Abstract

Thermal emissive properties of microstructured surfaces are measured in the near-infrared region. Two-dimensional periodic microstructured surfaces with metal coatings are fabricated with Si anisotropic etching and laser ablation techniques. The structural periods of the samples are 2.0 and 1.5 μm. Clear selective-emission bands are observed experimentally. This selective emission is attributed to the resonance effect between the emissive field and the surface microstructures. In addition, numerical calculation computed with rigorous coupled-wave analysis (RCWA) is performed on the microstructured samples. The selective-emission peaks measured through experiments can be reproduced well by RCWA, and this result suggests strongly that the thermal radiation from periodic structures may have spatial coherence. It is confirmed that the surface microstructure can be applied to the control of spectral emission from high-temperature materials.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Waymouth, “Optical light source device,” U.S. patent5,079,473, January7, 1992.
  2. T. J. Coutts, “A review of progress in thermophotovoltaic generation of electricity,” Renew. Sustain. Energy Rev. 3, 77–184 (1999).
    [CrossRef]
  3. S. Hava, M. Auslender, “Design of analysis of low-reflection grating microstructures for a solar energy absorber,” Sol. Energy Mater. Sol. Cells 61, 143–151 (2000).
    [CrossRef]
  4. D. L. Chubb, A. T. Pal, M. O. Patton, P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc. 19, 2551–2562 (1999).
    [CrossRef]
  5. M. G. Krishna, M. Rajendran, D. R. Pyke, A. K. Bhattacharya, “Spectral emissivity of ytterbium oxide-based materials for application as selective emitters in thermophotovoltaic devices,” Sol. Energy Mater. Sol. Cells 59, 337–348 (1999).
    [CrossRef]
  6. H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, S. Maruyama, “Selective emission of Al2O3/Er3Al5O12 eutectic composite for thermophoto-voltaic generation of electricity,” Jpn. J. Appl. Phys., Part 1 39, 1957–1961 (2000).
    [CrossRef]
  7. P. J. Hesketh, J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: the normal direction,” Phys. Rev. B 37, 10795–10802 (1988).
    [CrossRef]
  8. P. J. Hesketh, J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: angular variation,” Phys. Rev. B 37, 10803–10813 (1988).
    [CrossRef]
  9. T. K. Wang, J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces. III. Undoped silicon: the normal direction in shallow lamellar gratings,” Infrared Phys. 32, 477–488 (1991).
    [CrossRef]
  10. T. K. Wang, J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces. IV. Undoped silicon: normal direction in deep lamellar gratings,” Appl. Opt. 31, 732–736 (1992).
    [CrossRef] [PubMed]
  11. T. K. Wang, J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces. V. Undoped silicon: angular measurement in shallow lamellar gratings,” Appl. Opt. 32, 2021–2025 (1993).
    [CrossRef] [PubMed]
  12. K. Tang, R. O. Buckious, “Bi-directional reflection measurements from two-dimensional microcontoured metallic surfaces,” Microscale Thermophys. Eng. 2, 245–260 (1998).
  13. K. D. Möller, K. R. Farmer, D. V. P. Ivanov, O. Sternberg, K. P. Stewart, P. Lalanne, “Thin and thick cross shaped metal grids,” Infrared Phys. Technol. 40, 475–485 (1999).
    [CrossRef]
  14. M. Sugimoto, T. Fujioka, T. Inoue, H. Fukushima, Y. Mizuyama, S. Ukegawa, T. Matsushima, M. Toho, “The infra-red suppression in the incandescent light from a surface with submicron holes,” J. Light Visual Environ. 18, 5–10 (1994).
    [CrossRef]
  15. A. Heinzel, V. Boerner, A. Gombert, V. Wittwer, J. Luther, “Microstructured tungsten surfaces as selective emitters,” in Proceedings of the Thermophotovoltaic Generation of Electricity 4th NREL Conference, Denver, Colorado, 1998, T. J. Coutts, J. P. Benner, C. S. Allman, eds. (American Institute of Physics, New York, 1999), pp. 191–196.
  16. M. G. Moharam, “Coupled-wave analysis of two-dimensional Dielectric gratings,” in Holographic Optics: Design and Applications, I. Cindrich, ed., Proc. SPIE883, 8–11 (1988).
    [CrossRef]
  17. S. Peng, G. M. Morris, “Efficient implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 12, 1087–1096 (1995).
    [CrossRef]
  18. N. Chaetau, J.-P. Hugonin, “Algorithm for the rigorous coupled-wave analysis of grating diffraction,” J. Opt. Soc. Am. A 11, 1321–1331 (1994).
    [CrossRef]
  19. Y. Kanamori, H. Kikuta, K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. Part 2 39, L735–L737 (2000).
    [CrossRef]
  20. D. W. Lynch, W. R. Hunter, Handbook of Optical Constants of Solids I, Part II, Subpart I: Metals, E. D. Palik, ed. (Academic, New York, 1985), pp. 334–341.
  21. D. F. Edwards, Handbook of Optical Constants of Solids I, Part II, Subpart II: Semiconductors, E. D. Palik, ed. (Academic, New York, 1985), pp. 547–569.
  22. K. Ujihara, “Reflectivity of metals at high temperatures,” J. Appl. Phys. 43, 2376–2383 (1972).
    [CrossRef]

2000 (3)

S. Hava, M. Auslender, “Design of analysis of low-reflection grating microstructures for a solar energy absorber,” Sol. Energy Mater. Sol. Cells 61, 143–151 (2000).
[CrossRef]

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, S. Maruyama, “Selective emission of Al2O3/Er3Al5O12 eutectic composite for thermophoto-voltaic generation of electricity,” Jpn. J. Appl. Phys., Part 1 39, 1957–1961 (2000).
[CrossRef]

Y. Kanamori, H. Kikuta, K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. Part 2 39, L735–L737 (2000).
[CrossRef]

1999 (4)

K. D. Möller, K. R. Farmer, D. V. P. Ivanov, O. Sternberg, K. P. Stewart, P. Lalanne, “Thin and thick cross shaped metal grids,” Infrared Phys. Technol. 40, 475–485 (1999).
[CrossRef]

D. L. Chubb, A. T. Pal, M. O. Patton, P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc. 19, 2551–2562 (1999).
[CrossRef]

M. G. Krishna, M. Rajendran, D. R. Pyke, A. K. Bhattacharya, “Spectral emissivity of ytterbium oxide-based materials for application as selective emitters in thermophotovoltaic devices,” Sol. Energy Mater. Sol. Cells 59, 337–348 (1999).
[CrossRef]

T. J. Coutts, “A review of progress in thermophotovoltaic generation of electricity,” Renew. Sustain. Energy Rev. 3, 77–184 (1999).
[CrossRef]

1998 (1)

K. Tang, R. O. Buckious, “Bi-directional reflection measurements from two-dimensional microcontoured metallic surfaces,” Microscale Thermophys. Eng. 2, 245–260 (1998).

1995 (1)

1994 (2)

N. Chaetau, J.-P. Hugonin, “Algorithm for the rigorous coupled-wave analysis of grating diffraction,” J. Opt. Soc. Am. A 11, 1321–1331 (1994).
[CrossRef]

M. Sugimoto, T. Fujioka, T. Inoue, H. Fukushima, Y. Mizuyama, S. Ukegawa, T. Matsushima, M. Toho, “The infra-red suppression in the incandescent light from a surface with submicron holes,” J. Light Visual Environ. 18, 5–10 (1994).
[CrossRef]

1993 (1)

1992 (1)

1991 (1)

T. K. Wang, J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces. III. Undoped silicon: the normal direction in shallow lamellar gratings,” Infrared Phys. 32, 477–488 (1991).
[CrossRef]

1988 (2)

P. J. Hesketh, J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: the normal direction,” Phys. Rev. B 37, 10795–10802 (1988).
[CrossRef]

P. J. Hesketh, J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: angular variation,” Phys. Rev. B 37, 10803–10813 (1988).
[CrossRef]

1972 (1)

K. Ujihara, “Reflectivity of metals at high temperatures,” J. Appl. Phys. 43, 2376–2383 (1972).
[CrossRef]

Auslender, M.

S. Hava, M. Auslender, “Design of analysis of low-reflection grating microstructures for a solar energy absorber,” Sol. Energy Mater. Sol. Cells 61, 143–151 (2000).
[CrossRef]

Bhattacharya, A. K.

M. G. Krishna, M. Rajendran, D. R. Pyke, A. K. Bhattacharya, “Spectral emissivity of ytterbium oxide-based materials for application as selective emitters in thermophotovoltaic devices,” Sol. Energy Mater. Sol. Cells 59, 337–348 (1999).
[CrossRef]

Boerner, V.

A. Heinzel, V. Boerner, A. Gombert, V. Wittwer, J. Luther, “Microstructured tungsten surfaces as selective emitters,” in Proceedings of the Thermophotovoltaic Generation of Electricity 4th NREL Conference, Denver, Colorado, 1998, T. J. Coutts, J. P. Benner, C. S. Allman, eds. (American Institute of Physics, New York, 1999), pp. 191–196.

Buckious, R. O.

K. Tang, R. O. Buckious, “Bi-directional reflection measurements from two-dimensional microcontoured metallic surfaces,” Microscale Thermophys. Eng. 2, 245–260 (1998).

Chaetau, N.

Chubb, D. L.

D. L. Chubb, A. T. Pal, M. O. Patton, P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc. 19, 2551–2562 (1999).
[CrossRef]

Coutts, T. J.

T. J. Coutts, “A review of progress in thermophotovoltaic generation of electricity,” Renew. Sustain. Energy Rev. 3, 77–184 (1999).
[CrossRef]

Edwards, D. F.

D. F. Edwards, Handbook of Optical Constants of Solids I, Part II, Subpart II: Semiconductors, E. D. Palik, ed. (Academic, New York, 1985), pp. 547–569.

Farmer, K. R.

K. D. Möller, K. R. Farmer, D. V. P. Ivanov, O. Sternberg, K. P. Stewart, P. Lalanne, “Thin and thick cross shaped metal grids,” Infrared Phys. Technol. 40, 475–485 (1999).
[CrossRef]

Fujioka, T.

M. Sugimoto, T. Fujioka, T. Inoue, H. Fukushima, Y. Mizuyama, S. Ukegawa, T. Matsushima, M. Toho, “The infra-red suppression in the incandescent light from a surface with submicron holes,” J. Light Visual Environ. 18, 5–10 (1994).
[CrossRef]

Fukushima, H.

M. Sugimoto, T. Fujioka, T. Inoue, H. Fukushima, Y. Mizuyama, S. Ukegawa, T. Matsushima, M. Toho, “The infra-red suppression in the incandescent light from a surface with submicron holes,” J. Light Visual Environ. 18, 5–10 (1994).
[CrossRef]

Gombert, A.

A. Heinzel, V. Boerner, A. Gombert, V. Wittwer, J. Luther, “Microstructured tungsten surfaces as selective emitters,” in Proceedings of the Thermophotovoltaic Generation of Electricity 4th NREL Conference, Denver, Colorado, 1998, T. J. Coutts, J. P. Benner, C. S. Allman, eds. (American Institute of Physics, New York, 1999), pp. 191–196.

Hane, K.

Y. Kanamori, H. Kikuta, K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. Part 2 39, L735–L737 (2000).
[CrossRef]

Hava, S.

S. Hava, M. Auslender, “Design of analysis of low-reflection grating microstructures for a solar energy absorber,” Sol. Energy Mater. Sol. Cells 61, 143–151 (2000).
[CrossRef]

Heinzel, A.

A. Heinzel, V. Boerner, A. Gombert, V. Wittwer, J. Luther, “Microstructured tungsten surfaces as selective emitters,” in Proceedings of the Thermophotovoltaic Generation of Electricity 4th NREL Conference, Denver, Colorado, 1998, T. J. Coutts, J. P. Benner, C. S. Allman, eds. (American Institute of Physics, New York, 1999), pp. 191–196.

Hesketh, P. J.

P. J. Hesketh, J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: angular variation,” Phys. Rev. B 37, 10803–10813 (1988).
[CrossRef]

P. J. Hesketh, J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: the normal direction,” Phys. Rev. B 37, 10795–10802 (1988).
[CrossRef]

Hugonin, J.-P.

Hunter, W. R.

D. W. Lynch, W. R. Hunter, Handbook of Optical Constants of Solids I, Part II, Subpart I: Metals, E. D. Palik, ed. (Academic, New York, 1985), pp. 334–341.

Inoue, T.

M. Sugimoto, T. Fujioka, T. Inoue, H. Fukushima, Y. Mizuyama, S. Ukegawa, T. Matsushima, M. Toho, “The infra-red suppression in the incandescent light from a surface with submicron holes,” J. Light Visual Environ. 18, 5–10 (1994).
[CrossRef]

Ivanov, D. V. P.

K. D. Möller, K. R. Farmer, D. V. P. Ivanov, O. Sternberg, K. P. Stewart, P. Lalanne, “Thin and thick cross shaped metal grids,” Infrared Phys. Technol. 40, 475–485 (1999).
[CrossRef]

Jenkins, P. P.

D. L. Chubb, A. T. Pal, M. O. Patton, P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc. 19, 2551–2562 (1999).
[CrossRef]

Kanamori, Y.

Y. Kanamori, H. Kikuta, K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. Part 2 39, L735–L737 (2000).
[CrossRef]

Kikuta, H.

Y. Kanamori, H. Kikuta, K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. Part 2 39, L735–L737 (2000).
[CrossRef]

Krishna, M. G.

M. G. Krishna, M. Rajendran, D. R. Pyke, A. K. Bhattacharya, “Spectral emissivity of ytterbium oxide-based materials for application as selective emitters in thermophotovoltaic devices,” Sol. Energy Mater. Sol. Cells 59, 337–348 (1999).
[CrossRef]

Lalanne, P.

K. D. Möller, K. R. Farmer, D. V. P. Ivanov, O. Sternberg, K. P. Stewart, P. Lalanne, “Thin and thick cross shaped metal grids,” Infrared Phys. Technol. 40, 475–485 (1999).
[CrossRef]

Luther, J.

A. Heinzel, V. Boerner, A. Gombert, V. Wittwer, J. Luther, “Microstructured tungsten surfaces as selective emitters,” in Proceedings of the Thermophotovoltaic Generation of Electricity 4th NREL Conference, Denver, Colorado, 1998, T. J. Coutts, J. P. Benner, C. S. Allman, eds. (American Institute of Physics, New York, 1999), pp. 191–196.

Lynch, D. W.

D. W. Lynch, W. R. Hunter, Handbook of Optical Constants of Solids I, Part II, Subpart I: Metals, E. D. Palik, ed. (Academic, New York, 1985), pp. 334–341.

Maruyama, S.

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, S. Maruyama, “Selective emission of Al2O3/Er3Al5O12 eutectic composite for thermophoto-voltaic generation of electricity,” Jpn. J. Appl. Phys., Part 1 39, 1957–1961 (2000).
[CrossRef]

Matsushima, T.

M. Sugimoto, T. Fujioka, T. Inoue, H. Fukushima, Y. Mizuyama, S. Ukegawa, T. Matsushima, M. Toho, “The infra-red suppression in the incandescent light from a surface with submicron holes,” J. Light Visual Environ. 18, 5–10 (1994).
[CrossRef]

Mizuyama, Y.

M. Sugimoto, T. Fujioka, T. Inoue, H. Fukushima, Y. Mizuyama, S. Ukegawa, T. Matsushima, M. Toho, “The infra-red suppression in the incandescent light from a surface with submicron holes,” J. Light Visual Environ. 18, 5–10 (1994).
[CrossRef]

Moharam, M. G.

M. G. Moharam, “Coupled-wave analysis of two-dimensional Dielectric gratings,” in Holographic Optics: Design and Applications, I. Cindrich, ed., Proc. SPIE883, 8–11 (1988).
[CrossRef]

Möller, K. D.

K. D. Möller, K. R. Farmer, D. V. P. Ivanov, O. Sternberg, K. P. Stewart, P. Lalanne, “Thin and thick cross shaped metal grids,” Infrared Phys. Technol. 40, 475–485 (1999).
[CrossRef]

Morris, G. M.

Nakagawa, N.

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, S. Maruyama, “Selective emission of Al2O3/Er3Al5O12 eutectic composite for thermophoto-voltaic generation of electricity,” Jpn. J. Appl. Phys., Part 1 39, 1957–1961 (2000).
[CrossRef]

Nakamura, K.

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, S. Maruyama, “Selective emission of Al2O3/Er3Al5O12 eutectic composite for thermophoto-voltaic generation of electricity,” Jpn. J. Appl. Phys., Part 1 39, 1957–1961 (2000).
[CrossRef]

Ohtsubo, H.

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, S. Maruyama, “Selective emission of Al2O3/Er3Al5O12 eutectic composite for thermophoto-voltaic generation of electricity,” Jpn. J. Appl. Phys., Part 1 39, 1957–1961 (2000).
[CrossRef]

Pal, A. T.

D. L. Chubb, A. T. Pal, M. O. Patton, P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc. 19, 2551–2562 (1999).
[CrossRef]

Patton, M. O.

D. L. Chubb, A. T. Pal, M. O. Patton, P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc. 19, 2551–2562 (1999).
[CrossRef]

Peng, S.

Pyke, D. R.

M. G. Krishna, M. Rajendran, D. R. Pyke, A. K. Bhattacharya, “Spectral emissivity of ytterbium oxide-based materials for application as selective emitters in thermophotovoltaic devices,” Sol. Energy Mater. Sol. Cells 59, 337–348 (1999).
[CrossRef]

Rajendran, M.

M. G. Krishna, M. Rajendran, D. R. Pyke, A. K. Bhattacharya, “Spectral emissivity of ytterbium oxide-based materials for application as selective emitters in thermophotovoltaic devices,” Sol. Energy Mater. Sol. Cells 59, 337–348 (1999).
[CrossRef]

Sai, H.

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, S. Maruyama, “Selective emission of Al2O3/Er3Al5O12 eutectic composite for thermophoto-voltaic generation of electricity,” Jpn. J. Appl. Phys., Part 1 39, 1957–1961 (2000).
[CrossRef]

Sternberg, O.

K. D. Möller, K. R. Farmer, D. V. P. Ivanov, O. Sternberg, K. P. Stewart, P. Lalanne, “Thin and thick cross shaped metal grids,” Infrared Phys. Technol. 40, 475–485 (1999).
[CrossRef]

Stewart, K. P.

K. D. Möller, K. R. Farmer, D. V. P. Ivanov, O. Sternberg, K. P. Stewart, P. Lalanne, “Thin and thick cross shaped metal grids,” Infrared Phys. Technol. 40, 475–485 (1999).
[CrossRef]

Sugimoto, M.

M. Sugimoto, T. Fujioka, T. Inoue, H. Fukushima, Y. Mizuyama, S. Ukegawa, T. Matsushima, M. Toho, “The infra-red suppression in the incandescent light from a surface with submicron holes,” J. Light Visual Environ. 18, 5–10 (1994).
[CrossRef]

Tang, K.

K. Tang, R. O. Buckious, “Bi-directional reflection measurements from two-dimensional microcontoured metallic surfaces,” Microscale Thermophys. Eng. 2, 245–260 (1998).

Toho, M.

M. Sugimoto, T. Fujioka, T. Inoue, H. Fukushima, Y. Mizuyama, S. Ukegawa, T. Matsushima, M. Toho, “The infra-red suppression in the incandescent light from a surface with submicron holes,” J. Light Visual Environ. 18, 5–10 (1994).
[CrossRef]

Ujihara, K.

K. Ujihara, “Reflectivity of metals at high temperatures,” J. Appl. Phys. 43, 2376–2383 (1972).
[CrossRef]

Ukegawa, S.

M. Sugimoto, T. Fujioka, T. Inoue, H. Fukushima, Y. Mizuyama, S. Ukegawa, T. Matsushima, M. Toho, “The infra-red suppression in the incandescent light from a surface with submicron holes,” J. Light Visual Environ. 18, 5–10 (1994).
[CrossRef]

Wang, T. K.

Waymouth, J. F.

J. F. Waymouth, “Optical light source device,” U.S. patent5,079,473, January7, 1992.

Wittwer, V.

A. Heinzel, V. Boerner, A. Gombert, V. Wittwer, J. Luther, “Microstructured tungsten surfaces as selective emitters,” in Proceedings of the Thermophotovoltaic Generation of Electricity 4th NREL Conference, Denver, Colorado, 1998, T. J. Coutts, J. P. Benner, C. S. Allman, eds. (American Institute of Physics, New York, 1999), pp. 191–196.

Yugami, H.

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, S. Maruyama, “Selective emission of Al2O3/Er3Al5O12 eutectic composite for thermophoto-voltaic generation of electricity,” Jpn. J. Appl. Phys., Part 1 39, 1957–1961 (2000).
[CrossRef]

Zemel, J. N.

T. K. Wang, J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces. V. Undoped silicon: angular measurement in shallow lamellar gratings,” Appl. Opt. 32, 2021–2025 (1993).
[CrossRef] [PubMed]

T. K. Wang, J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces. IV. Undoped silicon: normal direction in deep lamellar gratings,” Appl. Opt. 31, 732–736 (1992).
[CrossRef] [PubMed]

T. K. Wang, J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces. III. Undoped silicon: the normal direction in shallow lamellar gratings,” Infrared Phys. 32, 477–488 (1991).
[CrossRef]

P. J. Hesketh, J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: the normal direction,” Phys. Rev. B 37, 10795–10802 (1988).
[CrossRef]

P. J. Hesketh, J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: angular variation,” Phys. Rev. B 37, 10803–10813 (1988).
[CrossRef]

Appl. Opt. (2)

Infrared Phys. (1)

T. K. Wang, J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces. III. Undoped silicon: the normal direction in shallow lamellar gratings,” Infrared Phys. 32, 477–488 (1991).
[CrossRef]

Infrared Phys. Technol. (1)

K. D. Möller, K. R. Farmer, D. V. P. Ivanov, O. Sternberg, K. P. Stewart, P. Lalanne, “Thin and thick cross shaped metal grids,” Infrared Phys. Technol. 40, 475–485 (1999).
[CrossRef]

J. Appl. Phys. (1)

K. Ujihara, “Reflectivity of metals at high temperatures,” J. Appl. Phys. 43, 2376–2383 (1972).
[CrossRef]

J. Eur. Ceram. Soc. (1)

D. L. Chubb, A. T. Pal, M. O. Patton, P. P. Jenkins, “Rare earth doped high temperature ceramic selective emitters,” J. Eur. Ceram. Soc. 19, 2551–2562 (1999).
[CrossRef]

J. Light Visual Environ. (1)

M. Sugimoto, T. Fujioka, T. Inoue, H. Fukushima, Y. Mizuyama, S. Ukegawa, T. Matsushima, M. Toho, “The infra-red suppression in the incandescent light from a surface with submicron holes,” J. Light Visual Environ. 18, 5–10 (1994).
[CrossRef]

J. Opt. Soc. Am. A (2)

Jpn. J. Appl. Phys. Part 2 (1)

Y. Kanamori, H. Kikuta, K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. Part 2 39, L735–L737 (2000).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (1)

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, S. Maruyama, “Selective emission of Al2O3/Er3Al5O12 eutectic composite for thermophoto-voltaic generation of electricity,” Jpn. J. Appl. Phys., Part 1 39, 1957–1961 (2000).
[CrossRef]

Microscale Thermophys. Eng. (1)

K. Tang, R. O. Buckious, “Bi-directional reflection measurements from two-dimensional microcontoured metallic surfaces,” Microscale Thermophys. Eng. 2, 245–260 (1998).

Phys. Rev. B (2)

P. J. Hesketh, J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: the normal direction,” Phys. Rev. B 37, 10795–10802 (1988).
[CrossRef]

P. J. Hesketh, J. N. Zemel, “Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: angular variation,” Phys. Rev. B 37, 10803–10813 (1988).
[CrossRef]

Renew. Sustain. Energy Rev. (1)

T. J. Coutts, “A review of progress in thermophotovoltaic generation of electricity,” Renew. Sustain. Energy Rev. 3, 77–184 (1999).
[CrossRef]

Sol. Energy Mater. Sol. Cells (2)

S. Hava, M. Auslender, “Design of analysis of low-reflection grating microstructures for a solar energy absorber,” Sol. Energy Mater. Sol. Cells 61, 143–151 (2000).
[CrossRef]

M. G. Krishna, M. Rajendran, D. R. Pyke, A. K. Bhattacharya, “Spectral emissivity of ytterbium oxide-based materials for application as selective emitters in thermophotovoltaic devices,” Sol. Energy Mater. Sol. Cells 59, 337–348 (1999).
[CrossRef]

Other (5)

D. W. Lynch, W. R. Hunter, Handbook of Optical Constants of Solids I, Part II, Subpart I: Metals, E. D. Palik, ed. (Academic, New York, 1985), pp. 334–341.

D. F. Edwards, Handbook of Optical Constants of Solids I, Part II, Subpart II: Semiconductors, E. D. Palik, ed. (Academic, New York, 1985), pp. 547–569.

A. Heinzel, V. Boerner, A. Gombert, V. Wittwer, J. Luther, “Microstructured tungsten surfaces as selective emitters,” in Proceedings of the Thermophotovoltaic Generation of Electricity 4th NREL Conference, Denver, Colorado, 1998, T. J. Coutts, J. P. Benner, C. S. Allman, eds. (American Institute of Physics, New York, 1999), pp. 191–196.

M. G. Moharam, “Coupled-wave analysis of two-dimensional Dielectric gratings,” in Holographic Optics: Design and Applications, I. Cindrich, ed., Proc. SPIE883, 8–11 (1988).
[CrossRef]

J. F. Waymouth, “Optical light source device,” U.S. patent5,079,473, January7, 1992.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

2D periodic surface microstructures are fabricated by following procedure: (1) oxidation, (2) resist coating, (3) electron-beam lithography and development, (4) SiO2 etching, (5) resist removing and Si anisotropic selective etching, (6) removing SiO2 mask and Pt sputtering.

Fig. 2
Fig. 2

SEM pictures of the 2D periodic surface microstructures with reverse-pyramid cavities (Λ=2.0 μm). (a) top view, (b) cross-sectional view.  

Fig. 3
Fig. 3

Schematic diagram of the apparatus for measurement of emissive properties.  

Fig. 4
Fig. 4

Schematic diagram of the calculation model for RCWA simulation and the basic geometry in calculation.

Fig. 5
Fig. 5

Reflectance spectra of the microstructured (Λ=2.0 μm) and the flat sample. Solid and dashed curves, measured spectra for random polarized incident beam. Solid curve with circles, calculated spectrum.

Fig. 6
Fig. 6

Emissive power spectra of the microstructured (Λ =2.0 μm) and flat samples measured at two different temperatures with the TGS detector.

Fig. 7
Fig. 7

Emittance spectra of the microstructured (Λ=2.0 μm,1.5 μm) and flat samples measured with the TGS detector.

Fig. 8
Fig. 8

(a) Emissive power spectra of the microstructured sample (Λ=2.0 μm) measured with the InSb detector. (b) First derivative spectra of (a).

Fig. 9
Fig. 9

Comparison of calculated absorptance and measured emittance spectra of the microstructured sample (Λ=2.0 μm). The solid curve represents normal emittance spectrum measured with the TGS detector. The solid curve with circles represents calculated absorptance spectrum for θi=5° and ψi=45°.

Tables (1)

Tables Icon

Table 1 List of Thickness and Fill Factor in the RCWA Calculation Model Shown in Fig. 4

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

α(λ)=1-ρ(λ)-τ(λ),
α(λ)=1-i=-nnj=-nn[DERi,j(λ)+DETi,j(λ)],
α(λ, T)=(λ, T).

Metrics