Abstract

The Fourier-space statistical properties of one-dimensional or two-dimensional focal plane array data subject only to photon-counting noise are investigated theoretically by using the discrete Fourier transform. Signal-to-noise ratios and probability density functions for the noise and for the components of the Fourier transform are presented for two cases: when the Fourier transform itself is considered to be the signal and when the power spectrum is considered to be the signal.

© 2001 Optical Society of America

Full Article  |  PDF Article
Related Articles
Knox–Thompson and triple-correlation imaging through atmospheric turbulence

G. R. Ayers, M. J. Northcott, and J. C. Dainty
J. Opt. Soc. Am. A 5(7) 963-985 (1988)

Resolution limits for coherent optical imaging: signal-to-noise analysis in the spatial-frequency domain

Paul S. Idell and Arthur Webster
J. Opt. Soc. Am. A 9(1) 43-56 (1992)

Photon-limited synthetic-aperture imaging for planet surface studies

Robert L. Lucke and Lee J Rickard
Appl. Opt. 41(24) 5084-5095 (2002)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (86)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription