Abstract

In tissue optics, the assumption that blood is homogeneously distributed in tissue can give rise to miscalculations because blood is found only in blood vessels. In our paper randomly oriented blood vessels are treated as particles for which we obtained apparent absorption and scattering coefficients by means of the Monte Carlo method. Apart from this correction for the contribution of blood properties in tissue, a correction for the contribution of the surrounding tissue proved to be needed as well. The results found with our model were compared with available results from the literature.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Severinghaus, P. B. Astrup, “History of blood gas analysis. VI. Oximetry,” J. Clin. Monit. 2, 270–288 (1986).
    [CrossRef] [PubMed]
  2. B. Chance, “Optical method,” Annu. Rev. Biophys. Biophys. Chem. 20, 1–28 (1991).
    [CrossRef] [PubMed]
  3. J. W. Severinghaus, J. F. Kelleher, “Recent developments in pulse oximetry,” Anesthesiology 76, 1018–1038 (1992).
    [CrossRef] [PubMed]
  4. F. F. Jöbsis, “Non-invasive infrared monitoring of central and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
    [CrossRef]
  5. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
    [CrossRef] [PubMed]
  6. D. A. Benaron, C. D. Kurth, J. M. Steven, M. Delivora-Papadopoulos, B. Chance, “Transcranial optical path length in infants by near-infrared phase-shift spectroscopy,” J. Clin. Monit. 11, 109–117 (1995).
    [CrossRef] [PubMed]
  7. B. Chance, S. Nikoa, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of haemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
    [CrossRef] [PubMed]
  8. R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, W. G. Zijlstra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435–447 (1993).
    [CrossRef] [PubMed]
  9. A. Kienle, M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14, 246–254 (1997).
    [CrossRef]
  10. E. Okada, M. Firbank, D. T. Delpy, “The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy,” Phys. Med. Biol. 40, 2093–2108 (1995).
    [CrossRef] [PubMed]
  11. T. J. Farrell, M. S. Patterson, M. Essenpreis, “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry,” Appl. Opt. 37, 1958–1972 (1998).
    [CrossRef]
  12. H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
    [CrossRef] [PubMed]
  13. W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, M. J. C. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42, 51–65 (1997).
    [CrossRef] [PubMed]
  14. M. Firbank, E. Okada, D. T. Delpy, “Investigation of the effect of discrete absorbers upon the measurement of blood volume with near-infrared spectroscopy,” Phys. Med. Biol. 42, 465–477 (1997).
    [CrossRef] [PubMed]
  15. M. J. C. van Gemert, D. J. Smithies, W. Verkruysse, T. E. Milner, J. S. Nelson, “Wavelengths for port wine stain laser treatment: influence of vessel radius and skin anatomy,” Phys. Med. Biol. 42, 41–50 (1997).
    [CrossRef] [PubMed]
  16. A. Talsma, R. Graaff, F. F. M. de Mul, W. Ament, J. Greve, “A tissue-optical model to determine changes in saturation and blood volume during ischemia,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 186–195 (1995).
    [CrossRef]
  17. R. Graaff, A. Talsma, F. Folkerts, J. van der Zee, W. Ament, “A three wavelength study on arterial occlusion in skin tissue,” Adv. Exp. Med. Biol. 471, 661–670 (1999).
    [CrossRef]
  18. R. Graaff, A. C. M. Dassel, M. H. Koelink, J. G. Aarnoudse, F. F. M. de Mul, W. G. Zijlstra, J. Greve, “Condensed Monte Carlo simulations applied to reflectance pulse oximetry,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 201–212 (1993).
    [CrossRef]
  19. A. C. M. Dassel, R. Graaff, M. Sikkema, A. Meijer, W. G. Zijlstra, J. G. Aarnoudse, “Reflectance pulse oximetry at the forehead improves by pressure on the probe,” J. Clin. Monit. 11, 237–244 (1995).
    [CrossRef] [PubMed]
  20. R. Graaff, A. C. M. Dassel, W. G. Zijlstra, F. F. M. de Mul, J. G. Aarnoudse, “Phase delays in reflectance pulse oximetry: a Monte Carlo study,” in Optical Imaging Techniques for Biomonitoring, H. J. Foth, R. Marchesini, H. Podbielska, M. Robert-Nicoud, H. Schneckenburger, eds., Proc. SPIE2628, 361–368 (1995).
    [CrossRef]
  21. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), Sec. 4.3.
  22. L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
    [CrossRef]
  23. R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijlstra, A. C. M. Dassel, J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32, 426–434 (1993).
    [CrossRef] [PubMed]
  24. S. R. Arridge, W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23, 882–884 (1998).
    [CrossRef]

1999 (1)

R. Graaff, A. Talsma, F. Folkerts, J. van der Zee, W. Ament, “A three wavelength study on arterial occlusion in skin tissue,” Adv. Exp. Med. Biol. 471, 661–670 (1999).
[CrossRef]

1998 (2)

1997 (4)

A. Kienle, M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14, 246–254 (1997).
[CrossRef]

W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, M. J. C. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42, 51–65 (1997).
[CrossRef] [PubMed]

M. Firbank, E. Okada, D. T. Delpy, “Investigation of the effect of discrete absorbers upon the measurement of blood volume with near-infrared spectroscopy,” Phys. Med. Biol. 42, 465–477 (1997).
[CrossRef] [PubMed]

M. J. C. van Gemert, D. J. Smithies, W. Verkruysse, T. E. Milner, J. S. Nelson, “Wavelengths for port wine stain laser treatment: influence of vessel radius and skin anatomy,” Phys. Med. Biol. 42, 41–50 (1997).
[CrossRef] [PubMed]

1995 (4)

A. C. M. Dassel, R. Graaff, M. Sikkema, A. Meijer, W. G. Zijlstra, J. G. Aarnoudse, “Reflectance pulse oximetry at the forehead improves by pressure on the probe,” J. Clin. Monit. 11, 237–244 (1995).
[CrossRef] [PubMed]

E. Okada, M. Firbank, D. T. Delpy, “The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy,” Phys. Med. Biol. 40, 2093–2108 (1995).
[CrossRef] [PubMed]

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[CrossRef] [PubMed]

D. A. Benaron, C. D. Kurth, J. M. Steven, M. Delivora-Papadopoulos, B. Chance, “Transcranial optical path length in infants by near-infrared phase-shift spectroscopy,” J. Clin. Monit. 11, 109–117 (1995).
[CrossRef] [PubMed]

1993 (2)

1992 (1)

J. W. Severinghaus, J. F. Kelleher, “Recent developments in pulse oximetry,” Anesthesiology 76, 1018–1038 (1992).
[CrossRef] [PubMed]

1991 (1)

B. Chance, “Optical method,” Annu. Rev. Biophys. Biophys. Chem. 20, 1–28 (1991).
[CrossRef] [PubMed]

1988 (2)

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

B. Chance, S. Nikoa, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of haemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

1986 (1)

J. W. Severinghaus, P. B. Astrup, “History of blood gas analysis. VI. Oximetry,” J. Clin. Monit. 2, 270–288 (1986).
[CrossRef] [PubMed]

1977 (1)

F. F. Jöbsis, “Non-invasive infrared monitoring of central and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[CrossRef]

1941 (1)

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Aarnoudse, J. G.

A. C. M. Dassel, R. Graaff, M. Sikkema, A. Meijer, W. G. Zijlstra, J. G. Aarnoudse, “Reflectance pulse oximetry at the forehead improves by pressure on the probe,” J. Clin. Monit. 11, 237–244 (1995).
[CrossRef] [PubMed]

R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijlstra, A. C. M. Dassel, J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32, 426–434 (1993).
[CrossRef] [PubMed]

R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, W. G. Zijlstra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435–447 (1993).
[CrossRef] [PubMed]

R. Graaff, A. C. M. Dassel, M. H. Koelink, J. G. Aarnoudse, F. F. M. de Mul, W. G. Zijlstra, J. Greve, “Condensed Monte Carlo simulations applied to reflectance pulse oximetry,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 201–212 (1993).
[CrossRef]

R. Graaff, A. C. M. Dassel, W. G. Zijlstra, F. F. M. de Mul, J. G. Aarnoudse, “Phase delays in reflectance pulse oximetry: a Monte Carlo study,” in Optical Imaging Techniques for Biomonitoring, H. J. Foth, R. Marchesini, H. Podbielska, M. Robert-Nicoud, H. Schneckenburger, eds., Proc. SPIE2628, 361–368 (1995).
[CrossRef]

Ament, W.

R. Graaff, A. Talsma, F. Folkerts, J. van der Zee, W. Ament, “A three wavelength study on arterial occlusion in skin tissue,” Adv. Exp. Med. Biol. 471, 661–670 (1999).
[CrossRef]

A. Talsma, R. Graaff, F. F. M. de Mul, W. Ament, J. Greve, “A tissue-optical model to determine changes in saturation and blood volume during ischemia,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 186–195 (1995).
[CrossRef]

Arridge, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Arridge, S. R.

Astrup, P. B.

J. W. Severinghaus, P. B. Astrup, “History of blood gas analysis. VI. Oximetry,” J. Clin. Monit. 2, 270–288 (1986).
[CrossRef] [PubMed]

Benaron, D. A.

D. A. Benaron, C. D. Kurth, J. M. Steven, M. Delivora-Papadopoulos, B. Chance, “Transcranial optical path length in infants by near-infrared phase-shift spectroscopy,” J. Clin. Monit. 11, 109–117 (1995).
[CrossRef] [PubMed]

Chance, B.

D. A. Benaron, C. D. Kurth, J. M. Steven, M. Delivora-Papadopoulos, B. Chance, “Transcranial optical path length in infants by near-infrared phase-shift spectroscopy,” J. Clin. Monit. 11, 109–117 (1995).
[CrossRef] [PubMed]

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[CrossRef] [PubMed]

B. Chance, “Optical method,” Annu. Rev. Biophys. Biophys. Chem. 20, 1–28 (1991).
[CrossRef] [PubMed]

B. Chance, S. Nikoa, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of haemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Cope, M.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Dassel, A. C. M.

A. C. M. Dassel, R. Graaff, M. Sikkema, A. Meijer, W. G. Zijlstra, J. G. Aarnoudse, “Reflectance pulse oximetry at the forehead improves by pressure on the probe,” J. Clin. Monit. 11, 237–244 (1995).
[CrossRef] [PubMed]

R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijlstra, A. C. M. Dassel, J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32, 426–434 (1993).
[CrossRef] [PubMed]

R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, W. G. Zijlstra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435–447 (1993).
[CrossRef] [PubMed]

R. Graaff, A. C. M. Dassel, M. H. Koelink, J. G. Aarnoudse, F. F. M. de Mul, W. G. Zijlstra, J. Greve, “Condensed Monte Carlo simulations applied to reflectance pulse oximetry,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 201–212 (1993).
[CrossRef]

R. Graaff, A. C. M. Dassel, W. G. Zijlstra, F. F. M. de Mul, J. G. Aarnoudse, “Phase delays in reflectance pulse oximetry: a Monte Carlo study,” in Optical Imaging Techniques for Biomonitoring, H. J. Foth, R. Marchesini, H. Podbielska, M. Robert-Nicoud, H. Schneckenburger, eds., Proc. SPIE2628, 361–368 (1995).
[CrossRef]

de Boer, J. F.

W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, M. J. C. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42, 51–65 (1997).
[CrossRef] [PubMed]

de Mul, F. F. M.

R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, W. G. Zijlstra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435–447 (1993).
[CrossRef] [PubMed]

R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijlstra, A. C. M. Dassel, J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32, 426–434 (1993).
[CrossRef] [PubMed]

R. Graaff, A. C. M. Dassel, W. G. Zijlstra, F. F. M. de Mul, J. G. Aarnoudse, “Phase delays in reflectance pulse oximetry: a Monte Carlo study,” in Optical Imaging Techniques for Biomonitoring, H. J. Foth, R. Marchesini, H. Podbielska, M. Robert-Nicoud, H. Schneckenburger, eds., Proc. SPIE2628, 361–368 (1995).
[CrossRef]

R. Graaff, A. C. M. Dassel, M. H. Koelink, J. G. Aarnoudse, F. F. M. de Mul, W. G. Zijlstra, J. Greve, “Condensed Monte Carlo simulations applied to reflectance pulse oximetry,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 201–212 (1993).
[CrossRef]

A. Talsma, R. Graaff, F. F. M. de Mul, W. Ament, J. Greve, “A tissue-optical model to determine changes in saturation and blood volume during ischemia,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 186–195 (1995).
[CrossRef]

Delivora-Papadopoulos, M.

D. A. Benaron, C. D. Kurth, J. M. Steven, M. Delivora-Papadopoulos, B. Chance, “Transcranial optical path length in infants by near-infrared phase-shift spectroscopy,” J. Clin. Monit. 11, 109–117 (1995).
[CrossRef] [PubMed]

Delpy, D. T.

M. Firbank, E. Okada, D. T. Delpy, “Investigation of the effect of discrete absorbers upon the measurement of blood volume with near-infrared spectroscopy,” Phys. Med. Biol. 42, 465–477 (1997).
[CrossRef] [PubMed]

E. Okada, M. Firbank, D. T. Delpy, “The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy,” Phys. Med. Biol. 40, 2093–2108 (1995).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Essenpreis, M.

Farrell, T. J.

Firbank, M.

M. Firbank, E. Okada, D. T. Delpy, “Investigation of the effect of discrete absorbers upon the measurement of blood volume with near-infrared spectroscopy,” Phys. Med. Biol. 42, 465–477 (1997).
[CrossRef] [PubMed]

E. Okada, M. Firbank, D. T. Delpy, “The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy,” Phys. Med. Biol. 40, 2093–2108 (1995).
[CrossRef] [PubMed]

Folkerts, F.

R. Graaff, A. Talsma, F. Folkerts, J. van der Zee, W. Ament, “A three wavelength study on arterial occlusion in skin tissue,” Adv. Exp. Med. Biol. 471, 661–670 (1999).
[CrossRef]

Fountain, M.

B. Chance, S. Nikoa, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of haemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Graaff, R.

R. Graaff, A. Talsma, F. Folkerts, J. van der Zee, W. Ament, “A three wavelength study on arterial occlusion in skin tissue,” Adv. Exp. Med. Biol. 471, 661–670 (1999).
[CrossRef]

A. C. M. Dassel, R. Graaff, M. Sikkema, A. Meijer, W. G. Zijlstra, J. G. Aarnoudse, “Reflectance pulse oximetry at the forehead improves by pressure on the probe,” J. Clin. Monit. 11, 237–244 (1995).
[CrossRef] [PubMed]

R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijlstra, A. C. M. Dassel, J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32, 426–434 (1993).
[CrossRef] [PubMed]

R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, W. G. Zijlstra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435–447 (1993).
[CrossRef] [PubMed]

A. Talsma, R. Graaff, F. F. M. de Mul, W. Ament, J. Greve, “A tissue-optical model to determine changes in saturation and blood volume during ischemia,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 186–195 (1995).
[CrossRef]

R. Graaff, A. C. M. Dassel, M. H. Koelink, J. G. Aarnoudse, F. F. M. de Mul, W. G. Zijlstra, J. Greve, “Condensed Monte Carlo simulations applied to reflectance pulse oximetry,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 201–212 (1993).
[CrossRef]

R. Graaff, A. C. M. Dassel, W. G. Zijlstra, F. F. M. de Mul, J. G. Aarnoudse, “Phase delays in reflectance pulse oximetry: a Monte Carlo study,” in Optical Imaging Techniques for Biomonitoring, H. J. Foth, R. Marchesini, H. Podbielska, M. Robert-Nicoud, H. Schneckenburger, eds., Proc. SPIE2628, 361–368 (1995).
[CrossRef]

Greenfeld, R.

B. Chance, S. Nikoa, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of haemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Greenstein, J. L.

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Greve, J.

R. Graaff, A. C. M. Dassel, M. H. Koelink, J. G. Aarnoudse, F. F. M. de Mul, W. G. Zijlstra, J. Greve, “Condensed Monte Carlo simulations applied to reflectance pulse oximetry,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 201–212 (1993).
[CrossRef]

A. Talsma, R. Graaff, F. F. M. de Mul, W. Ament, J. Greve, “A tissue-optical model to determine changes in saturation and blood volume during ischemia,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 186–195 (1995).
[CrossRef]

Henyey, L. G.

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Hielscher, A. H.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[CrossRef] [PubMed]

Holtom, G.

B. Chance, S. Nikoa, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of haemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Jacques, S. L.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[CrossRef] [PubMed]

Jöbsis, F. F.

F. F. Jöbsis, “Non-invasive infrared monitoring of central and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[CrossRef]

Kelleher, J. F.

J. W. Severinghaus, J. F. Kelleher, “Recent developments in pulse oximetry,” Anesthesiology 76, 1018–1038 (1992).
[CrossRef] [PubMed]

Kent, J.

B. Chance, S. Nikoa, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of haemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Kienle, A.

Koelink, M. H.

R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, W. G. Zijlstra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435–447 (1993).
[CrossRef] [PubMed]

R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijlstra, A. C. M. Dassel, J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32, 426–434 (1993).
[CrossRef] [PubMed]

R. Graaff, A. C. M. Dassel, M. H. Koelink, J. G. Aarnoudse, F. F. M. de Mul, W. G. Zijlstra, J. Greve, “Condensed Monte Carlo simulations applied to reflectance pulse oximetry,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 201–212 (1993).
[CrossRef]

Kurth, C. D.

D. A. Benaron, C. D. Kurth, J. M. Steven, M. Delivora-Papadopoulos, B. Chance, “Transcranial optical path length in infants by near-infrared phase-shift spectroscopy,” J. Clin. Monit. 11, 109–117 (1995).
[CrossRef] [PubMed]

Lionheart, W. R. B.

Liu, H.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[CrossRef] [PubMed]

Lucassen, G. W.

W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, M. J. C. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42, 51–65 (1997).
[CrossRef] [PubMed]

McCully, K.

B. Chance, S. Nikoa, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of haemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Meijer, A.

A. C. M. Dassel, R. Graaff, M. Sikkema, A. Meijer, W. G. Zijlstra, J. G. Aarnoudse, “Reflectance pulse oximetry at the forehead improves by pressure on the probe,” J. Clin. Monit. 11, 237–244 (1995).
[CrossRef] [PubMed]

Milner, T. E.

M. J. C. van Gemert, D. J. Smithies, W. Verkruysse, T. E. Milner, J. S. Nelson, “Wavelengths for port wine stain laser treatment: influence of vessel radius and skin anatomy,” Phys. Med. Biol. 42, 41–50 (1997).
[CrossRef] [PubMed]

Nelson, J. S.

M. J. C. van Gemert, D. J. Smithies, W. Verkruysse, T. E. Milner, J. S. Nelson, “Wavelengths for port wine stain laser treatment: influence of vessel radius and skin anatomy,” Phys. Med. Biol. 42, 41–50 (1997).
[CrossRef] [PubMed]

W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, M. J. C. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42, 51–65 (1997).
[CrossRef] [PubMed]

Nikoa, S.

B. Chance, S. Nikoa, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of haemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Okada, E.

M. Firbank, E. Okada, D. T. Delpy, “Investigation of the effect of discrete absorbers upon the measurement of blood volume with near-infrared spectroscopy,” Phys. Med. Biol. 42, 465–477 (1997).
[CrossRef] [PubMed]

E. Okada, M. Firbank, D. T. Delpy, “The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy,” Phys. Med. Biol. 40, 2093–2108 (1995).
[CrossRef] [PubMed]

Patterson, M. S.

Severinghaus, J. W.

J. W. Severinghaus, J. F. Kelleher, “Recent developments in pulse oximetry,” Anesthesiology 76, 1018–1038 (1992).
[CrossRef] [PubMed]

J. W. Severinghaus, P. B. Astrup, “History of blood gas analysis. VI. Oximetry,” J. Clin. Monit. 2, 270–288 (1986).
[CrossRef] [PubMed]

Sikkema, M.

A. C. M. Dassel, R. Graaff, M. Sikkema, A. Meijer, W. G. Zijlstra, J. G. Aarnoudse, “Reflectance pulse oximetry at the forehead improves by pressure on the probe,” J. Clin. Monit. 11, 237–244 (1995).
[CrossRef] [PubMed]

Smithies, D. J.

M. J. C. van Gemert, D. J. Smithies, W. Verkruysse, T. E. Milner, J. S. Nelson, “Wavelengths for port wine stain laser treatment: influence of vessel radius and skin anatomy,” Phys. Med. Biol. 42, 41–50 (1997).
[CrossRef] [PubMed]

W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, M. J. C. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42, 51–65 (1997).
[CrossRef] [PubMed]

Steven, J. M.

D. A. Benaron, C. D. Kurth, J. M. Steven, M. Delivora-Papadopoulos, B. Chance, “Transcranial optical path length in infants by near-infrared phase-shift spectroscopy,” J. Clin. Monit. 11, 109–117 (1995).
[CrossRef] [PubMed]

Talsma, A.

R. Graaff, A. Talsma, F. Folkerts, J. van der Zee, W. Ament, “A three wavelength study on arterial occlusion in skin tissue,” Adv. Exp. Med. Biol. 471, 661–670 (1999).
[CrossRef]

A. Talsma, R. Graaff, F. F. M. de Mul, W. Ament, J. Greve, “A tissue-optical model to determine changes in saturation and blood volume during ischemia,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 186–195 (1995).
[CrossRef]

Tittel, F. K.

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[CrossRef] [PubMed]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), Sec. 4.3.

van der Zee, J.

R. Graaff, A. Talsma, F. Folkerts, J. van der Zee, W. Ament, “A three wavelength study on arterial occlusion in skin tissue,” Adv. Exp. Med. Biol. 471, 661–670 (1999).
[CrossRef]

van der Zee, P.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

van Gemert, M. J. C.

M. J. C. van Gemert, D. J. Smithies, W. Verkruysse, T. E. Milner, J. S. Nelson, “Wavelengths for port wine stain laser treatment: influence of vessel radius and skin anatomy,” Phys. Med. Biol. 42, 41–50 (1997).
[CrossRef] [PubMed]

W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, M. J. C. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42, 51–65 (1997).
[CrossRef] [PubMed]

Verkruysse, W.

M. J. C. van Gemert, D. J. Smithies, W. Verkruysse, T. E. Milner, J. S. Nelson, “Wavelengths for port wine stain laser treatment: influence of vessel radius and skin anatomy,” Phys. Med. Biol. 42, 41–50 (1997).
[CrossRef] [PubMed]

W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, M. J. C. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42, 51–65 (1997).
[CrossRef] [PubMed]

Wray, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Wyatt, J.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Zijlstra, W. G.

A. C. M. Dassel, R. Graaff, M. Sikkema, A. Meijer, W. G. Zijlstra, J. G. Aarnoudse, “Reflectance pulse oximetry at the forehead improves by pressure on the probe,” J. Clin. Monit. 11, 237–244 (1995).
[CrossRef] [PubMed]

R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijlstra, A. C. M. Dassel, J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt. 32, 426–434 (1993).
[CrossRef] [PubMed]

R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, W. G. Zijlstra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435–447 (1993).
[CrossRef] [PubMed]

R. Graaff, A. C. M. Dassel, M. H. Koelink, J. G. Aarnoudse, F. F. M. de Mul, W. G. Zijlstra, J. Greve, “Condensed Monte Carlo simulations applied to reflectance pulse oximetry,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 201–212 (1993).
[CrossRef]

R. Graaff, A. C. M. Dassel, W. G. Zijlstra, F. F. M. de Mul, J. G. Aarnoudse, “Phase delays in reflectance pulse oximetry: a Monte Carlo study,” in Optical Imaging Techniques for Biomonitoring, H. J. Foth, R. Marchesini, H. Podbielska, M. Robert-Nicoud, H. Schneckenburger, eds., Proc. SPIE2628, 361–368 (1995).
[CrossRef]

Adv. Exp. Med. Biol. (1)

R. Graaff, A. Talsma, F. Folkerts, J. van der Zee, W. Ament, “A three wavelength study on arterial occlusion in skin tissue,” Adv. Exp. Med. Biol. 471, 661–670 (1999).
[CrossRef]

Anal. Biochem. (1)

B. Chance, S. Nikoa, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of haemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Anesthesiology (1)

J. W. Severinghaus, J. F. Kelleher, “Recent developments in pulse oximetry,” Anesthesiology 76, 1018–1038 (1992).
[CrossRef] [PubMed]

Annu. Rev. Biophys. Biophys. Chem. (1)

B. Chance, “Optical method,” Annu. Rev. Biophys. Biophys. Chem. 20, 1–28 (1991).
[CrossRef] [PubMed]

Appl. Opt. (3)

Astrophys. J. (1)

L. G. Henyey, J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

J. Clin. Monit. (3)

A. C. M. Dassel, R. Graaff, M. Sikkema, A. Meijer, W. G. Zijlstra, J. G. Aarnoudse, “Reflectance pulse oximetry at the forehead improves by pressure on the probe,” J. Clin. Monit. 11, 237–244 (1995).
[CrossRef] [PubMed]

D. A. Benaron, C. D. Kurth, J. M. Steven, M. Delivora-Papadopoulos, B. Chance, “Transcranial optical path length in infants by near-infrared phase-shift spectroscopy,” J. Clin. Monit. 11, 109–117 (1995).
[CrossRef] [PubMed]

J. W. Severinghaus, P. B. Astrup, “History of blood gas analysis. VI. Oximetry,” J. Clin. Monit. 2, 270–288 (1986).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Med. Phys. (1)

H. Liu, B. Chance, A. H. Hielscher, S. L. Jacques, F. K. Tittel, “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Med. Biol. (5)

W. Verkruysse, G. W. Lucassen, J. F. de Boer, D. J. Smithies, J. S. Nelson, M. J. C. van Gemert, “Modelling light distributions of homogeneous versus discrete absorbers in light irradiated turbid media,” Phys. Med. Biol. 42, 51–65 (1997).
[CrossRef] [PubMed]

M. Firbank, E. Okada, D. T. Delpy, “Investigation of the effect of discrete absorbers upon the measurement of blood volume with near-infrared spectroscopy,” Phys. Med. Biol. 42, 465–477 (1997).
[CrossRef] [PubMed]

M. J. C. van Gemert, D. J. Smithies, W. Verkruysse, T. E. Milner, J. S. Nelson, “Wavelengths for port wine stain laser treatment: influence of vessel radius and skin anatomy,” Phys. Med. Biol. 42, 41–50 (1997).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[CrossRef] [PubMed]

E. Okada, M. Firbank, D. T. Delpy, “The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy,” Phys. Med. Biol. 40, 2093–2108 (1995).
[CrossRef] [PubMed]

Science (1)

F. F. Jöbsis, “Non-invasive infrared monitoring of central and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[CrossRef]

Other (4)

R. Graaff, A. C. M. Dassel, M. H. Koelink, J. G. Aarnoudse, F. F. M. de Mul, W. G. Zijlstra, J. Greve, “Condensed Monte Carlo simulations applied to reflectance pulse oximetry,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 201–212 (1993).
[CrossRef]

A. Talsma, R. Graaff, F. F. M. de Mul, W. Ament, J. Greve, “A tissue-optical model to determine changes in saturation and blood volume during ischemia,” in Optical Biopsies, R. Cubeddu, S. R. Mordon, K. Svanberg, eds., Proc. SPIE2627, 186–195 (1995).
[CrossRef]

R. Graaff, A. C. M. Dassel, W. G. Zijlstra, F. F. M. de Mul, J. G. Aarnoudse, “Phase delays in reflectance pulse oximetry: a Monte Carlo study,” in Optical Imaging Techniques for Biomonitoring, H. J. Foth, R. Marchesini, H. Podbielska, M. Robert-Nicoud, H. Schneckenburger, eds., Proc. SPIE2628, 361–368 (1995).
[CrossRef]

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957), Sec. 4.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Propagation of a photon through a blood vessel and the coordinate system as used for the blood vessel.

Fig. 2
Fig. 2

Radiance L entering the blood vessel at an angle θ to the normal.

Fig. 3
Fig. 3

(a) Ratio between the apparent absorption and the absorption coefficients and (b) ratio between the apparent reduced scattering and the reduced-scattering coefficients. Pluses, Monte Carlo results for randomly oriented vessels for a=0.1, 0.3, 0.5, 0.7, 0.9. Solid curves, fit as given by Eqs. (15).

Fig. 4
Fig. 4

Influence of 5% blood in tissue, in blood vessels with a diameter of 2 mm, on (a) the total absorption and (b) the total reduced-scattering coefficient as a function of the absorption coefficient of the blood, μa,b, for three analytical models.

Fig. 5
Fig. 5

Two coordinate systems for the same incident photon, ki.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

μa,hom=fvμa,b+(1-fv)μa,t,
μs,hom=fvμs,b+(1-fv)μs,t,
I(θ)=LdA cos θ,
σt,app=ld(1-P) -π/2π/2-π/2π/2  cos(θ)cos2(ϕ)dθdϕ-π/2π/2-π/2π/2  cos(θ)cos(ϕ)dθdϕ=π4ld(1-P).
P=-π/2π/2-π/2π/2  cos(θ)cos(ϕ)exp{-μtd[cos(θ)/cos(ϕ)]}dθdϕ-π/2π/2-π/2π/2  cos(θ)cos(ϕ)dθdϕ.
σa,app=σt,app(1-aapp),
σs,app=σt,app aapp(1-gapp),
μa,hom=fvμa,app=fv14πd2lσa,app,
μs,hom=fvμs,app=fv14πd2lσs,app,
μa,app=(1-P)(1-aapp)d,
μs,app=(1-P)aapp(1-gapp)d.
a=μs/μt,
pj=(a/asim)Nj,
Nscat(a)=j=1Nscat(asim=1) aNj,
gapp(a)=1Nscat(a) j=1Nscat(asim=1)aNj(ki·kr)j,
Nabs(a)=Nsim(1-P)-Nscat(a),
aapp(a)=Nscat(a)Nabs(a)+Nscat(a).
P=1-Nscat(a=1)Nsim.
μa,appμa=11+[μtd(1-0.94a)]4/33/4=11+(μad+0.06μsd)4/33/4,
μs,appμs=[1+(x/7.5)4.8]0.125[1+(x/0.85)1.36]1.25,
μa,app,tot=fvμa,app,b+(1-fv)μa,t,
μs,app,tot=fvμs,app,b+(1-fv)μs,t,
μa,app,tot=fvμa,app,b+(1-fv)μa,app,t,
μs,app,tot=fvμs,app,b+(1-fv)μs,app,t
μa,app,t=μa,t-fvμa,app,tv1-fv,
μs,app,t=μs,t-fvμs,app,tv1-fv.
μa,app,tot=μa,t+fv(μa,b-μa,t)×exp[-0.5(μa,b-μa,t)d].
μa,app,tot=(1-fv)μa,t+fvCμa,b,
μs,app,tot=(1-fv)μs,t+fvCμs,b.
ki=-(cos θ, sin θ sin ϕ, sin θ cos ϕ),
ki=-(cos ϕ  cos θ, cos ϕ  sin θ, sin ϕ).

Metrics