson-Engels, S. Svanberg, K. Svanberg, “Kinetic fluorescence studies of 5-aminolaevulinic acid-induced protoporphyrin IX accumulation in basal cell carcinomas,” J. Photochem. Photobiol. B 49, 120–128 (1999).
[CrossRef]

Svanberg, S.

C. Klinteberg, A. M. K. Enejder, I. Wang, S. Andersson-Engels, S. Svanberg, K. Svanberg, “Kinetic fluorescence studies of 5-aminolaevulinic acid-induced protoporphyrin IX accumulation in basal cell carcinomas,” J. Photochem. Photobiol. B 49, 120–128 (1999).
[CrossRef]

Taroni, P.

R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “In vivo absorption spectrum of disulphonated aluminium phthalocyanine in a murine tumour model,” J. Photochem. Photobiol. B 34, 229–235 (1996).
[CrossRef] [PubMed]

Tatman, D.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Thompson, A. B.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Troy, T. L.

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Tung, C. H.

R. Weissleder, C. H. Tung, U. Mahmood, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999).
[CrossRef] [PubMed]

Valentini, G.

R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “In vivo absorption spectrum of disulphonated aluminium phthalocyanine in a murine tumour model,” J. Photochem. Photobiol. B 34, 229–235 (1996).
[CrossRef] [PubMed]

Wagnieres, G. A.

G. A. Wagnieres, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
[CrossRef] [PubMed]

Wang, I.

C. Klinteberg, A. M. K. Enejder, I. Wang, S. Andersson-Engels, S. Svanberg, K. Svanberg, “Kinetic fluorescence studies of 5-aminolaevulinic acid-induced protoporphyrin IX accumulation in basal cell carcinomas,” J. Photochem. Photobiol. B 49, 120–128 (1999).
[CrossRef]

Wang, Y.

Waters, D. J.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Weiss, G. H.

Weissleder, R.

R. Weissleder, C. H. Tung, U. Mahmood, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999).
[CrossRef] [PubMed]

Wilson, B. C.

G. A. Wagnieres, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
[CrossRef] [PubMed]

Wu, J.

Yodh, A. G.

Appl. Opt. (11)

A. H. Gandjbakhche, R. F. Bonner, R. Nossal, G. H. Weiss, “Effects of multiple-passage probabilities on fluorescent signals from biological media,” Appl. Opt. 36, 4613–4619 (1997).
[CrossRef] [PubMed]

D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media,” Appl. Opt. 36, 2260–2272 (1997).
[CrossRef] [PubMed]

J. Wu, M. S. Feld, R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993).
[CrossRef] [PubMed]

M. S. Patterson, B. Pogue, “A mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissue,” Appl. Opt. 33, 1963 (1994).
[CrossRef] [PubMed]

R. H. Mayer, J. S. Reynolds, E. M. Sevick-Muraca, “Measurement of the fluorescence lifetime in scattering media by frequency-domain photon migration,” Appl. Opt. 38, 4930–4938 (1999).
[CrossRef]

H. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt. 37, 5337–5343 (1998).
[CrossRef]

A. E. Cerussi, J. S. Maier, S. Fantini, M. A. Franceschini, W. W. Mantulin, E. Gratton, “Experimental verification of a theory for the time-resolved fluorescence spectroscopy of thick tissues,” Appl. Opt. 36, 116–124 (1997).
[CrossRef] [PubMed]

X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).
[CrossRef] [PubMed]

J. Wu, Y. Wang, L. Perelman, “Three-dimensional imaging of objects embedded in turbid media with fluorescence and Raman spectroscopy,” Appl. Opt. 34, 3425–3430 (1995).
[CrossRef] [PubMed]

A. H. Gandjbakhche, R. F. Bonner, R. Nossal, G. H. Weiss, “Absorptivity contrast in transillumination imaging of tissue abnormalities,” Appl. Opt. 35, 1767–1774 (1996).
[CrossRef] [PubMed]

A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, R. Nossal, “Time-dependence contrast functions for quantitative imaging in time-resolved transillumination experiments,” Appl. Opt. 37, 1973–1981 (1998).
[CrossRef]

Biophys. J. (1)

C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence lifetime-based sensing in tissues: a computational study,” Biophys. J. 68, 1574–1582 (1995).
[CrossRef] [PubMed]

J. Invest. Derm. (1)

R. R. Anderson, J. A. Parrish, “The optics of human skin,” J. Invest. Derm. 77, 13–19 (1981).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

K. Dowling, M. J. Dayel, S. C. W. Hyde, P. M. W. French, M. J. Lever, J. D. Hares, A. K. L. Dymoke-Bradshaw, “High resolution time-domain fluorescence lifetime imaging for biomedical applications,” J. Mod. Opt. 46, 199–206 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Photochem. Photobiol. B (2)

R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “In vivo absorption spectrum of disulphonated aluminium phthalocyanine in a murine tumour model,” J. Photochem. Photobiol. B 34, 229–235 (1996).
[CrossRef] [PubMed]

C. Klinteberg, A. M. K. Enejder, I. Wang, S. Andersson-Engels, S. Svanberg, K. Svanberg, “Kinetic fluorescence studies of 5-aminolaevulinic acid-induced protoporphyrin IX accumulation in basal cell carcinomas,” J. Photochem. Photobiol. B 49, 120–128 (1999).
[CrossRef]

Med. Phys. (1)

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities embedded in tissues,” Med. Phys. 22, 185–191 (1994).

Nat. Biotechnol. (1)

R. Weissleder, C. H. Tung, U. Mahmood, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999).
[CrossRef] [PubMed]

Opt. Lett. (2)

Photochem. Photobiol. (3)

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

G. A. Wagnieres, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998).
[CrossRef] [PubMed]

M. Gurfinkel, A. B. Thompson, W. Ralston, T. L. Troy, A. L. Moore, T. A. Moore, J. D. Gust, D. Tatman, J. S. Reynolds, B. Muggenburg, K. Nikula, R. Pandey, R. H. Mayer, D. J. Hawrysz, E. M. Sevick-Muraca, “Pharmacokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using fluorescence, near-infrared reflectance imaging: a case study,” Photochem. Photobiol. 72, 94–102 (2000).
[CrossRef] [PubMed]

Other (4)

A. H. Gandjbakhche, G. H. Weiss, “Random walk and diffusion-like model of photon migration in turbid media,” in Progress in Optics, E. Wolf, ed. (Elsevier North-Holland, Amsterdam, 1995), Vol. 34, pp. 333–402.

E. M. Sevick-Muraca, C. Hutchinson, “Probability description of fluorescent and phosphorescent signal generation in tissues and other random media,” in Advances in Laser and Light Spectroscopy to Diagnose Cancer and Other Diseases, R. R. Alfano, ed., Proc. SPIE2387, 62–70 (1995).
[CrossRef]

D. Y. Paithankar, E. M. Sevick-Muraca, “Fluorescence lifetime imaging with frequency-domain photon migration measurement,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca, D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, DC., 1996), pp. 184–194.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Kluwer Academic/Plenum, New York, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

2D Random walk lattice showing representative photon paths from an emitter to a fluorophore site s and then to a detector r.

Fig. 2
Fig. 2

Imaging geometry showing the relative locations of the photon source, fluorophore site s, and detector r.

Fig. 3
Fig. 3

Dependence on probable time-of-photon-arrival for fluorophore lifetimes of 0, 10, 100, and 1000 ps with source at origin, detector at (30, 0, 0 mm), fluorophore at (15, 0, 8 mm), scattering μs=1/mm, and absorption 0.001/mm at both excitation and emission wavelengths.

Fig. 4
Fig. 4

Comparison between the analytical solution and two numerically solved exact solutions using Eq. (15) for a typical worst-case geometry [asymmetrically placed fluorophore directly under the detector, source at origin, detector at (10, 0, 0 mm), and 10 ps lifetime fluorophore at (10, 0, 10 mm)] with scattering μs=1/mm. The analytical solution uses an average absorption of 0.005/mm. The exact 2× case uses μai=0.0033/mm and μae=0.0067/mm, and the exact 4× case uses μai=0.002/mm and μae=0.008/mm.

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

qm=(1-δ)m-bδb,where m=1qm=1,
γ(n, r, s, r0)=j=0nm=1(1-η)m-1η Φ(1-ψk)m-1×ψk fj(s, m|r0)pn-j-k(r|s),
g^ξ=n=0gnexp(-nξ)Ln{gn}.
γˆ(r, s, r0)=ηΦψˆ p^ξ(r|s)m=1(1-ψ^k)m-1×(1-η)m-1f^ξ(s, m|r0).
pn(s|r0)=j=0nfj(s, 1|r0)pn-j(s|s),
f^ξ(s, 1|r0)=p^ξ(s|r0)/p^ξ(s|s).
fn(s, m+1|r0)=j=0nfj(s, m|r0)fn-j(s, 1|r0).
f^ξ(s, m|r0)=f^ξ(s, 1|r0)[ f^ξ(s, 1|s)]m-1.
f^ξ(s, m|r0)=p^ξ(s|r0)p^ξ(s|s)1-1p^ξ(s|s)m-1.
γˆ(r, s, r0)
=ηΦψˆp^ξ(r|s)p^ξ(s|r0)(1-ψˆ)(1-η)+[1-(1-ψˆ)(1-η)]p^ξ(s|s).
m=1p^ξ(s|r0)p^ξ(s|s)1-1p^ξ(s|s)m-1=p^ξ(s|r0).
γˆ(r, s, r0)=ηΦψˆ p^ξ(r|s)p^ξ(s|r0),
ψk=(1-θ)θ k-1ψˆ=1-θexp(ξ)-θ,
p^ξ(s|s)1+183π3/2j=1exp(-2 jξ)j3/2.
γˆ(r, s, r0)=ηΦ p^ξ(r|s)p^ξ(s|r0)Δn(1-η)[exp(ξ)-1]+{ηΔn[exp(ξ)-1]+1}1+183π3/2j=1exp(-2jξ)j3/2.
γˆ(r, s, r0)=η Φ p^ξ(r|s)p^ξ(s|r0)Δn[exp(ξ)-1]+1.
γˆ(r, s, r0)=ηΦ{ p^ξ(r|s)p^ξ(s|r0)-ξΔnp^ξ(r|s)p^ξ(s|r0)}.
WnLn-1[p^ξ(r|s)p^ξ(s|r0)].
Wn-Wn-1=Ln-1{ξWn},
γ(n, r, s, r0)=ηΦ[Wn-Δn(Wn-Wn-1)].
γ(t, r, s, r0)=μafμsi ΦWt-ΔtcμsidWtdt.
Wt=h(α-, β-)-h(α-,β+)-h(α+, β-)+h(α+, β+).
α±=34x¯f2+y¯f2+z¯f±2μsi2μsi2.
β±=34(x¯f-x)2+(y¯f-y)2+z¯f+2μse±2μse2μse2,
h(α, β)=α+β[ct(μsi μse)1/2]3/2(παβ)1/2×exp-α+βct(μsi μse)1/2-ctμa.
h(α, β)
=(α+β)(2α+4αβ+2β-3ctμsiμse)2(ctμsiμse)7/2παβ
×exp-(α+β)2ct(μsi μse)1/2-ctμa.
γ(t, r, s)=μafμsi Φh(α-, β-)-h(α-, β+)-h(α+, β-)+h(α+, β+)-τcμsi[h(α-, β-)-h(α-, β+)-h(α+, β-)+h(α+, β+)].
μai=μai+μafμæ=μæ+μafe,
γ(t, r)=μafμsi ΦP(t, r)-ΔtcμsidP(t, r)dt,
p(t, r)=3212π[ct(μsiμse)1/2-2]3/2×exp-3μsiμser24[ct(μsiμse)1/2-2]×1-exp-6ct(μsiμse)1/2-2exp(-μact).
C(t, r)=I(t, r)-I(t)I(t),
C(t, r)=sCs(t, r, s).
Cs(t, r, s)=(τ-τs)p(t, r)dWt,sdt,

Metrics