Abstract

We present a theoretical analysis of near-field scanning optical microscopy (NSOM) images of small Au particles made in the illumination mode. We model the metal-coated fiber tip as a thin disk consisting of a glass core and an aluminum coating. An external field locally illuminates the tip core. We solve for the local fields, including interactions between the tip and the Au particles, by use of the coupled dipole method and calculate the optical signal collected in the far field. We also determine the tip field, in the absence of the particle, for various tip sizes with different metal-coating thicknesses. Calculated tip fields and simulated images are compared with those obtained with the Bethe–Bouwkamp model, a commonly used simple model for the tip field. Calculated line scans of the NSOM images of Au particles depend strongly on the tip aperture size and metal-coating thickness. For blunt tips with a thick metal coating and sharp tips with a much thinner coating, our thin-disk model reproduces the key features of measured NSOM images. Line scans calculated with the Bethe–Bouwkamp model cannot describe the tip dependence of the experimental images. Tip fields obtained from the thin-disk model show significant enhancement beneath the metal coating and a broader field distribution perpendicular to the polarization. Tip fields obtained with the Bethe–Bouwkamp model do not show these effects. Differences in the line scans for these two models are correlated to the differences between the tip fields for the two models. These differences occur because only the disk model accounts for a finite metal coating.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Pohl, D. Courjon, eds., Near Field Optics (Kluwer, Academic, Dordrecht, The Netherlands, 1993).
  2. E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
    [CrossRef] [PubMed]
  3. R. X. Bian, R. C. Dunn, X. S. Xie, P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
    [CrossRef] [PubMed]
  4. P. A. Crowell, D. K. Young, S. Keller, E. L. Hu, D. D. Awschalom, “Near-field scanning optical spectroscopy of an InGaN quantum well,” Appl. Phys. Lett. 72, 927–929 (1998).
    [CrossRef]
  5. R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
    [CrossRef]
  6. A. Richter, G. Behme, M. Süptitz, Ch. Lienau, T. Elsaesser, M. Ramsteiner, R. Nötzel, K. H. Ploog, “Real-space transfer and trapping of carriers into single GaAs quantum wires studied by near-field optical spectroscopy,” Phys. Rev. Lett. 79, 2145–2148 (1997).
    [CrossRef]
  7. F. Flack, N. Samarth, V. Nikitin, P. A. Crowell, J. Shi, J. Levy, D. D. Awschalom, “Near-field optical spectroscopy of localized excitons in strained CdSe quantum dots,” Phys. Rev. B 54, R17312–R17315 (1996).
    [CrossRef]
  8. E. B. McDaniel, J. W. P. Hsu, L. S. Goldner, R. J. Tonucci, E. L. Shirley, G. W. Bryant, “Local characterization of transmission properties of a two-dimensional photonic crystal,” Phys. Rev. B 55, 10878–10882 (1997).
    [CrossRef]
  9. See, for examples, H. Hatano, S. Kawata, “Applicability of deconvolution and nonlinear optimization for reconstructing optical images from near-field optical microscope images,” J. Microsc. (Oxford) 194, 230–234 (1999);O. J. F. Martin, “3D simulations of the experimental signal measured in near-field optical microscopy,” J. Microsc. (Oxford) 194, 235–239 (1999); and other articles in J. Microsc. (Oxford) 194, Pt 2/3 (1999).
    [CrossRef]
  10. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
    [CrossRef]
  11. C. J. Bouwkamp, “On Bethe’s theory of diffraction by small holes,” Philips Res. Rep. 5, 321–332 (1950); C. J. Bouwkamp, “On the diffraction of electromagnetic waves by small circular disks and holes,” Philips Res. Rep. 5, 401–422 (1950).
  12. G. W. Bryant, E. L. Shirley, L. S. Goldner, E. B. McDaniel, J. W. P. Hsu, R. J. Tonucci, “Theory of probing a photonic crystal with transmission near-field optical microscopy,” Phys. Rev. B 58, 2131–2141 (1998).
    [CrossRef]
  13. E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
    [CrossRef]
  14. S. B. Singham, C. F. Bohren, “Light scattering by an arbitrary particle: the scattering-order formulation of the coupled-dipole method,” J. Opt. Soc. Am. A 5, 1867–1872 (1988).
    [CrossRef] [PubMed]
  15. B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
    [CrossRef]
  16. B. Hanewinkel, A. Knorr, P. Thomas, S. W. Koch, “Optical near-field response of semiconductor quantum dots,” Phys. Rev. B 55, 13715–13725 (1997).
    [CrossRef]
  17. R. S. Decca, H. D. Drew, K. L. Empson, “Investigation of the electric-field distribution at the subwavelength aperture of a near-field scanning optical microscope,” Appl. Phys. Lett. 70, 1932–1934 (1997).
    [CrossRef]
  18. L. J. Richter, C. E. Jordan, R. R. Cavanagh, G. W. Bryant, A. Liu, S. J. Stranick, C. D. Keating, M. J. Natan, “Influence of secondary tip shape on illumination-mode near-field scanning optical microscopy images,” J. Opt. Soc. Am. A 16, 1936–1946 (1999).
    [CrossRef]
  19. C. E. Jordan, S. J. Stranick, L. J. Richter, R. R. Cavanagh, “Removing optical artifacts in near-field scanning optical microscopy by using a three dimensional scanning mode,” J. Appl. Phys. 86, 2785–2789 (1999).
    [CrossRef]
  20. See the discussion in J. I. Peltoniemi, “Variational volume integral equation method for electromagnetic scattering by irregular grains,” J. Quant. Spectrosc. Radiat. Transf. 55, 637–647 (1996) and references mentioned therein.
    [CrossRef]
  21. A. Rahmani, P. C. Chaumet, F. de Fornel, C. Girard, “Field propagator of a dressed junction: fluorescence lifetime calculations in a confined geometry,” Phys. Rev. A 56, 3245–3254 (1997).
    [CrossRef]
  22. R. Schmehl, B. M. Nebeker, E. D. Hirleman, “Discrete-dipole approximation for scattering by features on surfaces by means of a two-dimensional fast Fourier transform technique,” J. Opt. Soc. Am. A 14, 3026–3036 (1997).
    [CrossRef]
  23. D. Barchiesi, “A 3-D multilayer model of scattering by nanostructures. Application to the optimisation of thin coated nanosources,” Opt. Commun. 126, 7–13 (1996).
    [CrossRef]
  24. C. Obermüller, K. Karrai, “Far field characterization of diffracting circular apertures,” Appl. Phys. Lett. 67, 3408–3410 (1995).
    [CrossRef]

1999 (3)

See, for examples, H. Hatano, S. Kawata, “Applicability of deconvolution and nonlinear optimization for reconstructing optical images from near-field optical microscope images,” J. Microsc. (Oxford) 194, 230–234 (1999);O. J. F. Martin, “3D simulations of the experimental signal measured in near-field optical microscopy,” J. Microsc. (Oxford) 194, 235–239 (1999); and other articles in J. Microsc. (Oxford) 194, Pt 2/3 (1999).
[CrossRef]

L. J. Richter, C. E. Jordan, R. R. Cavanagh, G. W. Bryant, A. Liu, S. J. Stranick, C. D. Keating, M. J. Natan, “Influence of secondary tip shape on illumination-mode near-field scanning optical microscopy images,” J. Opt. Soc. Am. A 16, 1936–1946 (1999).
[CrossRef]

C. E. Jordan, S. J. Stranick, L. J. Richter, R. R. Cavanagh, “Removing optical artifacts in near-field scanning optical microscopy by using a three dimensional scanning mode,” J. Appl. Phys. 86, 2785–2789 (1999).
[CrossRef]

1998 (2)

P. A. Crowell, D. K. Young, S. Keller, E. L. Hu, D. D. Awschalom, “Near-field scanning optical spectroscopy of an InGaN quantum well,” Appl. Phys. Lett. 72, 927–929 (1998).
[CrossRef]

G. W. Bryant, E. L. Shirley, L. S. Goldner, E. B. McDaniel, J. W. P. Hsu, R. J. Tonucci, “Theory of probing a photonic crystal with transmission near-field optical microscopy,” Phys. Rev. B 58, 2131–2141 (1998).
[CrossRef]

1997 (6)

E. B. McDaniel, J. W. P. Hsu, L. S. Goldner, R. J. Tonucci, E. L. Shirley, G. W. Bryant, “Local characterization of transmission properties of a two-dimensional photonic crystal,” Phys. Rev. B 55, 10878–10882 (1997).
[CrossRef]

B. Hanewinkel, A. Knorr, P. Thomas, S. W. Koch, “Optical near-field response of semiconductor quantum dots,” Phys. Rev. B 55, 13715–13725 (1997).
[CrossRef]

R. S. Decca, H. D. Drew, K. L. Empson, “Investigation of the electric-field distribution at the subwavelength aperture of a near-field scanning optical microscope,” Appl. Phys. Lett. 70, 1932–1934 (1997).
[CrossRef]

A. Richter, G. Behme, M. Süptitz, Ch. Lienau, T. Elsaesser, M. Ramsteiner, R. Nötzel, K. H. Ploog, “Real-space transfer and trapping of carriers into single GaAs quantum wires studied by near-field optical spectroscopy,” Phys. Rev. Lett. 79, 2145–2148 (1997).
[CrossRef]

A. Rahmani, P. C. Chaumet, F. de Fornel, C. Girard, “Field propagator of a dressed junction: fluorescence lifetime calculations in a confined geometry,” Phys. Rev. A 56, 3245–3254 (1997).
[CrossRef]

R. Schmehl, B. M. Nebeker, E. D. Hirleman, “Discrete-dipole approximation for scattering by features on surfaces by means of a two-dimensional fast Fourier transform technique,” J. Opt. Soc. Am. A 14, 3026–3036 (1997).
[CrossRef]

1996 (3)

D. Barchiesi, “A 3-D multilayer model of scattering by nanostructures. Application to the optimisation of thin coated nanosources,” Opt. Commun. 126, 7–13 (1996).
[CrossRef]

See the discussion in J. I. Peltoniemi, “Variational volume integral equation method for electromagnetic scattering by irregular grains,” J. Quant. Spectrosc. Radiat. Transf. 55, 637–647 (1996) and references mentioned therein.
[CrossRef]

F. Flack, N. Samarth, V. Nikitin, P. A. Crowell, J. Shi, J. Levy, D. D. Awschalom, “Near-field optical spectroscopy of localized excitons in strained CdSe quantum dots,” Phys. Rev. B 54, R17312–R17315 (1996).
[CrossRef]

1995 (2)

R. X. Bian, R. C. Dunn, X. S. Xie, P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
[CrossRef] [PubMed]

C. Obermüller, K. Karrai, “Far field characterization of diffracting circular apertures,” Appl. Phys. Lett. 67, 3408–3410 (1995).
[CrossRef]

1994 (2)

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[CrossRef]

B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
[CrossRef]

1993 (1)

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[CrossRef] [PubMed]

1988 (1)

1973 (1)

E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

1950 (1)

C. J. Bouwkamp, “On Bethe’s theory of diffraction by small holes,” Philips Res. Rep. 5, 321–332 (1950); C. J. Bouwkamp, “On the diffraction of electromagnetic waves by small circular disks and holes,” Philips Res. Rep. 5, 401–422 (1950).

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Awschalom, D. D.

P. A. Crowell, D. K. Young, S. Keller, E. L. Hu, D. D. Awschalom, “Near-field scanning optical spectroscopy of an InGaN quantum well,” Appl. Phys. Lett. 72, 927–929 (1998).
[CrossRef]

F. Flack, N. Samarth, V. Nikitin, P. A. Crowell, J. Shi, J. Levy, D. D. Awschalom, “Near-field optical spectroscopy of localized excitons in strained CdSe quantum dots,” Phys. Rev. B 54, R17312–R17315 (1996).
[CrossRef]

Barchiesi, D.

D. Barchiesi, “A 3-D multilayer model of scattering by nanostructures. Application to the optimisation of thin coated nanosources,” Opt. Commun. 126, 7–13 (1996).
[CrossRef]

Behme, G.

A. Richter, G. Behme, M. Süptitz, Ch. Lienau, T. Elsaesser, M. Ramsteiner, R. Nötzel, K. H. Ploog, “Real-space transfer and trapping of carriers into single GaAs quantum wires studied by near-field optical spectroscopy,” Phys. Rev. Lett. 79, 2145–2148 (1997).
[CrossRef]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Betzig, E.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[CrossRef]

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[CrossRef] [PubMed]

Bian, R. X.

R. X. Bian, R. C. Dunn, X. S. Xie, P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
[CrossRef] [PubMed]

Bohren, C. F.

Bouwkamp, C. J.

C. J. Bouwkamp, “On Bethe’s theory of diffraction by small holes,” Philips Res. Rep. 5, 321–332 (1950); C. J. Bouwkamp, “On the diffraction of electromagnetic waves by small circular disks and holes,” Philips Res. Rep. 5, 401–422 (1950).

Bryant, G. W.

L. J. Richter, C. E. Jordan, R. R. Cavanagh, G. W. Bryant, A. Liu, S. J. Stranick, C. D. Keating, M. J. Natan, “Influence of secondary tip shape on illumination-mode near-field scanning optical microscopy images,” J. Opt. Soc. Am. A 16, 1936–1946 (1999).
[CrossRef]

G. W. Bryant, E. L. Shirley, L. S. Goldner, E. B. McDaniel, J. W. P. Hsu, R. J. Tonucci, “Theory of probing a photonic crystal with transmission near-field optical microscopy,” Phys. Rev. B 58, 2131–2141 (1998).
[CrossRef]

E. B. McDaniel, J. W. P. Hsu, L. S. Goldner, R. J. Tonucci, E. L. Shirley, G. W. Bryant, “Local characterization of transmission properties of a two-dimensional photonic crystal,” Phys. Rev. B 55, 10878–10882 (1997).
[CrossRef]

Cavanagh, R. R.

C. E. Jordan, S. J. Stranick, L. J. Richter, R. R. Cavanagh, “Removing optical artifacts in near-field scanning optical microscopy by using a three dimensional scanning mode,” J. Appl. Phys. 86, 2785–2789 (1999).
[CrossRef]

L. J. Richter, C. E. Jordan, R. R. Cavanagh, G. W. Bryant, A. Liu, S. J. Stranick, C. D. Keating, M. J. Natan, “Influence of secondary tip shape on illumination-mode near-field scanning optical microscopy images,” J. Opt. Soc. Am. A 16, 1936–1946 (1999).
[CrossRef]

Chaumet, P. C.

A. Rahmani, P. C. Chaumet, F. de Fornel, C. Girard, “Field propagator of a dressed junction: fluorescence lifetime calculations in a confined geometry,” Phys. Rev. A 56, 3245–3254 (1997).
[CrossRef]

Chichester, R. J.

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[CrossRef] [PubMed]

Crowell, P. A.

P. A. Crowell, D. K. Young, S. Keller, E. L. Hu, D. D. Awschalom, “Near-field scanning optical spectroscopy of an InGaN quantum well,” Appl. Phys. Lett. 72, 927–929 (1998).
[CrossRef]

F. Flack, N. Samarth, V. Nikitin, P. A. Crowell, J. Shi, J. Levy, D. D. Awschalom, “Near-field optical spectroscopy of localized excitons in strained CdSe quantum dots,” Phys. Rev. B 54, R17312–R17315 (1996).
[CrossRef]

de Fornel, F.

A. Rahmani, P. C. Chaumet, F. de Fornel, C. Girard, “Field propagator of a dressed junction: fluorescence lifetime calculations in a confined geometry,” Phys. Rev. A 56, 3245–3254 (1997).
[CrossRef]

Decca, R. S.

R. S. Decca, H. D. Drew, K. L. Empson, “Investigation of the electric-field distribution at the subwavelength aperture of a near-field scanning optical microscope,” Appl. Phys. Lett. 70, 1932–1934 (1997).
[CrossRef]

Draine, B. T.

Drew, H. D.

R. S. Decca, H. D. Drew, K. L. Empson, “Investigation of the electric-field distribution at the subwavelength aperture of a near-field scanning optical microscope,” Appl. Phys. Lett. 70, 1932–1934 (1997).
[CrossRef]

Dunn, R. C.

R. X. Bian, R. C. Dunn, X. S. Xie, P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
[CrossRef] [PubMed]

Elsaesser, T.

A. Richter, G. Behme, M. Süptitz, Ch. Lienau, T. Elsaesser, M. Ramsteiner, R. Nötzel, K. H. Ploog, “Real-space transfer and trapping of carriers into single GaAs quantum wires studied by near-field optical spectroscopy,” Phys. Rev. Lett. 79, 2145–2148 (1997).
[CrossRef]

Empson, K. L.

R. S. Decca, H. D. Drew, K. L. Empson, “Investigation of the electric-field distribution at the subwavelength aperture of a near-field scanning optical microscope,” Appl. Phys. Lett. 70, 1932–1934 (1997).
[CrossRef]

Flack, F.

F. Flack, N. Samarth, V. Nikitin, P. A. Crowell, J. Shi, J. Levy, D. D. Awschalom, “Near-field optical spectroscopy of localized excitons in strained CdSe quantum dots,” Phys. Rev. B 54, R17312–R17315 (1996).
[CrossRef]

Flatau, P. J.

Girard, C.

A. Rahmani, P. C. Chaumet, F. de Fornel, C. Girard, “Field propagator of a dressed junction: fluorescence lifetime calculations in a confined geometry,” Phys. Rev. A 56, 3245–3254 (1997).
[CrossRef]

Goldner, L. S.

G. W. Bryant, E. L. Shirley, L. S. Goldner, E. B. McDaniel, J. W. P. Hsu, R. J. Tonucci, “Theory of probing a photonic crystal with transmission near-field optical microscopy,” Phys. Rev. B 58, 2131–2141 (1998).
[CrossRef]

E. B. McDaniel, J. W. P. Hsu, L. S. Goldner, R. J. Tonucci, E. L. Shirley, G. W. Bryant, “Local characterization of transmission properties of a two-dimensional photonic crystal,” Phys. Rev. B 55, 10878–10882 (1997).
[CrossRef]

Grober, R. D.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[CrossRef]

Hanewinkel, B.

B. Hanewinkel, A. Knorr, P. Thomas, S. W. Koch, “Optical near-field response of semiconductor quantum dots,” Phys. Rev. B 55, 13715–13725 (1997).
[CrossRef]

Harris, T. D.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[CrossRef]

Hatano, H.

See, for examples, H. Hatano, S. Kawata, “Applicability of deconvolution and nonlinear optimization for reconstructing optical images from near-field optical microscope images,” J. Microsc. (Oxford) 194, 230–234 (1999);O. J. F. Martin, “3D simulations of the experimental signal measured in near-field optical microscopy,” J. Microsc. (Oxford) 194, 235–239 (1999); and other articles in J. Microsc. (Oxford) 194, Pt 2/3 (1999).
[CrossRef]

Hirleman, E. D.

Hsu, J. W. P.

G. W. Bryant, E. L. Shirley, L. S. Goldner, E. B. McDaniel, J. W. P. Hsu, R. J. Tonucci, “Theory of probing a photonic crystal with transmission near-field optical microscopy,” Phys. Rev. B 58, 2131–2141 (1998).
[CrossRef]

E. B. McDaniel, J. W. P. Hsu, L. S. Goldner, R. J. Tonucci, E. L. Shirley, G. W. Bryant, “Local characterization of transmission properties of a two-dimensional photonic crystal,” Phys. Rev. B 55, 10878–10882 (1997).
[CrossRef]

Hu, E. L.

P. A. Crowell, D. K. Young, S. Keller, E. L. Hu, D. D. Awschalom, “Near-field scanning optical spectroscopy of an InGaN quantum well,” Appl. Phys. Lett. 72, 927–929 (1998).
[CrossRef]

Jordan, C. E.

L. J. Richter, C. E. Jordan, R. R. Cavanagh, G. W. Bryant, A. Liu, S. J. Stranick, C. D. Keating, M. J. Natan, “Influence of secondary tip shape on illumination-mode near-field scanning optical microscopy images,” J. Opt. Soc. Am. A 16, 1936–1946 (1999).
[CrossRef]

C. E. Jordan, S. J. Stranick, L. J. Richter, R. R. Cavanagh, “Removing optical artifacts in near-field scanning optical microscopy by using a three dimensional scanning mode,” J. Appl. Phys. 86, 2785–2789 (1999).
[CrossRef]

Karrai, K.

C. Obermüller, K. Karrai, “Far field characterization of diffracting circular apertures,” Appl. Phys. Lett. 67, 3408–3410 (1995).
[CrossRef]

Kawata, S.

See, for examples, H. Hatano, S. Kawata, “Applicability of deconvolution and nonlinear optimization for reconstructing optical images from near-field optical microscope images,” J. Microsc. (Oxford) 194, 230–234 (1999);O. J. F. Martin, “3D simulations of the experimental signal measured in near-field optical microscopy,” J. Microsc. (Oxford) 194, 235–239 (1999); and other articles in J. Microsc. (Oxford) 194, Pt 2/3 (1999).
[CrossRef]

Keating, C. D.

Keller, S.

P. A. Crowell, D. K. Young, S. Keller, E. L. Hu, D. D. Awschalom, “Near-field scanning optical spectroscopy of an InGaN quantum well,” Appl. Phys. Lett. 72, 927–929 (1998).
[CrossRef]

Knorr, A.

B. Hanewinkel, A. Knorr, P. Thomas, S. W. Koch, “Optical near-field response of semiconductor quantum dots,” Phys. Rev. B 55, 13715–13725 (1997).
[CrossRef]

Koch, S. W.

B. Hanewinkel, A. Knorr, P. Thomas, S. W. Koch, “Optical near-field response of semiconductor quantum dots,” Phys. Rev. B 55, 13715–13725 (1997).
[CrossRef]

Leung, P. T.

R. X. Bian, R. C. Dunn, X. S. Xie, P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
[CrossRef] [PubMed]

Levy, J.

F. Flack, N. Samarth, V. Nikitin, P. A. Crowell, J. Shi, J. Levy, D. D. Awschalom, “Near-field optical spectroscopy of localized excitons in strained CdSe quantum dots,” Phys. Rev. B 54, R17312–R17315 (1996).
[CrossRef]

Lienau, Ch.

A. Richter, G. Behme, M. Süptitz, Ch. Lienau, T. Elsaesser, M. Ramsteiner, R. Nötzel, K. H. Ploog, “Real-space transfer and trapping of carriers into single GaAs quantum wires studied by near-field optical spectroscopy,” Phys. Rev. Lett. 79, 2145–2148 (1997).
[CrossRef]

Liu, A.

McDaniel, E. B.

G. W. Bryant, E. L. Shirley, L. S. Goldner, E. B. McDaniel, J. W. P. Hsu, R. J. Tonucci, “Theory of probing a photonic crystal with transmission near-field optical microscopy,” Phys. Rev. B 58, 2131–2141 (1998).
[CrossRef]

E. B. McDaniel, J. W. P. Hsu, L. S. Goldner, R. J. Tonucci, E. L. Shirley, G. W. Bryant, “Local characterization of transmission properties of a two-dimensional photonic crystal,” Phys. Rev. B 55, 10878–10882 (1997).
[CrossRef]

Natan, M. J.

Nebeker, B. M.

Nikitin, V.

F. Flack, N. Samarth, V. Nikitin, P. A. Crowell, J. Shi, J. Levy, D. D. Awschalom, “Near-field optical spectroscopy of localized excitons in strained CdSe quantum dots,” Phys. Rev. B 54, R17312–R17315 (1996).
[CrossRef]

Nötzel, R.

A. Richter, G. Behme, M. Süptitz, Ch. Lienau, T. Elsaesser, M. Ramsteiner, R. Nötzel, K. H. Ploog, “Real-space transfer and trapping of carriers into single GaAs quantum wires studied by near-field optical spectroscopy,” Phys. Rev. Lett. 79, 2145–2148 (1997).
[CrossRef]

Obermüller, C.

C. Obermüller, K. Karrai, “Far field characterization of diffracting circular apertures,” Appl. Phys. Lett. 67, 3408–3410 (1995).
[CrossRef]

Peltoniemi, J. I.

See the discussion in J. I. Peltoniemi, “Variational volume integral equation method for electromagnetic scattering by irregular grains,” J. Quant. Spectrosc. Radiat. Transf. 55, 637–647 (1996) and references mentioned therein.
[CrossRef]

Pennypacker, C. R.

E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

Pfeiffer, L.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[CrossRef]

Ploog, K. H.

A. Richter, G. Behme, M. Süptitz, Ch. Lienau, T. Elsaesser, M. Ramsteiner, R. Nötzel, K. H. Ploog, “Real-space transfer and trapping of carriers into single GaAs quantum wires studied by near-field optical spectroscopy,” Phys. Rev. Lett. 79, 2145–2148 (1997).
[CrossRef]

Purcell, E. M.

E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

Rahmani, A.

A. Rahmani, P. C. Chaumet, F. de Fornel, C. Girard, “Field propagator of a dressed junction: fluorescence lifetime calculations in a confined geometry,” Phys. Rev. A 56, 3245–3254 (1997).
[CrossRef]

Ramsteiner, M.

A. Richter, G. Behme, M. Süptitz, Ch. Lienau, T. Elsaesser, M. Ramsteiner, R. Nötzel, K. H. Ploog, “Real-space transfer and trapping of carriers into single GaAs quantum wires studied by near-field optical spectroscopy,” Phys. Rev. Lett. 79, 2145–2148 (1997).
[CrossRef]

Richter, A.

A. Richter, G. Behme, M. Süptitz, Ch. Lienau, T. Elsaesser, M. Ramsteiner, R. Nötzel, K. H. Ploog, “Real-space transfer and trapping of carriers into single GaAs quantum wires studied by near-field optical spectroscopy,” Phys. Rev. Lett. 79, 2145–2148 (1997).
[CrossRef]

Richter, L. J.

L. J. Richter, C. E. Jordan, R. R. Cavanagh, G. W. Bryant, A. Liu, S. J. Stranick, C. D. Keating, M. J. Natan, “Influence of secondary tip shape on illumination-mode near-field scanning optical microscopy images,” J. Opt. Soc. Am. A 16, 1936–1946 (1999).
[CrossRef]

C. E. Jordan, S. J. Stranick, L. J. Richter, R. R. Cavanagh, “Removing optical artifacts in near-field scanning optical microscopy by using a three dimensional scanning mode,” J. Appl. Phys. 86, 2785–2789 (1999).
[CrossRef]

Samarth, N.

F. Flack, N. Samarth, V. Nikitin, P. A. Crowell, J. Shi, J. Levy, D. D. Awschalom, “Near-field optical spectroscopy of localized excitons in strained CdSe quantum dots,” Phys. Rev. B 54, R17312–R17315 (1996).
[CrossRef]

Schmehl, R.

Shi, J.

F. Flack, N. Samarth, V. Nikitin, P. A. Crowell, J. Shi, J. Levy, D. D. Awschalom, “Near-field optical spectroscopy of localized excitons in strained CdSe quantum dots,” Phys. Rev. B 54, R17312–R17315 (1996).
[CrossRef]

Shirley, E. L.

G. W. Bryant, E. L. Shirley, L. S. Goldner, E. B. McDaniel, J. W. P. Hsu, R. J. Tonucci, “Theory of probing a photonic crystal with transmission near-field optical microscopy,” Phys. Rev. B 58, 2131–2141 (1998).
[CrossRef]

E. B. McDaniel, J. W. P. Hsu, L. S. Goldner, R. J. Tonucci, E. L. Shirley, G. W. Bryant, “Local characterization of transmission properties of a two-dimensional photonic crystal,” Phys. Rev. B 55, 10878–10882 (1997).
[CrossRef]

Singham, S. B.

Stranick, S. J.

L. J. Richter, C. E. Jordan, R. R. Cavanagh, G. W. Bryant, A. Liu, S. J. Stranick, C. D. Keating, M. J. Natan, “Influence of secondary tip shape on illumination-mode near-field scanning optical microscopy images,” J. Opt. Soc. Am. A 16, 1936–1946 (1999).
[CrossRef]

C. E. Jordan, S. J. Stranick, L. J. Richter, R. R. Cavanagh, “Removing optical artifacts in near-field scanning optical microscopy by using a three dimensional scanning mode,” J. Appl. Phys. 86, 2785–2789 (1999).
[CrossRef]

Süptitz, M.

A. Richter, G. Behme, M. Süptitz, Ch. Lienau, T. Elsaesser, M. Ramsteiner, R. Nötzel, K. H. Ploog, “Real-space transfer and trapping of carriers into single GaAs quantum wires studied by near-field optical spectroscopy,” Phys. Rev. Lett. 79, 2145–2148 (1997).
[CrossRef]

Thomas, P.

B. Hanewinkel, A. Knorr, P. Thomas, S. W. Koch, “Optical near-field response of semiconductor quantum dots,” Phys. Rev. B 55, 13715–13725 (1997).
[CrossRef]

Tonucci, R. J.

G. W. Bryant, E. L. Shirley, L. S. Goldner, E. B. McDaniel, J. W. P. Hsu, R. J. Tonucci, “Theory of probing a photonic crystal with transmission near-field optical microscopy,” Phys. Rev. B 58, 2131–2141 (1998).
[CrossRef]

E. B. McDaniel, J. W. P. Hsu, L. S. Goldner, R. J. Tonucci, E. L. Shirley, G. W. Bryant, “Local characterization of transmission properties of a two-dimensional photonic crystal,” Phys. Rev. B 55, 10878–10882 (1997).
[CrossRef]

Trautman, J. K.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[CrossRef]

Wegscheider, W.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[CrossRef]

West, K.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[CrossRef]

Xie, X. S.

R. X. Bian, R. C. Dunn, X. S. Xie, P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
[CrossRef] [PubMed]

Young, D. K.

P. A. Crowell, D. K. Young, S. Keller, E. L. Hu, D. D. Awschalom, “Near-field scanning optical spectroscopy of an InGaN quantum well,” Appl. Phys. Lett. 72, 927–929 (1998).
[CrossRef]

Appl. Phys. Lett. (4)

P. A. Crowell, D. K. Young, S. Keller, E. L. Hu, D. D. Awschalom, “Near-field scanning optical spectroscopy of an InGaN quantum well,” Appl. Phys. Lett. 72, 927–929 (1998).
[CrossRef]

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, W. Wegscheider, L. Pfeiffer, K. West, “Optical spectroscopy of a GaAs/AlGaAs quantum wire structure using near-field scanning optical microscopy,” Appl. Phys. Lett. 64, 1421–1423 (1994).
[CrossRef]

R. S. Decca, H. D. Drew, K. L. Empson, “Investigation of the electric-field distribution at the subwavelength aperture of a near-field scanning optical microscope,” Appl. Phys. Lett. 70, 1932–1934 (1997).
[CrossRef]

C. Obermüller, K. Karrai, “Far field characterization of diffracting circular apertures,” Appl. Phys. Lett. 67, 3408–3410 (1995).
[CrossRef]

Astrophys. J. (1)

E. M. Purcell, C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

J. Appl. Phys. (1)

C. E. Jordan, S. J. Stranick, L. J. Richter, R. R. Cavanagh, “Removing optical artifacts in near-field scanning optical microscopy by using a three dimensional scanning mode,” J. Appl. Phys. 86, 2785–2789 (1999).
[CrossRef]

J. Microsc. (Oxford) (1)

See, for examples, H. Hatano, S. Kawata, “Applicability of deconvolution and nonlinear optimization for reconstructing optical images from near-field optical microscope images,” J. Microsc. (Oxford) 194, 230–234 (1999);O. J. F. Martin, “3D simulations of the experimental signal measured in near-field optical microscopy,” J. Microsc. (Oxford) 194, 235–239 (1999); and other articles in J. Microsc. (Oxford) 194, Pt 2/3 (1999).
[CrossRef]

J. Opt. Soc. Am. A (4)

J. Quant. Spectrosc. Radiat. Transf. (1)

See the discussion in J. I. Peltoniemi, “Variational volume integral equation method for electromagnetic scattering by irregular grains,” J. Quant. Spectrosc. Radiat. Transf. 55, 637–647 (1996) and references mentioned therein.
[CrossRef]

Opt. Commun. (1)

D. Barchiesi, “A 3-D multilayer model of scattering by nanostructures. Application to the optimisation of thin coated nanosources,” Opt. Commun. 126, 7–13 (1996).
[CrossRef]

Philips Res. Rep. (1)

C. J. Bouwkamp, “On Bethe’s theory of diffraction by small holes,” Philips Res. Rep. 5, 321–332 (1950); C. J. Bouwkamp, “On the diffraction of electromagnetic waves by small circular disks and holes,” Philips Res. Rep. 5, 401–422 (1950).

Phys. Rev. (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Phys. Rev. A (1)

A. Rahmani, P. C. Chaumet, F. de Fornel, C. Girard, “Field propagator of a dressed junction: fluorescence lifetime calculations in a confined geometry,” Phys. Rev. A 56, 3245–3254 (1997).
[CrossRef]

Phys. Rev. B (4)

F. Flack, N. Samarth, V. Nikitin, P. A. Crowell, J. Shi, J. Levy, D. D. Awschalom, “Near-field optical spectroscopy of localized excitons in strained CdSe quantum dots,” Phys. Rev. B 54, R17312–R17315 (1996).
[CrossRef]

E. B. McDaniel, J. W. P. Hsu, L. S. Goldner, R. J. Tonucci, E. L. Shirley, G. W. Bryant, “Local characterization of transmission properties of a two-dimensional photonic crystal,” Phys. Rev. B 55, 10878–10882 (1997).
[CrossRef]

G. W. Bryant, E. L. Shirley, L. S. Goldner, E. B. McDaniel, J. W. P. Hsu, R. J. Tonucci, “Theory of probing a photonic crystal with transmission near-field optical microscopy,” Phys. Rev. B 58, 2131–2141 (1998).
[CrossRef]

B. Hanewinkel, A. Knorr, P. Thomas, S. W. Koch, “Optical near-field response of semiconductor quantum dots,” Phys. Rev. B 55, 13715–13725 (1997).
[CrossRef]

Phys. Rev. Lett. (2)

A. Richter, G. Behme, M. Süptitz, Ch. Lienau, T. Elsaesser, M. Ramsteiner, R. Nötzel, K. H. Ploog, “Real-space transfer and trapping of carriers into single GaAs quantum wires studied by near-field optical spectroscopy,” Phys. Rev. Lett. 79, 2145–2148 (1997).
[CrossRef]

R. X. Bian, R. C. Dunn, X. S. Xie, P. T. Leung, “Single molecule emission characteristics in near-field microscopy,” Phys. Rev. Lett. 75, 4772–4775 (1995).
[CrossRef] [PubMed]

Science (1)

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[CrossRef] [PubMed]

Other (1)

D. W. Pohl, D. Courjon, eds., Near Field Optics (Kluwer, Academic, Dordrecht, The Netherlands, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Schematic diagram showing a small particle scanned by a fiber tip in a near-field scanning optical microscope. The disk model used to calculate the tip field is also indicated.

Fig. 2
Fig. 2

Constant-gap transmission NSOM image of a 100-nm Au particle recorded with a tip having a thick metal coating. Vertical and horizontal line scans along the indicated lines are displayed.

Fig. 3
Fig. 3

Comparison of the local-field intensities of a 20-nm cube and a single dipole with a polarizability adjusted for finite-size effects. The intensities on xy planes are shown. The driving field is an x-polarized plane wave with λ=488 nm.

Fig. 4
Fig. 4

Comparison of the local-field intensities of a 20-nm cube and a single dipole with a polarizability adjusted for finite-size effects. The intensities on yz planes are shown. The driving field is an x-polarized plane wave with λ=488 nm.

Fig. 5
Fig. 5

Magnitude of the x component of the tip field in the xy plane 20 nm from the end of the tip. (a) Field calculated in the disk model: disk height, 20 nm; outer tip radius, 170 nm; core radius, 70 nm. (b) Field calculated in the BB model: aperture radius, 70 nm; wavelength, 488 nm. The tip is centered above the origin. The other parameters used in the calculations are given in the text.

Fig. 6
Fig. 6

Magnitude of the x component of the tip field, calculated in the disk model, in the xy plane 20 nm from the end of the tip. The tip outer radius is (a) 390 nm, (b) 450 nm. The other parameters of the disk model are as in Fig. 5.

Fig. 7
Fig. 7

X scans for the NSOM images of a 100 nm×100 nm×60 nm (x, y, z) Au particle for different tip sizes: core radius, 70 nm; disk height, 20 nm. The outer tip radii used in the calculations are indicated. The tip–particle separation in the z direction is 20 nm. The particle is centered at the origin.

Fig. 8
Fig. 8

Y scans for the NSOM images of a 100 nm×100 nm×60 nm (x, y, z) Au particle for different tip sizes. The other parameters of the disk model are as in Fig. 7.

Fig. 9
Fig. 9

X scans for the NSOM images of a 100 nm×100 nm×60 nm (x, y, z) Au particle for a fixed outer tip radius of 170 nm with different aperture sizes, i.e., 30, 50, and 70 nm. Disk height, 20 nm; tip–particle separation in the z direction, 20 nm.

Fig. 10
Fig. 10

X scans for the NSOM images of a 100 nm×100 nm×60 nm (x, y, z) Au particle for a fixed outer tip radius of 390 nm with different aperture sizes, i.e., 30, 70, 110, 130, and 190 nm. Disk height, 20 nm; tip–particle separation in the z direction, 20 nm.

Fig. 11
Fig. 11

X scans for the NSOM images of a 100 nm×100 nm×60 nm (x, y, z) Au particle calculated in the BB model for different aperture sizes, i.e., 30, 70, 110, 130, and 190 nm. Tip–particle separation in the z direction, 20 nm.

Fig. 12
Fig. 12

X (solid curve) and Y (dotted curve) scans for the NSOM images of a 100 nm×100 nm×60 nm (x, y, z) Au particle calculated in the BB model. Aperture radius, 70 nm; tip–particle separation in the z direction, 20 nm.

Fig. 13
Fig. 13

X scans for the NSOM images of a 100 nm×100 nm×60 nm (x, y, z) Au particle calculated in the disk model with (solid curve) and without (dotted curve) including the reaction of the tip to the particle field. Core radius, 70 nm; outer tip radius, 390 nm; disk height, 20 nm; tip–particle separation in the z direction, 20 nm.

Fig. 14
Fig. 14

Contributions to the X scan of the NSOM image of a 100 nm×100 nm×60 nm (x, y, z) Au particle made by the tip field, the particle field, and the interference between the tip and particle fields. The total transmitted intensity is also shown. All intensities are normalized by the constant contribution made by the tip field. The aperture radius is 70 nm. The tip–particle separation in the z direction is 20 nm.

Fig. 15
Fig. 15

X scans for the NSOM images of a 100 nm×100 nm×60 nm (x, y, z) Au particle calculated in the disk model when the particle is excited by the total tip field (solid curve) and by only the x component of the tip field (dotted curve). Aperture radius, 70 nm; tip–particle separation in the z direction, 20 nm.

Fig. 16
Fig. 16

Comparison of the x component of the tip near field, 20 nm from the end of the tip, with the far-field transmission due to the interference between the tip and particle fields. An X scan made by a blunt tip with a 390-nm outer radius is shown. The real and imaginary parts of the field are scaled to have the same peak amplitude as the interference term.

Fig. 17
Fig. 17

Comparison of the intensity due to the x component of the tip near field, 20 nm from the end of the tip, with the far-field transmission due to light scattering from the Au particle. An X scan by a blunt tip with a 390-nm outer radius is shown. The intensity is scaled to have the same peak amplitude as light scattering from the particle.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

α(ω, rj)=30V (ω, rj)-1(ω, rj)+2,
E(ri)=E0(ri)-μ0ω2jiNG(ω, ri, rj)α(ω, rj)E(rj),
i=1, 2,, N,
Efar(r)=μ0ω2exp(iωr/c0)4πrj=1Nα(ω, rj)×exp-i ωc0nrjME(rj),
M=1-sin2 θ cos2 ϕ-sin2 θ sin ϕ cos ϕ-sin θ cos θ cos ϕ-sin2 θ sin ϕ cos ϕ1-sin2 θ sin2 ϕ-sin θ cos θ sin ϕ-sin θ cos θ cos ϕ-sin θ cos θ sin ϕsin2 θ.
P=12 0c002πdϕ0θcdθ|Efar(r)|2r2sin θ,
EfarBB(r)=4a3ω23πc02 (n×ey) exp(iωr/c0)r,

Metrics