Abstract

Waveguides in LiNbO3 are realized by a soft proton exchange (SPE) process with use of a melt of stearic acid highly diluted by lithium stearate. No phase transitions are formed when α-phase waveguides are obtained by SPE. The α-phase presents the same crystalline structure as that of pure LiNbO3 crystal, and it maintains the excellent nonlinear and electro-optical properties of the bulk material. The kinetics of the SPE method is studied by the use of secondary-ion mass spectrometry and prism-coupling techniques. The hydrogen effective diffusion coefficient as well as the self-diffusion coefficients of H+ and Li+ ions are determined as a function of the proton-exchange temperature for X-cut LiNbO3.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Jackel, C. E. Rice, J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
    [CrossRef]
  2. Yu. N. Korkishko, V. A. Fedorov, in Ion Exchange in Single Crystals for Integrated Optics and Optoelectronics (Cambridge International Science Publishers, Cambridge, UK, 1999), pp. 97–269.
  3. Yu. N. Korkishko, V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between structural and optical properties,” IEEE J. Sel. Top. Quantum Electron. 2, 187–196 (1996).
    [CrossRef]
  4. Yu. N. Korkishko, V. A. Fedorov, “Relationship between refractive indices and hydrogen concentration in proton-exchanged LiNbO3 waveguides,” J. Appl. Phys. 82, 171–183 (1997).
    [CrossRef]
  5. Yu. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, A. Leycuras, “Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate,” Appl. Opt. 35, 7056–7060 (1996).
    [CrossRef] [PubMed]
  6. W. E. Lee, N. A. Sanford, A. H. Heuer, “Direct observation of structural phase changes in proton exchanged LiNbO3 waveguides using transmission electron microscopy,” J. Appl. Phys. 59, 2629–2633 (1986).
    [CrossRef]
  7. V. A. Ganshin, Yu. N. Korkishko, V. Z. Petrova, “Some features of proton exchange in LiNbO3,” Sov. Phys. Tech. Phys. 30, 1313–1315 (1985).
  8. V. A. Ganshin, Yu. N. Korkishko, “H:LiNbO3 waveguides: effect of annealing,” Opt. Commun. 86, 523–530 (1991).
    [CrossRef]
  9. P. G. Suchoski, T. K. Findakly, F. J. Leonberger, “Stable low-loss proton-exchanged LiNbO3 devices with no electro-optic degradation,” Opt. Lett. 13, 1050–1052 (1988).
    [CrossRef] [PubMed]
  10. M. L. Bortz, L. A. Eyres, M. M. Fejer, “Depth profiling of d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2012–2014 (1993).
    [CrossRef]
  11. M. L. Bortz, M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16, 1844–1846 (1991).
    [CrossRef] [PubMed]
  12. K. El Hadi, M. Sundheimer, P. Aschieri, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, F. Laurell, “Quasi-phase-matched parametric interactions in proton-exchanged lithium niobate waveguides,” J. Opt. Soc. Am. B 14, 3197–3203 (1997).
    [CrossRef]
  13. P. Baldi, M. P. De Micheli, K. El Hadi, S. Nouh, A. C. Cino, P. Aschieri, D. B. Ostrowsky, “Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters,” Opt. Eng. 37, 1193–1202 (1998).
    [CrossRef]
  14. Yu. N. Korkishko, V. A. Fedorov, F. Laurell, “Second order optical nonlinearity of different phases in proton exchanged LiNbO3 waveguides,” presented at the 9th European Conference on Integrated Optics (ECIO’99), Torino, Italy, April 13–16, 1999.
  15. Yu. N. Korkishko, V. A. Fedorov, F. Laurell, “The SHG-response of different phases in proton exchanged lithium niobate waveguides,” IEEE J. Sel. Top. Quantum Electron. 6, 132–142 (2000).
    [CrossRef]
  16. L. Chanvillard, P. Aschieri, P. Baldi, M. De Micheli, D. B. Ostrowsky, L. Huang, D. J. Bamford, “Highly efficient integrated optical parametric generator produced by soft proton exchange in PPLN,” presented at the 9th European Conference on Integrated Optics (ECIO’99), Torino, Italy, April 13–16, 1999.
  17. Y. N. Korkishko, V. A. Fedorov, O. Y. Feoktistova, “LiNbO3 optical waveguide fabrication by high-temperature proton-exchange,” J. Lightwave Technol. 18, 562–568 (2000).
    [CrossRef]
  18. J. M. White, P. F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode Indices: a simple analysis,” Appl. Opt. 15, 151–155 (1976).
    [CrossRef] [PubMed]
  19. Y. M. Dikaev, Yu. A. Kopylov, I. M. Kotelyanskii, “Simple method to determine the index profiles in graded waveguides,” Kvant. Elektron. (Moscow) 8, 378–381 (1981).
  20. J. Nikolopoulos, G. L. Yip, “Accurate modelling of the index profile in annealed proton-exchanged LiNbO3 waveguides,” in Integrated Optical Circuits, K. Wong, ed., Proc. SPIE1583, 71–82 (1991).
    [CrossRef]
  21. C. R. Pollock, Fundamentals of Optoelectronics (Irwin, Boston, Mass., 1990), pp. 96–97.
  22. F. Caccavale, “SIMS characterization of optical materials,” in Materials Characterization and Optical Probe Technique, R. A. Lessard, H. Franke eds. Vol. CR69 of Critical Review Series (SPIE Press, Bellingham, Wash., 1997), pp. 423–459.
  23. J. Crank, The Mathematics of Diffusion (Clarendon, Oxford, UK, 1975).
  24. T. Veng, T. Skettrup, “Ion exchange model for a phase proton exchange waveguides in LiNbO3,” J. Lightwave Technol. 16, 646–649 (1998).
    [CrossRef]

2000 (2)

Yu. N. Korkishko, V. A. Fedorov, F. Laurell, “The SHG-response of different phases in proton exchanged lithium niobate waveguides,” IEEE J. Sel. Top. Quantum Electron. 6, 132–142 (2000).
[CrossRef]

Y. N. Korkishko, V. A. Fedorov, O. Y. Feoktistova, “LiNbO3 optical waveguide fabrication by high-temperature proton-exchange,” J. Lightwave Technol. 18, 562–568 (2000).
[CrossRef]

1998 (2)

T. Veng, T. Skettrup, “Ion exchange model for a phase proton exchange waveguides in LiNbO3,” J. Lightwave Technol. 16, 646–649 (1998).
[CrossRef]

P. Baldi, M. P. De Micheli, K. El Hadi, S. Nouh, A. C. Cino, P. Aschieri, D. B. Ostrowsky, “Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters,” Opt. Eng. 37, 1193–1202 (1998).
[CrossRef]

1997 (2)

K. El Hadi, M. Sundheimer, P. Aschieri, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, F. Laurell, “Quasi-phase-matched parametric interactions in proton-exchanged lithium niobate waveguides,” J. Opt. Soc. Am. B 14, 3197–3203 (1997).
[CrossRef]

Yu. N. Korkishko, V. A. Fedorov, “Relationship between refractive indices and hydrogen concentration in proton-exchanged LiNbO3 waveguides,” J. Appl. Phys. 82, 171–183 (1997).
[CrossRef]

1996 (2)

Yu. N. Korkishko, V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between structural and optical properties,” IEEE J. Sel. Top. Quantum Electron. 2, 187–196 (1996).
[CrossRef]

Yu. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, A. Leycuras, “Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate,” Appl. Opt. 35, 7056–7060 (1996).
[CrossRef] [PubMed]

1993 (1)

M. L. Bortz, L. A. Eyres, M. M. Fejer, “Depth profiling of d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2012–2014 (1993).
[CrossRef]

1991 (2)

V. A. Ganshin, Yu. N. Korkishko, “H:LiNbO3 waveguides: effect of annealing,” Opt. Commun. 86, 523–530 (1991).
[CrossRef]

M. L. Bortz, M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16, 1844–1846 (1991).
[CrossRef] [PubMed]

1988 (1)

1986 (1)

W. E. Lee, N. A. Sanford, A. H. Heuer, “Direct observation of structural phase changes in proton exchanged LiNbO3 waveguides using transmission electron microscopy,” J. Appl. Phys. 59, 2629–2633 (1986).
[CrossRef]

1985 (1)

V. A. Ganshin, Yu. N. Korkishko, V. Z. Petrova, “Some features of proton exchange in LiNbO3,” Sov. Phys. Tech. Phys. 30, 1313–1315 (1985).

1982 (1)

J. L. Jackel, C. E. Rice, J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[CrossRef]

1981 (1)

Y. M. Dikaev, Yu. A. Kopylov, I. M. Kotelyanskii, “Simple method to determine the index profiles in graded waveguides,” Kvant. Elektron. (Moscow) 8, 378–381 (1981).

1976 (1)

Aschieri, P.

P. Baldi, M. P. De Micheli, K. El Hadi, S. Nouh, A. C. Cino, P. Aschieri, D. B. Ostrowsky, “Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters,” Opt. Eng. 37, 1193–1202 (1998).
[CrossRef]

K. El Hadi, M. Sundheimer, P. Aschieri, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, F. Laurell, “Quasi-phase-matched parametric interactions in proton-exchanged lithium niobate waveguides,” J. Opt. Soc. Am. B 14, 3197–3203 (1997).
[CrossRef]

L. Chanvillard, P. Aschieri, P. Baldi, M. De Micheli, D. B. Ostrowsky, L. Huang, D. J. Bamford, “Highly efficient integrated optical parametric generator produced by soft proton exchange in PPLN,” presented at the 9th European Conference on Integrated Optics (ECIO’99), Torino, Italy, April 13–16, 1999.

Baldi, P.

P. Baldi, M. P. De Micheli, K. El Hadi, S. Nouh, A. C. Cino, P. Aschieri, D. B. Ostrowsky, “Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters,” Opt. Eng. 37, 1193–1202 (1998).
[CrossRef]

K. El Hadi, M. Sundheimer, P. Aschieri, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, F. Laurell, “Quasi-phase-matched parametric interactions in proton-exchanged lithium niobate waveguides,” J. Opt. Soc. Am. B 14, 3197–3203 (1997).
[CrossRef]

Yu. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, A. Leycuras, “Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate,” Appl. Opt. 35, 7056–7060 (1996).
[CrossRef] [PubMed]

L. Chanvillard, P. Aschieri, P. Baldi, M. De Micheli, D. B. Ostrowsky, L. Huang, D. J. Bamford, “Highly efficient integrated optical parametric generator produced by soft proton exchange in PPLN,” presented at the 9th European Conference on Integrated Optics (ECIO’99), Torino, Italy, April 13–16, 1999.

Bamford, D. J.

L. Chanvillard, P. Aschieri, P. Baldi, M. De Micheli, D. B. Ostrowsky, L. Huang, D. J. Bamford, “Highly efficient integrated optical parametric generator produced by soft proton exchange in PPLN,” presented at the 9th European Conference on Integrated Optics (ECIO’99), Torino, Italy, April 13–16, 1999.

Bortz, M. L.

M. L. Bortz, L. A. Eyres, M. M. Fejer, “Depth profiling of d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2012–2014 (1993).
[CrossRef]

M. L. Bortz, M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16, 1844–1846 (1991).
[CrossRef] [PubMed]

Caccavale, F.

F. Caccavale, “SIMS characterization of optical materials,” in Materials Characterization and Optical Probe Technique, R. A. Lessard, H. Franke eds. Vol. CR69 of Critical Review Series (SPIE Press, Bellingham, Wash., 1997), pp. 423–459.

Chanvillard, L.

L. Chanvillard, P. Aschieri, P. Baldi, M. De Micheli, D. B. Ostrowsky, L. Huang, D. J. Bamford, “Highly efficient integrated optical parametric generator produced by soft proton exchange in PPLN,” presented at the 9th European Conference on Integrated Optics (ECIO’99), Torino, Italy, April 13–16, 1999.

Cino, A. C.

P. Baldi, M. P. De Micheli, K. El Hadi, S. Nouh, A. C. Cino, P. Aschieri, D. B. Ostrowsky, “Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters,” Opt. Eng. 37, 1193–1202 (1998).
[CrossRef]

Crank, J.

J. Crank, The Mathematics of Diffusion (Clarendon, Oxford, UK, 1975).

De Micheli, M.

L. Chanvillard, P. Aschieri, P. Baldi, M. De Micheli, D. B. Ostrowsky, L. Huang, D. J. Bamford, “Highly efficient integrated optical parametric generator produced by soft proton exchange in PPLN,” presented at the 9th European Conference on Integrated Optics (ECIO’99), Torino, Italy, April 13–16, 1999.

De Micheli, M. P.

Dikaev, Y. M.

Y. M. Dikaev, Yu. A. Kopylov, I. M. Kotelyanskii, “Simple method to determine the index profiles in graded waveguides,” Kvant. Elektron. (Moscow) 8, 378–381 (1981).

El Hadi, K.

Eyres, L. A.

M. L. Bortz, L. A. Eyres, M. M. Fejer, “Depth profiling of d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2012–2014 (1993).
[CrossRef]

Fedorov, V. A.

Y. N. Korkishko, V. A. Fedorov, O. Y. Feoktistova, “LiNbO3 optical waveguide fabrication by high-temperature proton-exchange,” J. Lightwave Technol. 18, 562–568 (2000).
[CrossRef]

Yu. N. Korkishko, V. A. Fedorov, F. Laurell, “The SHG-response of different phases in proton exchanged lithium niobate waveguides,” IEEE J. Sel. Top. Quantum Electron. 6, 132–142 (2000).
[CrossRef]

Yu. N. Korkishko, V. A. Fedorov, “Relationship between refractive indices and hydrogen concentration in proton-exchanged LiNbO3 waveguides,” J. Appl. Phys. 82, 171–183 (1997).
[CrossRef]

Yu. N. Korkishko, V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between structural and optical properties,” IEEE J. Sel. Top. Quantum Electron. 2, 187–196 (1996).
[CrossRef]

Yu. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, A. Leycuras, “Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate,” Appl. Opt. 35, 7056–7060 (1996).
[CrossRef] [PubMed]

Yu. N. Korkishko, V. A. Fedorov, in Ion Exchange in Single Crystals for Integrated Optics and Optoelectronics (Cambridge International Science Publishers, Cambridge, UK, 1999), pp. 97–269.

Yu. N. Korkishko, V. A. Fedorov, F. Laurell, “Second order optical nonlinearity of different phases in proton exchanged LiNbO3 waveguides,” presented at the 9th European Conference on Integrated Optics (ECIO’99), Torino, Italy, April 13–16, 1999.

Fejer, M. M.

M. L. Bortz, L. A. Eyres, M. M. Fejer, “Depth profiling of d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2012–2014 (1993).
[CrossRef]

M. L. Bortz, M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16, 1844–1846 (1991).
[CrossRef] [PubMed]

Feoktistova, O. Y.

Findakly, T. K.

Ganshin, V. A.

V. A. Ganshin, Yu. N. Korkishko, “H:LiNbO3 waveguides: effect of annealing,” Opt. Commun. 86, 523–530 (1991).
[CrossRef]

V. A. Ganshin, Yu. N. Korkishko, V. Z. Petrova, “Some features of proton exchange in LiNbO3,” Sov. Phys. Tech. Phys. 30, 1313–1315 (1985).

Heidrich, P. F.

Heuer, A. H.

W. E. Lee, N. A. Sanford, A. H. Heuer, “Direct observation of structural phase changes in proton exchanged LiNbO3 waveguides using transmission electron microscopy,” J. Appl. Phys. 59, 2629–2633 (1986).
[CrossRef]

Huang, L.

L. Chanvillard, P. Aschieri, P. Baldi, M. De Micheli, D. B. Ostrowsky, L. Huang, D. J. Bamford, “Highly efficient integrated optical parametric generator produced by soft proton exchange in PPLN,” presented at the 9th European Conference on Integrated Optics (ECIO’99), Torino, Italy, April 13–16, 1999.

Jackel, J. L.

J. L. Jackel, C. E. Rice, J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[CrossRef]

Kopylov, Yu. A.

Y. M. Dikaev, Yu. A. Kopylov, I. M. Kotelyanskii, “Simple method to determine the index profiles in graded waveguides,” Kvant. Elektron. (Moscow) 8, 378–381 (1981).

Korkishko, Y. N.

Korkishko, Yu. N.

Yu. N. Korkishko, V. A. Fedorov, F. Laurell, “The SHG-response of different phases in proton exchanged lithium niobate waveguides,” IEEE J. Sel. Top. Quantum Electron. 6, 132–142 (2000).
[CrossRef]

Yu. N. Korkishko, V. A. Fedorov, “Relationship between refractive indices and hydrogen concentration in proton-exchanged LiNbO3 waveguides,” J. Appl. Phys. 82, 171–183 (1997).
[CrossRef]

Yu. N. Korkishko, V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between structural and optical properties,” IEEE J. Sel. Top. Quantum Electron. 2, 187–196 (1996).
[CrossRef]

Yu. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, A. Leycuras, “Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate,” Appl. Opt. 35, 7056–7060 (1996).
[CrossRef] [PubMed]

V. A. Ganshin, Yu. N. Korkishko, “H:LiNbO3 waveguides: effect of annealing,” Opt. Commun. 86, 523–530 (1991).
[CrossRef]

V. A. Ganshin, Yu. N. Korkishko, V. Z. Petrova, “Some features of proton exchange in LiNbO3,” Sov. Phys. Tech. Phys. 30, 1313–1315 (1985).

Yu. N. Korkishko, V. A. Fedorov, in Ion Exchange in Single Crystals for Integrated Optics and Optoelectronics (Cambridge International Science Publishers, Cambridge, UK, 1999), pp. 97–269.

Yu. N. Korkishko, V. A. Fedorov, F. Laurell, “Second order optical nonlinearity of different phases in proton exchanged LiNbO3 waveguides,” presented at the 9th European Conference on Integrated Optics (ECIO’99), Torino, Italy, April 13–16, 1999.

Kotelyanskii, I. M.

Y. M. Dikaev, Yu. A. Kopylov, I. M. Kotelyanskii, “Simple method to determine the index profiles in graded waveguides,” Kvant. Elektron. (Moscow) 8, 378–381 (1981).

Laurell, F.

Yu. N. Korkishko, V. A. Fedorov, F. Laurell, “The SHG-response of different phases in proton exchanged lithium niobate waveguides,” IEEE J. Sel. Top. Quantum Electron. 6, 132–142 (2000).
[CrossRef]

K. El Hadi, M. Sundheimer, P. Aschieri, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, F. Laurell, “Quasi-phase-matched parametric interactions in proton-exchanged lithium niobate waveguides,” J. Opt. Soc. Am. B 14, 3197–3203 (1997).
[CrossRef]

Yu. N. Korkishko, V. A. Fedorov, F. Laurell, “Second order optical nonlinearity of different phases in proton exchanged LiNbO3 waveguides,” presented at the 9th European Conference on Integrated Optics (ECIO’99), Torino, Italy, April 13–16, 1999.

Lee, W. E.

W. E. Lee, N. A. Sanford, A. H. Heuer, “Direct observation of structural phase changes in proton exchanged LiNbO3 waveguides using transmission electron microscopy,” J. Appl. Phys. 59, 2629–2633 (1986).
[CrossRef]

Leonberger, F. J.

Leycuras, A.

Nikolopoulos, J.

J. Nikolopoulos, G. L. Yip, “Accurate modelling of the index profile in annealed proton-exchanged LiNbO3 waveguides,” in Integrated Optical Circuits, K. Wong, ed., Proc. SPIE1583, 71–82 (1991).
[CrossRef]

Nouh, S.

P. Baldi, M. P. De Micheli, K. El Hadi, S. Nouh, A. C. Cino, P. Aschieri, D. B. Ostrowsky, “Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters,” Opt. Eng. 37, 1193–1202 (1998).
[CrossRef]

Ostrowsky, D. B.

P. Baldi, M. P. De Micheli, K. El Hadi, S. Nouh, A. C. Cino, P. Aschieri, D. B. Ostrowsky, “Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters,” Opt. Eng. 37, 1193–1202 (1998).
[CrossRef]

K. El Hadi, M. Sundheimer, P. Aschieri, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, F. Laurell, “Quasi-phase-matched parametric interactions in proton-exchanged lithium niobate waveguides,” J. Opt. Soc. Am. B 14, 3197–3203 (1997).
[CrossRef]

L. Chanvillard, P. Aschieri, P. Baldi, M. De Micheli, D. B. Ostrowsky, L. Huang, D. J. Bamford, “Highly efficient integrated optical parametric generator produced by soft proton exchange in PPLN,” presented at the 9th European Conference on Integrated Optics (ECIO’99), Torino, Italy, April 13–16, 1999.

Petrova, V. Z.

V. A. Ganshin, Yu. N. Korkishko, V. Z. Petrova, “Some features of proton exchange in LiNbO3,” Sov. Phys. Tech. Phys. 30, 1313–1315 (1985).

Pollock, C. R.

C. R. Pollock, Fundamentals of Optoelectronics (Irwin, Boston, Mass., 1990), pp. 96–97.

Rice, C. E.

J. L. Jackel, C. E. Rice, J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[CrossRef]

Sanford, N. A.

W. E. Lee, N. A. Sanford, A. H. Heuer, “Direct observation of structural phase changes in proton exchanged LiNbO3 waveguides using transmission electron microscopy,” J. Appl. Phys. 59, 2629–2633 (1986).
[CrossRef]

Skettrup, T.

Suchoski, P. G.

Sundheimer, M.

Veng, T.

Veselka, J. J.

J. L. Jackel, C. E. Rice, J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[CrossRef]

White, J. M.

Yip, G. L.

J. Nikolopoulos, G. L. Yip, “Accurate modelling of the index profile in annealed proton-exchanged LiNbO3 waveguides,” in Integrated Optical Circuits, K. Wong, ed., Proc. SPIE1583, 71–82 (1991).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

J. L. Jackel, C. E. Rice, J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–608 (1982).
[CrossRef]

M. L. Bortz, L. A. Eyres, M. M. Fejer, “Depth profiling of d33 nonlinear coefficient in annealed proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 62, 2012–2014 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

Yu. N. Korkishko, V. A. Fedorov, F. Laurell, “The SHG-response of different phases in proton exchanged lithium niobate waveguides,” IEEE J. Sel. Top. Quantum Electron. 6, 132–142 (2000).
[CrossRef]

Yu. N. Korkishko, V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between structural and optical properties,” IEEE J. Sel. Top. Quantum Electron. 2, 187–196 (1996).
[CrossRef]

J. Appl. Phys. (2)

Yu. N. Korkishko, V. A. Fedorov, “Relationship between refractive indices and hydrogen concentration in proton-exchanged LiNbO3 waveguides,” J. Appl. Phys. 82, 171–183 (1997).
[CrossRef]

W. E. Lee, N. A. Sanford, A. H. Heuer, “Direct observation of structural phase changes in proton exchanged LiNbO3 waveguides using transmission electron microscopy,” J. Appl. Phys. 59, 2629–2633 (1986).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Kvant. Elektron. (Moscow) (1)

Y. M. Dikaev, Yu. A. Kopylov, I. M. Kotelyanskii, “Simple method to determine the index profiles in graded waveguides,” Kvant. Elektron. (Moscow) 8, 378–381 (1981).

Opt. Commun. (1)

V. A. Ganshin, Yu. N. Korkishko, “H:LiNbO3 waveguides: effect of annealing,” Opt. Commun. 86, 523–530 (1991).
[CrossRef]

Opt. Eng. (1)

P. Baldi, M. P. De Micheli, K. El Hadi, S. Nouh, A. C. Cino, P. Aschieri, D. B. Ostrowsky, “Proton exchanged waveguides in LiNbO3 and LiTaO3 for integrated lasers and nonlinear frequency converters,” Opt. Eng. 37, 1193–1202 (1998).
[CrossRef]

Opt. Lett. (2)

Sov. Phys. Tech. Phys. (1)

V. A. Ganshin, Yu. N. Korkishko, V. Z. Petrova, “Some features of proton exchange in LiNbO3,” Sov. Phys. Tech. Phys. 30, 1313–1315 (1985).

Other (7)

Yu. N. Korkishko, V. A. Fedorov, F. Laurell, “Second order optical nonlinearity of different phases in proton exchanged LiNbO3 waveguides,” presented at the 9th European Conference on Integrated Optics (ECIO’99), Torino, Italy, April 13–16, 1999.

Yu. N. Korkishko, V. A. Fedorov, in Ion Exchange in Single Crystals for Integrated Optics and Optoelectronics (Cambridge International Science Publishers, Cambridge, UK, 1999), pp. 97–269.

L. Chanvillard, P. Aschieri, P. Baldi, M. De Micheli, D. B. Ostrowsky, L. Huang, D. J. Bamford, “Highly efficient integrated optical parametric generator produced by soft proton exchange in PPLN,” presented at the 9th European Conference on Integrated Optics (ECIO’99), Torino, Italy, April 13–16, 1999.

J. Nikolopoulos, G. L. Yip, “Accurate modelling of the index profile in annealed proton-exchanged LiNbO3 waveguides,” in Integrated Optical Circuits, K. Wong, ed., Proc. SPIE1583, 71–82 (1991).
[CrossRef]

C. R. Pollock, Fundamentals of Optoelectronics (Irwin, Boston, Mass., 1990), pp. 96–97.

F. Caccavale, “SIMS characterization of optical materials,” in Materials Characterization and Optical Probe Technique, R. A. Lessard, H. Franke eds. Vol. CR69 of Critical Review Series (SPIE Press, Bellingham, Wash., 1997), pp. 423–459.

J. Crank, The Mathematics of Diffusion (Clarendon, Oxford, UK, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) SIMS depth distributions of H and Li, (b) refractive-index profile of X-cut LiNbO3: ρ=0.75%, T=350 °C, t=8 h.

Fig. 2
Fig. 2

(a) SIMS depth distributions of H and Li, (b) refractive-index profile of Z-cut LiNbO3: ρ=0.75%, T=350 °C, t=8 h.

Fig. 3
Fig. 3

Variation of waveguide depth d with exchange time t at different fabrication temperatures T (X-cut LiNbO3, SPE samples).

Fig. 4
Fig. 4

Temperature dependence of the effective diffusion coefficient (X-cut LiNbO3).

Fig. 5
Fig. 5

Temperature dependence of DH and DLi self-diffusion coefficients coefficient (X-cut LiNbO3).

Fig. 6
Fig. 6

SIMS depth distributions of H and Li for the sample prepared on X-cut LiNbO3 in the following conditions: ρ=0.75%, T=350 °C, t=8 h and without turning of the crucible.

Fig. 7
Fig. 7

Schematic of the formation of a buried hydrogen profile by processing without turning of the crucible: (a) heating and the cooling diagram, (b) evolution of the hydrogen profiles.

Fig. 8
Fig. 8

(a) IR transmission and (b) IR reflection spectra of an X-cut SPE LiNbO3 sample in the following conditions: ρ=0.75%, T=350 °C, t=8 h, and without turning of the crucible.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

n(z)=Δn0 exp[-(z/d)a],
k0zm[n2(z)-nm2]1/2dz
=m-34π+tan-1ξnm2-na2n02-nm21/2,
m=1, 2, , N,
F=i=1N(nmc-nm)2
(c/t)=/zDH1-(1-DH/DLi)cc/z,
DH(T)=D0H exp-QHRT,DLi(T)=D0Li exp-QLiRT.
(Δne/t)=/zDH1-(1-DH/DLi)AΔneΔne/z.

Metrics