Abstract

We investigated the blur tolerance of human observers for stimuli modulated along the isoluminant red–green, the isoluminant yellow–blue, and the luminance (black–white) direction in color space. We report the following results: (i) Blur difference thresholds for red–green and luminance stimuli (of equal cone contrast) are very similar and as low as 0.5 min of visual angle; for yellow–blue the lowest blur thresholds are much higher (1.5 min of visual angle). (ii) The smallest blur thresholds are found for slightly blurred square waves (reference blur of 1 arc min) and not for sharp edges. (iii) Blur thresholds for red–green and black–white follow a Weber law for reference (pedestal) blurs greater than the optimum blur. (iv) Using the model proposed by Watt and Morgan [Vision Res. 24, 1387 (1984)] we estimated the internal blur of the visual system for the black–white and the red–green color directions and arrived at the following estimates: 1.2 arc min for black–white stimuli at 10% contrast and 0.9 arc min for red–green stimuli at 10% cone contrast. Blur tolerance for yellow–blue is independent of external blur and cannot be predicted by the model. (v) The contrast dependence of blur sensitivity is similar for red–green and luminance modulations (slopes of -0.15 and -0.16 in log–log coordinates, respectively) and slightly stronger for yellow–blue (slope=-0.75). Blur discrimination thresholds are not predicted by the contrast sensitivity function of the visual system. Our findings are useful for predicting blur tolerance for complex images and provide a spatial frequency cutoff point when Gaussian low-pass filters are used for noise removal in colored images. They are also useful as a baseline for the study of visual disorders such as amblyopia.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Westheimer, “Spatial interaction in human cone vision,” J. Physiol. 190, 193–154 (1967).
  2. D. Marimont, B. Wandell, “Matching color images: the effects of chromatic aberration,” J. Opt. Soc. Am. A 12, 3113–3122 (1993).
  3. B. Wandell, Foundations of Vision (Sinauer Associates, Inc., Sunderland, Mass., 1993).
  4. C. R. Ingling, P. W. Russell, M. S. Rea, B. H. Tsou, “Red–green opponent spectral sensitivity: disparity between cancellation and direct matching methods,” Science 201, 1221–1223 (1978).
    [CrossRef] [PubMed]
  5. C. R. Ingling, E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r–g X-channel,” Vision Res. 23, 1495–1500 (1983).
    [CrossRef]
  6. R. L. DeValois, K. K. DeValois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993).
    [CrossRef]
  7. R. L. DeValois, H. Morgan, D. M. Snodderly, “Psychophysical studies of monkey vision—III. Spatial luminance contrast sensitivity tests of macaque and human observers,” Vision Res. 14, 75–81 (1974).
    [CrossRef]
  8. A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
    [PubMed]
  9. P. Lennie, J. Krauskopf, G. Schlar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).
    [PubMed]
  10. R. M. Shapley, “Visual sensitivity and parallel retinocortical channels,” Ann. Rev. Psychol. 41, 635–658 (1990).
    [CrossRef]
  11. D. Levi, S. Klein, “Equivalent intrinsic blur in amblyopia,” Vision Res. 30, 1995–2022 (1990).
    [CrossRef] [PubMed]
  12. L. Kiorpes, D. Kiper, L. O’Keefe, J. R. Cavanagh, J. A. Movshon, “Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia,” J. Neurosci. 18, 6411–6424 (1998).
    [PubMed]
  13. S. J. Cropper, “Detection of chromatic and luminance contrast modulation by the visual system,” J. Opt. Soc. Am. A 15, 1969–1986 (1998).
    [CrossRef]
  14. R. T. Eskew, C. F. Stromeyer, R. E. Kronauer, “Temporal properties of the red-green chromatic mechanism,” Vision Res. 34, 3127–3137 (1994).
    [CrossRef] [PubMed]
  15. D. C. Burr, A. Fiorentini, C. Morrone, “Reaction time to motion onset of luminance and chromatic gratings is determined by perceived speed,” Vision Res. 38, 3681–3690 (1998).
    [CrossRef]
  16. R. F. Hess, J. S. Pointer, R. J. Watt, “How are spatialfilters used in fovea and parafovea?” J. Opt. Soc. Am. A 6, 329–339 (1989).
    [CrossRef] [PubMed]
  17. G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).
  18. D. Travis, Effective Color Displays (Academic, London, 1990).
  19. D. Brainard, “Cone contrast and opponent modulation color spaces,” in Human Color Vision, P. K. Kaiser, R. M. Boynton, eds. (Optical Society of America, Washington, D.C., 1996), pp. 563–579.
  20. S. M. Wuerger, M. J. Morgan, “The input of the long- and medium-wavelength-sensitive cones to orientation discrimination,” J. Opt. Soc. Am. A 16, 436–442 (1999).
    [CrossRef]
  21. S. M. Wuerger, “Colour appearance changes resulting from isoluminant chromatic adaptation,” Vision Res. 36, 3107–3118 (1996).
    [CrossRef] [PubMed]
  22. H. Irtel, “Computing data for color-vision modeling,” Behav. Res. Methods Instrum. Comput. 24, 397–401 (1992).
    [CrossRef]
  23. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [CrossRef] [PubMed]
  24. H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467–477 (1971).
    [CrossRef]
  25. R. J. Watt, M. J. Morgan, “The recognition and representation of edge blur: evidence for spatial primitives in human vision,” Vision Res. 23, 1465–1477 (1983).
    [CrossRef] [PubMed]
  26. R. J. Watt, M. J. Morgan, “Spatial filters and the localization of luminance changes in human vision,” Vision Res. 24, 1387–1397 (1984).
    [CrossRef] [PubMed]
  27. D. Levi, S. Klein, “Equivalent intrinsic blur in spatial vision,” Vision Res. 30, 1971–1993 (1990).
    [CrossRef] [PubMed]
  28. S. A. Glantz, Primer of Biostatistics, 4th ed. (McGraw-Hill, New York, 1997).
  29. P. Lennie, J. Pokorny, V. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283–1293 (1993).
    [CrossRef] [PubMed]
  30. J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
    [CrossRef] [PubMed]
  31. T. E. Reisbeck, K. R. Gegenfurtner, “Effects of contrast and temporal frequency on orientation discrimination,” Vision Res. 38, 1105–1117 (1998).
    [CrossRef] [PubMed]
  32. P. Martini, M. C. Morrone, D. Burr, “Sensitivity to spatial phase at equiluminance,” Vision Res. 36, 1153–1162 (1996).
    [CrossRef] [PubMed]
  33. R. J. Watt, Visual Processing: Computational, Psychophysical and Cognitive Research (Erlbaum, London, 1988).
  34. A. K. Pääkkönen, M. J. Morgan, “Effects of motion on blur discrimination,” J. Opt. Soc. Am. A 11, 992–1002 (1994).
    [CrossRef]
  35. A. Ahumada, “Computational image quality metrics: A Review,” SID Digest 24, 305–308 (1993).
  36. K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and yellow–blue chromatic gratings,” J. Physiol. (London) 359, 381–400 (1985).
  37. A. J. Ahumada, T. Beard, “A simple vision model for inhomogeneous image quality assessment,” SID Digest 29, 40–41 (1998).
    [CrossRef]
  38. D. J. Field, N. Brady, “Visual sensitivity, blur, and the sources of variability in the amplitude spectra of natural scenes,” Vision Res. 37, 3367–3383 (1997).
    [CrossRef]
  39. Y. Tadmor, D. J. Tolhurst, “Discrimination of changes in the second-order statistics of natural and synthetic images,” Vision Res. 34, 541–554 (1994).
    [CrossRef] [PubMed]

1999

1998

S. J. Cropper, “Detection of chromatic and luminance contrast modulation by the visual system,” J. Opt. Soc. Am. A 15, 1969–1986 (1998).
[CrossRef]

D. C. Burr, A. Fiorentini, C. Morrone, “Reaction time to motion onset of luminance and chromatic gratings is determined by perceived speed,” Vision Res. 38, 3681–3690 (1998).
[CrossRef]

T. E. Reisbeck, K. R. Gegenfurtner, “Effects of contrast and temporal frequency on orientation discrimination,” Vision Res. 38, 1105–1117 (1998).
[CrossRef] [PubMed]

A. J. Ahumada, T. Beard, “A simple vision model for inhomogeneous image quality assessment,” SID Digest 29, 40–41 (1998).
[CrossRef]

L. Kiorpes, D. Kiper, L. O’Keefe, J. R. Cavanagh, J. A. Movshon, “Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia,” J. Neurosci. 18, 6411–6424 (1998).
[PubMed]

1997

D. J. Field, N. Brady, “Visual sensitivity, blur, and the sources of variability in the amplitude spectra of natural scenes,” Vision Res. 37, 3367–3383 (1997).
[CrossRef]

1996

P. Martini, M. C. Morrone, D. Burr, “Sensitivity to spatial phase at equiluminance,” Vision Res. 36, 1153–1162 (1996).
[CrossRef] [PubMed]

S. M. Wuerger, “Colour appearance changes resulting from isoluminant chromatic adaptation,” Vision Res. 36, 3107–3118 (1996).
[CrossRef] [PubMed]

1994

Y. Tadmor, D. J. Tolhurst, “Discrimination of changes in the second-order statistics of natural and synthetic images,” Vision Res. 34, 541–554 (1994).
[CrossRef] [PubMed]

R. T. Eskew, C. F. Stromeyer, R. E. Kronauer, “Temporal properties of the red-green chromatic mechanism,” Vision Res. 34, 3127–3137 (1994).
[CrossRef] [PubMed]

A. K. Pääkkönen, M. J. Morgan, “Effects of motion on blur discrimination,” J. Opt. Soc. Am. A 11, 992–1002 (1994).
[CrossRef]

1993

P. Lennie, J. Pokorny, V. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283–1293 (1993).
[CrossRef] [PubMed]

A. Ahumada, “Computational image quality metrics: A Review,” SID Digest 24, 305–308 (1993).

D. Marimont, B. Wandell, “Matching color images: the effects of chromatic aberration,” J. Opt. Soc. Am. A 12, 3113–3122 (1993).

R. L. DeValois, K. K. DeValois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993).
[CrossRef]

1992

H. Irtel, “Computing data for color-vision modeling,” Behav. Res. Methods Instrum. Comput. 24, 397–401 (1992).
[CrossRef]

1991

J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
[CrossRef] [PubMed]

1990

D. Levi, S. Klein, “Equivalent intrinsic blur in spatial vision,” Vision Res. 30, 1971–1993 (1990).
[CrossRef] [PubMed]

P. Lennie, J. Krauskopf, G. Schlar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).
[PubMed]

R. M. Shapley, “Visual sensitivity and parallel retinocortical channels,” Ann. Rev. Psychol. 41, 635–658 (1990).
[CrossRef]

D. Levi, S. Klein, “Equivalent intrinsic blur in amblyopia,” Vision Res. 30, 1995–2022 (1990).
[CrossRef] [PubMed]

1989

1985

K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and yellow–blue chromatic gratings,” J. Physiol. (London) 359, 381–400 (1985).

1984

R. J. Watt, M. J. Morgan, “Spatial filters and the localization of luminance changes in human vision,” Vision Res. 24, 1387–1397 (1984).
[CrossRef] [PubMed]

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[PubMed]

1983

R. J. Watt, M. J. Morgan, “The recognition and representation of edge blur: evidence for spatial primitives in human vision,” Vision Res. 23, 1465–1477 (1983).
[CrossRef] [PubMed]

C. R. Ingling, E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r–g X-channel,” Vision Res. 23, 1495–1500 (1983).
[CrossRef]

1978

C. R. Ingling, P. W. Russell, M. S. Rea, B. H. Tsou, “Red–green opponent spectral sensitivity: disparity between cancellation and direct matching methods,” Science 201, 1221–1223 (1978).
[CrossRef] [PubMed]

1975

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

1974

R. L. DeValois, H. Morgan, D. M. Snodderly, “Psychophysical studies of monkey vision—III. Spatial luminance contrast sensitivity tests of macaque and human observers,” Vision Res. 14, 75–81 (1974).
[CrossRef]

1971

H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467–477 (1971).
[CrossRef]

1967

G. Westheimer, “Spatial interaction in human cone vision,” J. Physiol. 190, 193–154 (1967).

Ahumada, A.

A. Ahumada, “Computational image quality metrics: A Review,” SID Digest 24, 305–308 (1993).

Ahumada, A. J.

A. J. Ahumada, T. Beard, “A simple vision model for inhomogeneous image quality assessment,” SID Digest 29, 40–41 (1998).
[CrossRef]

Beard, T.

A. J. Ahumada, T. Beard, “A simple vision model for inhomogeneous image quality assessment,” SID Digest 29, 40–41 (1998).
[CrossRef]

Brady, N.

D. J. Field, N. Brady, “Visual sensitivity, blur, and the sources of variability in the amplitude spectra of natural scenes,” Vision Res. 37, 3367–3383 (1997).
[CrossRef]

Brainard, D.

D. Brainard, “Cone contrast and opponent modulation color spaces,” in Human Color Vision, P. K. Kaiser, R. M. Boynton, eds. (Optical Society of America, Washington, D.C., 1996), pp. 563–579.

Burr, D.

P. Martini, M. C. Morrone, D. Burr, “Sensitivity to spatial phase at equiluminance,” Vision Res. 36, 1153–1162 (1996).
[CrossRef] [PubMed]

Burr, D. C.

D. C. Burr, A. Fiorentini, C. Morrone, “Reaction time to motion onset of luminance and chromatic gratings is determined by perceived speed,” Vision Res. 38, 3681–3690 (1998).
[CrossRef]

Cavanagh, J. R.

L. Kiorpes, D. Kiper, L. O’Keefe, J. R. Cavanagh, J. A. Movshon, “Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia,” J. Neurosci. 18, 6411–6424 (1998).
[PubMed]

Cropper, S. J.

Derrington, A. M.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[PubMed]

DeValois, K. K.

R. L. DeValois, K. K. DeValois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993).
[CrossRef]

DeValois, R. L.

R. L. DeValois, K. K. DeValois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993).
[CrossRef]

R. L. DeValois, H. Morgan, D. M. Snodderly, “Psychophysical studies of monkey vision—III. Spatial luminance contrast sensitivity tests of macaque and human observers,” Vision Res. 14, 75–81 (1974).
[CrossRef]

Eskew, R. T.

R. T. Eskew, C. F. Stromeyer, R. E. Kronauer, “Temporal properties of the red-green chromatic mechanism,” Vision Res. 34, 3127–3137 (1994).
[CrossRef] [PubMed]

Farell, B.

J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
[CrossRef] [PubMed]

Field, D. J.

D. J. Field, N. Brady, “Visual sensitivity, blur, and the sources of variability in the amplitude spectra of natural scenes,” Vision Res. 37, 3367–3383 (1997).
[CrossRef]

Fiorentini, A.

D. C. Burr, A. Fiorentini, C. Morrone, “Reaction time to motion onset of luminance and chromatic gratings is determined by perceived speed,” Vision Res. 38, 3681–3690 (1998).
[CrossRef]

Gegenfurtner, K. R.

T. E. Reisbeck, K. R. Gegenfurtner, “Effects of contrast and temporal frequency on orientation discrimination,” Vision Res. 38, 1105–1117 (1998).
[CrossRef] [PubMed]

Glantz, S. A.

S. A. Glantz, Primer of Biostatistics, 4th ed. (McGraw-Hill, New York, 1997).

Hess, R. F.

Ingling, C. R.

C. R. Ingling, E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r–g X-channel,” Vision Res. 23, 1495–1500 (1983).
[CrossRef]

C. R. Ingling, P. W. Russell, M. S. Rea, B. H. Tsou, “Red–green opponent spectral sensitivity: disparity between cancellation and direct matching methods,” Science 201, 1221–1223 (1978).
[CrossRef] [PubMed]

Irtel, H.

H. Irtel, “Computing data for color-vision modeling,” Behav. Res. Methods Instrum. Comput. 24, 397–401 (1992).
[CrossRef]

Kiorpes, L.

L. Kiorpes, D. Kiper, L. O’Keefe, J. R. Cavanagh, J. A. Movshon, “Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia,” J. Neurosci. 18, 6411–6424 (1998).
[PubMed]

Kiper, D.

L. Kiorpes, D. Kiper, L. O’Keefe, J. R. Cavanagh, J. A. Movshon, “Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia,” J. Neurosci. 18, 6411–6424 (1998).
[PubMed]

Klein, S.

D. Levi, S. Klein, “Equivalent intrinsic blur in amblyopia,” Vision Res. 30, 1995–2022 (1990).
[CrossRef] [PubMed]

D. Levi, S. Klein, “Equivalent intrinsic blur in spatial vision,” Vision Res. 30, 1971–1993 (1990).
[CrossRef] [PubMed]

Krauskopf, J.

J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
[CrossRef] [PubMed]

P. Lennie, J. Krauskopf, G. Schlar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).
[PubMed]

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[PubMed]

Kronauer, R. E.

R. T. Eskew, C. F. Stromeyer, R. E. Kronauer, “Temporal properties of the red-green chromatic mechanism,” Vision Res. 34, 3127–3137 (1994).
[CrossRef] [PubMed]

Lennie, P.

P. Lennie, J. Pokorny, V. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283–1293 (1993).
[CrossRef] [PubMed]

P. Lennie, J. Krauskopf, G. Schlar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).
[PubMed]

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[PubMed]

Levi, D.

D. Levi, S. Klein, “Equivalent intrinsic blur in amblyopia,” Vision Res. 30, 1995–2022 (1990).
[CrossRef] [PubMed]

D. Levi, S. Klein, “Equivalent intrinsic blur in spatial vision,” Vision Res. 30, 1971–1993 (1990).
[CrossRef] [PubMed]

Levitt, H.

H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467–477 (1971).
[CrossRef]

Marimont, D.

D. Marimont, B. Wandell, “Matching color images: the effects of chromatic aberration,” J. Opt. Soc. Am. A 12, 3113–3122 (1993).

Martinez-Uriegas, E.

C. R. Ingling, E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r–g X-channel,” Vision Res. 23, 1495–1500 (1983).
[CrossRef]

Martini, P.

P. Martini, M. C. Morrone, D. Burr, “Sensitivity to spatial phase at equiluminance,” Vision Res. 36, 1153–1162 (1996).
[CrossRef] [PubMed]

Morgan, H.

R. L. DeValois, H. Morgan, D. M. Snodderly, “Psychophysical studies of monkey vision—III. Spatial luminance contrast sensitivity tests of macaque and human observers,” Vision Res. 14, 75–81 (1974).
[CrossRef]

Morgan, M. J.

S. M. Wuerger, M. J. Morgan, “The input of the long- and medium-wavelength-sensitive cones to orientation discrimination,” J. Opt. Soc. Am. A 16, 436–442 (1999).
[CrossRef]

A. K. Pääkkönen, M. J. Morgan, “Effects of motion on blur discrimination,” J. Opt. Soc. Am. A 11, 992–1002 (1994).
[CrossRef]

R. J. Watt, M. J. Morgan, “Spatial filters and the localization of luminance changes in human vision,” Vision Res. 24, 1387–1397 (1984).
[CrossRef] [PubMed]

R. J. Watt, M. J. Morgan, “The recognition and representation of edge blur: evidence for spatial primitives in human vision,” Vision Res. 23, 1465–1477 (1983).
[CrossRef] [PubMed]

Morrone, C.

D. C. Burr, A. Fiorentini, C. Morrone, “Reaction time to motion onset of luminance and chromatic gratings is determined by perceived speed,” Vision Res. 38, 3681–3690 (1998).
[CrossRef]

Morrone, M. C.

P. Martini, M. C. Morrone, D. Burr, “Sensitivity to spatial phase at equiluminance,” Vision Res. 36, 1153–1162 (1996).
[CrossRef] [PubMed]

Movshon, J. A.

L. Kiorpes, D. Kiper, L. O’Keefe, J. R. Cavanagh, J. A. Movshon, “Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia,” J. Neurosci. 18, 6411–6424 (1998).
[PubMed]

Mullen, K. T.

K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and yellow–blue chromatic gratings,” J. Physiol. (London) 359, 381–400 (1985).

O’Keefe, L.

L. Kiorpes, D. Kiper, L. O’Keefe, J. R. Cavanagh, J. A. Movshon, “Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia,” J. Neurosci. 18, 6411–6424 (1998).
[PubMed]

Pääkkönen, A. K.

Pointer, J. S.

Pokorny, J.

P. Lennie, J. Pokorny, V. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283–1293 (1993).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Rea, M. S.

C. R. Ingling, P. W. Russell, M. S. Rea, B. H. Tsou, “Red–green opponent spectral sensitivity: disparity between cancellation and direct matching methods,” Science 201, 1221–1223 (1978).
[CrossRef] [PubMed]

Reisbeck, T. E.

T. E. Reisbeck, K. R. Gegenfurtner, “Effects of contrast and temporal frequency on orientation discrimination,” Vision Res. 38, 1105–1117 (1998).
[CrossRef] [PubMed]

Russell, P. W.

C. R. Ingling, P. W. Russell, M. S. Rea, B. H. Tsou, “Red–green opponent spectral sensitivity: disparity between cancellation and direct matching methods,” Science 201, 1221–1223 (1978).
[CrossRef] [PubMed]

Schlar, G.

P. Lennie, J. Krauskopf, G. Schlar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).
[PubMed]

Shapley, R. M.

R. M. Shapley, “Visual sensitivity and parallel retinocortical channels,” Ann. Rev. Psychol. 41, 635–658 (1990).
[CrossRef]

Smith, V.

Smith, V. C.

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Snodderly, D. M.

R. L. DeValois, H. Morgan, D. M. Snodderly, “Psychophysical studies of monkey vision—III. Spatial luminance contrast sensitivity tests of macaque and human observers,” Vision Res. 14, 75–81 (1974).
[CrossRef]

Stiles, W. S.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

Stromeyer, C. F.

R. T. Eskew, C. F. Stromeyer, R. E. Kronauer, “Temporal properties of the red-green chromatic mechanism,” Vision Res. 34, 3127–3137 (1994).
[CrossRef] [PubMed]

Tadmor, Y.

Y. Tadmor, D. J. Tolhurst, “Discrimination of changes in the second-order statistics of natural and synthetic images,” Vision Res. 34, 541–554 (1994).
[CrossRef] [PubMed]

Tolhurst, D. J.

Y. Tadmor, D. J. Tolhurst, “Discrimination of changes in the second-order statistics of natural and synthetic images,” Vision Res. 34, 541–554 (1994).
[CrossRef] [PubMed]

Travis, D.

D. Travis, Effective Color Displays (Academic, London, 1990).

Tsou, B. H.

C. R. Ingling, P. W. Russell, M. S. Rea, B. H. Tsou, “Red–green opponent spectral sensitivity: disparity between cancellation and direct matching methods,” Science 201, 1221–1223 (1978).
[CrossRef] [PubMed]

Wandell, B.

D. Marimont, B. Wandell, “Matching color images: the effects of chromatic aberration,” J. Opt. Soc. Am. A 12, 3113–3122 (1993).

B. Wandell, Foundations of Vision (Sinauer Associates, Inc., Sunderland, Mass., 1993).

Watt, R. J.

R. F. Hess, J. S. Pointer, R. J. Watt, “How are spatialfilters used in fovea and parafovea?” J. Opt. Soc. Am. A 6, 329–339 (1989).
[CrossRef] [PubMed]

R. J. Watt, M. J. Morgan, “Spatial filters and the localization of luminance changes in human vision,” Vision Res. 24, 1387–1397 (1984).
[CrossRef] [PubMed]

R. J. Watt, M. J. Morgan, “The recognition and representation of edge blur: evidence for spatial primitives in human vision,” Vision Res. 23, 1465–1477 (1983).
[CrossRef] [PubMed]

R. J. Watt, Visual Processing: Computational, Psychophysical and Cognitive Research (Erlbaum, London, 1988).

Westheimer, G.

G. Westheimer, “Spatial interaction in human cone vision,” J. Physiol. 190, 193–154 (1967).

Wuerger, S. M.

S. M. Wuerger, M. J. Morgan, “The input of the long- and medium-wavelength-sensitive cones to orientation discrimination,” J. Opt. Soc. Am. A 16, 436–442 (1999).
[CrossRef]

S. M. Wuerger, “Colour appearance changes resulting from isoluminant chromatic adaptation,” Vision Res. 36, 3107–3118 (1996).
[CrossRef] [PubMed]

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

Ann. Rev. Psychol.

R. M. Shapley, “Visual sensitivity and parallel retinocortical channels,” Ann. Rev. Psychol. 41, 635–658 (1990).
[CrossRef]

Behav. Res. Methods Instrum. Comput.

H. Irtel, “Computing data for color-vision modeling,” Behav. Res. Methods Instrum. Comput. 24, 397–401 (1992).
[CrossRef]

J. Acoust. Soc. Am.

H. Levitt, “Transformed up–down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467–477 (1971).
[CrossRef]

J. Neurosci.

P. Lennie, J. Krauskopf, G. Schlar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).
[PubMed]

L. Kiorpes, D. Kiper, L. O’Keefe, J. R. Cavanagh, J. A. Movshon, “Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia,” J. Neurosci. 18, 6411–6424 (1998).
[PubMed]

J. Opt. Soc. Am. A

J. Physiol.

G. Westheimer, “Spatial interaction in human cone vision,” J. Physiol. 190, 193–154 (1967).

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
[PubMed]

J. Physiol. (London)

K. T. Mullen, “The contrast sensitivity of human colour vision to red–green and yellow–blue chromatic gratings,” J. Physiol. (London) 359, 381–400 (1985).

Science

C. R. Ingling, P. W. Russell, M. S. Rea, B. H. Tsou, “Red–green opponent spectral sensitivity: disparity between cancellation and direct matching methods,” Science 201, 1221–1223 (1978).
[CrossRef] [PubMed]

SID Digest

A. J. Ahumada, T. Beard, “A simple vision model for inhomogeneous image quality assessment,” SID Digest 29, 40–41 (1998).
[CrossRef]

A. Ahumada, “Computational image quality metrics: A Review,” SID Digest 24, 305–308 (1993).

Vision Res.

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

D. J. Field, N. Brady, “Visual sensitivity, blur, and the sources of variability in the amplitude spectra of natural scenes,” Vision Res. 37, 3367–3383 (1997).
[CrossRef]

Y. Tadmor, D. J. Tolhurst, “Discrimination of changes in the second-order statistics of natural and synthetic images,” Vision Res. 34, 541–554 (1994).
[CrossRef] [PubMed]

R. T. Eskew, C. F. Stromeyer, R. E. Kronauer, “Temporal properties of the red-green chromatic mechanism,” Vision Res. 34, 3127–3137 (1994).
[CrossRef] [PubMed]

D. C. Burr, A. Fiorentini, C. Morrone, “Reaction time to motion onset of luminance and chromatic gratings is determined by perceived speed,” Vision Res. 38, 3681–3690 (1998).
[CrossRef]

S. M. Wuerger, “Colour appearance changes resulting from isoluminant chromatic adaptation,” Vision Res. 36, 3107–3118 (1996).
[CrossRef] [PubMed]

D. Levi, S. Klein, “Equivalent intrinsic blur in amblyopia,” Vision Res. 30, 1995–2022 (1990).
[CrossRef] [PubMed]

J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
[CrossRef] [PubMed]

T. E. Reisbeck, K. R. Gegenfurtner, “Effects of contrast and temporal frequency on orientation discrimination,” Vision Res. 38, 1105–1117 (1998).
[CrossRef] [PubMed]

P. Martini, M. C. Morrone, D. Burr, “Sensitivity to spatial phase at equiluminance,” Vision Res. 36, 1153–1162 (1996).
[CrossRef] [PubMed]

C. R. Ingling, E. Martinez-Uriegas, “The relationship between spectral sensitivity and spatial sensitivity for the primate r–g X-channel,” Vision Res. 23, 1495–1500 (1983).
[CrossRef]

R. L. DeValois, K. K. DeValois, “A multi-stage color model,” Vision Res. 33, 1053–1065 (1993).
[CrossRef]

R. L. DeValois, H. Morgan, D. M. Snodderly, “Psychophysical studies of monkey vision—III. Spatial luminance contrast sensitivity tests of macaque and human observers,” Vision Res. 14, 75–81 (1974).
[CrossRef]

R. J. Watt, M. J. Morgan, “The recognition and representation of edge blur: evidence for spatial primitives in human vision,” Vision Res. 23, 1465–1477 (1983).
[CrossRef] [PubMed]

R. J. Watt, M. J. Morgan, “Spatial filters and the localization of luminance changes in human vision,” Vision Res. 24, 1387–1397 (1984).
[CrossRef] [PubMed]

D. Levi, S. Klein, “Equivalent intrinsic blur in spatial vision,” Vision Res. 30, 1971–1993 (1990).
[CrossRef] [PubMed]

Other

S. A. Glantz, Primer of Biostatistics, 4th ed. (McGraw-Hill, New York, 1997).

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

D. Travis, Effective Color Displays (Academic, London, 1990).

D. Brainard, “Cone contrast and opponent modulation color spaces,” in Human Color Vision, P. K. Kaiser, R. M. Boynton, eds. (Optical Society of America, Washington, D.C., 1996), pp. 563–579.

B. Wandell, Foundations of Vision (Sinauer Associates, Inc., Sunderland, Mass., 1993).

R. J. Watt, Visual Processing: Computational, Psychophysical and Cognitive Research (Erlbaum, London, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Blur discrimination thresholds (means and standard errors) are plotted as a function of reference blur for three different color directions for all four observers. (a) Luminance, (b) red–green, (c) yellow–blue. The reference blur refers to the blur of the standard stimulus. The stars indicate the blur thresholds averaged over all observers. The data reveal that for red–green and black–white stimuli, the smallest blur thresholds occur at a slightly blurred standard grating, not at zero reference blur. Blur thresholds for yellow–blue are constant for all external blur levels.

Fig. 2
Fig. 2

Blur thresholds for zero reference blur (sharp square-wave grating) are plotted as a function of cone contrast. (a) blue–yellow, (b) red-green, (c) black–white, (d) all color directions. In (a)–(c) mean and standard errors for three observers are plotted. In (d) average blur thresholds are plotted. The contrast dependence for red–green (solid circles; slope=-0.16) and black–white (open triangles; slope=-0.15) is very similar, suggesting that similar mechanisms are involved in blur discrimination of chromatic and luminance stimuli. The contrast dependence for blue–yellow (solid squares; slope=-0.75) is also not significantly different from the contrast dependence for red–green and black–white modulations.

Fig. 3
Fig. 3

Model fit. Mean blur discrimination thresholds (averaged over all observers) and model fits are plotted as a function of reference blur for black–white (triangles) and red–green (circles). The lines denote the thresholds predicted by the Watt and Morgan model described in the text.25,26 The model predicts the dip at ∼1 arc min for black–white and red–green. The yellow–blue data (squares) are best fitted by a straight line with an intercept at 1.5 arc min and a slope of 0.02.

Tables (1)

Tables Icon

Table 1 Model Fit: Estimated Internal Blur for Black–White and Red–Green

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ΔB=-B+[B2+(k2+2k)(B2+s2)]1/2.
χ2(s, k)=i=1NΔBi-ΔB(Bi; s, k)σi2.

Metrics