Abstract

The theory, fabrication, and performance of an adjustable thin-film wave plate are reported. For a particular angle of deposition, the retardance of the fabricated wave plate is simply related to the angle of tilt with respect to the incoming light. An application of the variable wave plate is its use in research on the development of achromatic retarders.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1959).
  2. I. J. Hodgkinson, Q. h. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1998).
  3. I. J. Hodgkinson, Q. h. Wu, J. C. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998).
    [CrossRef]
  4. I. J. Hodgkinson, Q. h. Wu, S. Collett, “Dispersion equations for vacuum-deposited tilted-columnar biaxial media,” Appl. Opt. 40, 452–457 (2001).
    [CrossRef]
  5. J. M. Bennett, Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, Chap. 3.

2001 (1)

1998 (1)

Bennett, J. M.

J. M. Bennett, Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, Chap. 3.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1959).

Collett, S.

Hazel, J. C.

Hodgkinson, I. J.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1959).

Wu, Q. h.

Appl. Opt. (2)

Other (3)

J. M. Bennett, Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, Chap. 3.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1959).

I. J. Hodgkinson, Q. h. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Left, tilted-columnar nanostructure of the thin-film angle-tuned retarder (ATR). ψ is the angle between the columns and the substrate normal, and the principal axes are labeled 1, 2, 3. Right, structure of an achromatic version of the ATR. The p and s polarizations are referenced to the deposition plane (the plane of the figure), and the retarder is tuned by tilting it to angle θ with respect to the incident light.

Fig. 2
Fig. 2

Plots of the test values sin ψ-[n1/(n1+n2)]1/2 and n3-(sin2 ψ/n12+cos2 ψ/n22)-1/2 for titanium oxide. For a deposition angle of 73.3° the calculated test values are zero simultaneously.

Fig. 3
Fig. 3

Dispersion of the principal refractive indices calculated for a film of titanium oxide deposited at 73.3°.

Fig. 4
Fig. 4

Characteristic curves of retardation versus angle of incidence calculated for the thin-film ATR.

Fig. 5
Fig. 5

Experimental curves of retardation versus angle of incidence measured for thin-film ATR #ti160899.

Fig. 6
Fig. 6

Experimental curves of retardation recorded for a mica wave plate and for the same plate partially achromatized by the thin-film ATR.

Fig. 7
Fig. 7

Simulation of an achromatic thin-film ATR based on the combination of a dispersing layer of titanium oxide and a nondispersing layer of the same material.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

α1±=-[(1-np2/n12) (np2/n22-1)]1/2β±np2(1/np2-β2/n12n22)1/2
α2±=±(n32-β2)1/2
δ=2π(a1+-α2+)d/λ.
δ=-2πd(n1-n2)(n1n2)1/2β/λ,
sin ψ=[n1/(n1+n2)]1/2,
n3=(sin2 ψ/n12+cos2 ψ/n22)-1/2.
nj,λ=nj,6331+Dj1λ2-16332,
Mˆs=cos ϕs-iγs-1 sin ϕs-iγs sin ϕscos ϕs,
Mˆp=eiϕpcos ϕp-iγp-1 sin ϕp-iγp sin ϕpcos ϕp,
ϕp=2π/λdβ[(1-np2/n12) (np2/n22-1)]1/2/2.
Δ=2121-0.6×1041λ2-16332×633/λ
Δ=1181+6.9×1041λ2-16332×633/λ,

Metrics