Abstract

We have evaluated three constrained, iterative restoration algorithms to find a fast, reliable algorithm for maximum-likelihood estimation of fluorescence microscopic images. Two algorithms used a Gaussian approximation to Poisson statistics, with variances computed assuming Poisson noise for the images. The third method used Csiszár’s information-divergence (I-divergence) discrepancy measure. Each method included a nonnegativity constraint and a penalty term for regularization; optimization was performed with a conjugate gradient method. Performance of the methods was analyzed with simulated as well as biological images and the results compared with those obtained with the expectation-maximization–maximum-likelihood (EM-ML) algorithm. The I-divergence-based algorithm converged fastest and produced images similar to those restored by EM-ML as measured by several metrics. For a noiseless simulated specimen, the number of iterations required for the EM-ML method to reach a given log-likelihood value was approximately the square of the number required for the I-divergence-based method to reach the same value.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription