Abstract

A theoretical and numerical study of the optical near field in both metallic and dielectric nanocylinders close to a dielectric surface is presented. To establish a procedure of control and analysis, we address the resonant excitation of the particle eigenmodes, either through propagating (homogeneous) or evanescent (inhomogeneous) plane-wave incidence, and compare with off-resonance cases, including the effects of multiple scattering between the particle and the flat interface. The analysis is carried out by comparing the near-field distributions with the far-field scattering efficiencies and the behavior of the corresponding Mie coefficients.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Klar, M. Perner, S. Grosse, G. V. Plessen, W. Spirkl, J. Feldmann, “Surface plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
    [CrossRef]
  2. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
    [CrossRef]
  3. C. Liu, T. Kaiser, S. Lange, G. Schweiger, “Structural resonances in a dielectric sphere illuminated by an evanescent wave,” Opt. Commun. 117, 521–531 (1995).
    [CrossRef]
  4. L. Collot, V. Lefèvre-Seguin, M. Brune, J. M. Raimond, S. Haroche, “Very-high-Q whispering-gallery mode resonances observed on fused silica microspheres,” Europhys. Lett. 23, 327–334 (1993).
    [CrossRef]
  5. J. C. Knight, N. Dubreuil, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, S. Haroche, “Mapping whispering-gallery modes in microspheres with a near-field probe,” Opt. Lett. 20, 1515–1517 (1995).
    [CrossRef] [PubMed]
  6. D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J. M. Raimond, S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Opt. Lett. 20, 1835–1837 (1995).
    [CrossRef] [PubMed]
  7. G. Griffel, S. Arnold, D. Taskent, A. Serpengüzel, J. Connolly, N. Morris, “Morphology-dependent resonances of a microsphere-optical fiber system,” Opt. Lett. 21, 695–697 (1996).
    [CrossRef] [PubMed]
  8. D. W. Pohl, D. Courjon, eds. Near Field Optics (Kluwer Academic, Dordrecht, The Netherlands, 1993).
  9. J. J. Greffet, R. Carminatti, “Image formation in near-field optics,” Prog. Surf. Sci. 56, 133–235 (1997).
    [CrossRef]
  10. Y. Inouye, S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994).
    [CrossRef] [PubMed]
  11. S. Kawata, Y. Inouye, T. Sugiura, “Near-field scanning optical microscope with a laser-trapped probe,” Jpn. J. Appl. Phys., Part 1 33, 1725–1727 (1994).
    [CrossRef]
  12. A. Madrazo, M. Nieto-Vesperinas, “Imaging properties of a nanocylinder close to a surface,” J. Opt. Soc. Am. A 14, 2768–2776 (1997).
    [CrossRef]
  13. M. Gu, P. Ch. Ke, “Image enhancements in near-field scanning optical microscopy with laser-trapped metallic particles,” Opt. Lett. 24, 74–76 (1999).
    [CrossRef]
  14. M. I. Antonoyiannakis, J. B. Pendry, “Mie resonances and bonding in photonic crystals,” Europhys. Lett. 40, 613–681 (1997).
    [CrossRef]
  15. M. A. Burns, J. M. Fournier, J. A. Golovchenco, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
    [CrossRef] [PubMed]
  16. M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
    [CrossRef]
  17. J. R. Arias-González, M. Nieto-Vesperinas, “Near-field distributions of resonant modes in small dielectric objects on flat surfaces,” Opt. Lett. 25, 782–784 (2000).
    [CrossRef]
  18. J. R. Arias-González, M. Nieto-Vesperinas, A. Madrazo, “Morphology-dependent resonances in the scattering of electromagnetic waves from an object buried beneath a plane or a random rough surface,” J. Opt. Soc. Am. A 16, 2928–2934 (1999).
    [CrossRef]
  19. E. D. Palik, ed., Handbook of Optical Properties of Solids (Academic, London, 1985).
  20. R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave-scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994).
    [CrossRef]
  21. A. Madrazo, M. Nieto-Vesperinas, “Surface structure and polariton interactions in the scattering of electromagnetic waves from a cylinder in front of a conducting grating: theory for the reflection photon scanning tunneling microscope,” J. Opt. Soc. Am. A 13, 785–795 (1996).
    [CrossRef]
  22. A. Madrazo, M. Nieto-Vesperinas, “Reconstruction of corrugated dielectric surfaces with a model of a photon-scanning tunneling microscope: influence of the tip in the near field,” J. Opt. Soc. Am. A 14, 618–628 (1997).
    [CrossRef]
  23. A. Madrazo, M. Nieto-Vesperinas, “Scattering of light and other electromagnetic waves from a body buried beneath a highly rough random surface,” J. Opt. Soc. Am. A 14, 1859–1866 (1997).
    [CrossRef]
  24. R. Wannemacher, A. Pack, M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B 68, 225–232 (1999).
    [CrossRef]
  25. M. Quinten, A. Pack, R. Wannemacher, “Scattering and extinction of evanescent waves by small particles,” Appl. Phys. B 68, 87–92 (1999).
    [CrossRef]
  26. P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), Chap. 2.
  27. J. F. Owen, R. K. Chang, P. W. Barber, “Internal electric field distributions of a dielectric cylinder at resonance wavelengths,” Opt. Lett. 6, 540–542 (1981).
    [CrossRef] [PubMed]
  28. P. Chylek, J. D. Pendleton, R. G. Pinnick, “Internal and near-surface scattered field of a spherical particle at resonant conditions,” Appl. Opt. 24, 3940–3942 (1985).
    [CrossRef] [PubMed]
  29. D. S. Benincasa, P. W. Barber, J.-Z. Zhang, W.-F. Hsieh, R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26, 1348–1356 (1987).
    [CrossRef] [PubMed]

2000 (1)

1999 (5)

J. R. Arias-González, M. Nieto-Vesperinas, A. Madrazo, “Morphology-dependent resonances in the scattering of electromagnetic waves from an object buried beneath a plane or a random rough surface,” J. Opt. Soc. Am. A 16, 2928–2934 (1999).
[CrossRef]

R. Wannemacher, A. Pack, M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B 68, 225–232 (1999).
[CrossRef]

M. Quinten, A. Pack, R. Wannemacher, “Scattering and extinction of evanescent waves by small particles,” Appl. Phys. B 68, 87–92 (1999).
[CrossRef]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

M. Gu, P. Ch. Ke, “Image enhancements in near-field scanning optical microscopy with laser-trapped metallic particles,” Opt. Lett. 24, 74–76 (1999).
[CrossRef]

1998 (2)

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[CrossRef]

T. Klar, M. Perner, S. Grosse, G. V. Plessen, W. Spirkl, J. Feldmann, “Surface plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

1997 (5)

1996 (2)

1995 (3)

1994 (3)

S. Kawata, Y. Inouye, T. Sugiura, “Near-field scanning optical microscope with a laser-trapped probe,” Jpn. J. Appl. Phys., Part 1 33, 1725–1727 (1994).
[CrossRef]

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave-scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994).
[CrossRef]

Y. Inouye, S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994).
[CrossRef] [PubMed]

1993 (1)

L. Collot, V. Lefèvre-Seguin, M. Brune, J. M. Raimond, S. Haroche, “Very-high-Q whispering-gallery mode resonances observed on fused silica microspheres,” Europhys. Lett. 23, 327–334 (1993).
[CrossRef]

1989 (1)

M. A. Burns, J. M. Fournier, J. A. Golovchenco, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef] [PubMed]

1987 (1)

1985 (1)

1981 (1)

Antonoyiannakis, M. I.

M. I. Antonoyiannakis, J. B. Pendry, “Mie resonances and bonding in photonic crystals,” Europhys. Lett. 40, 613–681 (1997).
[CrossRef]

Arias-González, J. R.

Arnold, S.

Aussenegg, F. R.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Barber, P. W.

Bayer, M.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[CrossRef]

Benincasa, D. S.

Bourillot, E.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Brune, M.

L. Collot, V. Lefèvre-Seguin, M. Brune, J. M. Raimond, S. Haroche, “Very-high-Q whispering-gallery mode resonances observed on fused silica microspheres,” Europhys. Lett. 23, 327–334 (1993).
[CrossRef]

Burns, M. A.

M. A. Burns, J. M. Fournier, J. A. Golovchenco, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef] [PubMed]

Carminati, R.

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave-scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994).
[CrossRef]

Carminatti, R.

J. J. Greffet, R. Carminatti, “Image formation in near-field optics,” Prog. Surf. Sci. 56, 133–235 (1997).
[CrossRef]

Chang, R. K.

Chylek, P.

Collot, L.

L. Collot, V. Lefèvre-Seguin, M. Brune, J. M. Raimond, S. Haroche, “Very-high-Q whispering-gallery mode resonances observed on fused silica microspheres,” Europhys. Lett. 23, 327–334 (1993).
[CrossRef]

Connolly, J.

Dereux, A.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Dremin, A. A.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[CrossRef]

Dubreuil, N.

Feldmann, J.

T. Klar, M. Perner, S. Grosse, G. V. Plessen, W. Spirkl, J. Feldmann, “Surface plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Forchel, A.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[CrossRef]

Fournier, J. M.

M. A. Burns, J. M. Fournier, J. A. Golovchenco, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef] [PubMed]

Girard, C.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Golovchenco, J. A.

M. A. Burns, J. M. Fournier, J. A. Golovchenco, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef] [PubMed]

Gotschy, W.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Goudonnet, J. P.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Greffet, J. J.

J. J. Greffet, R. Carminatti, “Image formation in near-field optics,” Prog. Surf. Sci. 56, 133–235 (1997).
[CrossRef]

Griffel, G.

Grosse, S.

T. Klar, M. Perner, S. Grosse, G. V. Plessen, W. Spirkl, J. Feldmann, “Surface plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Gu, M.

Gutbrod, T.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[CrossRef]

Hare, J.

Haroche, S.

Hill, S. C.

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), Chap. 2.

Hsieh, W.-F.

Inouye, Y.

Y. Inouye, S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994).
[CrossRef] [PubMed]

S. Kawata, Y. Inouye, T. Sugiura, “Near-field scanning optical microscope with a laser-trapped probe,” Jpn. J. Appl. Phys., Part 1 33, 1725–1727 (1994).
[CrossRef]

Kaiser, T.

C. Liu, T. Kaiser, S. Lange, G. Schweiger, “Structural resonances in a dielectric sphere illuminated by an evanescent wave,” Opt. Commun. 117, 521–531 (1995).
[CrossRef]

Kawata, S.

Y. Inouye, S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994).
[CrossRef] [PubMed]

S. Kawata, Y. Inouye, T. Sugiura, “Near-field scanning optical microscope with a laser-trapped probe,” Jpn. J. Appl. Phys., Part 1 33, 1725–1727 (1994).
[CrossRef]

Ke, P. Ch.

Klar, T.

T. Klar, M. Perner, S. Grosse, G. V. Plessen, W. Spirkl, J. Feldmann, “Surface plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Knight, J. C.

Knipp, P. A.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[CrossRef]

Krenn, J. R.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Kulakovskii, V. D.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[CrossRef]

Lacroute, Y.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Lange, S.

C. Liu, T. Kaiser, S. Lange, G. Schweiger, “Structural resonances in a dielectric sphere illuminated by an evanescent wave,” Opt. Commun. 117, 521–531 (1995).
[CrossRef]

Lefèvre-Seguin, V.

Leitner, A.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Liu, C.

C. Liu, T. Kaiser, S. Lange, G. Schweiger, “Structural resonances in a dielectric sphere illuminated by an evanescent wave,” Opt. Commun. 117, 521–531 (1995).
[CrossRef]

Madrazo, A.

Morris, N.

Nieto-Vesperinas, M.

J. R. Arias-González, M. Nieto-Vesperinas, “Near-field distributions of resonant modes in small dielectric objects on flat surfaces,” Opt. Lett. 25, 782–784 (2000).
[CrossRef]

J. R. Arias-González, M. Nieto-Vesperinas, A. Madrazo, “Morphology-dependent resonances in the scattering of electromagnetic waves from an object buried beneath a plane or a random rough surface,” J. Opt. Soc. Am. A 16, 2928–2934 (1999).
[CrossRef]

A. Madrazo, M. Nieto-Vesperinas, “Reconstruction of corrugated dielectric surfaces with a model of a photon-scanning tunneling microscope: influence of the tip in the near field,” J. Opt. Soc. Am. A 14, 618–628 (1997).
[CrossRef]

A. Madrazo, M. Nieto-Vesperinas, “Imaging properties of a nanocylinder close to a surface,” J. Opt. Soc. Am. A 14, 2768–2776 (1997).
[CrossRef]

A. Madrazo, M. Nieto-Vesperinas, “Scattering of light and other electromagnetic waves from a body buried beneath a highly rough random surface,” J. Opt. Soc. Am. A 14, 1859–1866 (1997).
[CrossRef]

A. Madrazo, M. Nieto-Vesperinas, “Surface structure and polariton interactions in the scattering of electromagnetic waves from a cylinder in front of a conducting grating: theory for the reflection photon scanning tunneling microscope,” J. Opt. Soc. Am. A 13, 785–795 (1996).
[CrossRef]

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave-scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994).
[CrossRef]

Owen, J. F.

Pack, A.

M. Quinten, A. Pack, R. Wannemacher, “Scattering and extinction of evanescent waves by small particles,” Appl. Phys. B 68, 87–92 (1999).
[CrossRef]

R. Wannemacher, A. Pack, M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B 68, 225–232 (1999).
[CrossRef]

Pendleton, J. D.

Pendry, J. B.

M. I. Antonoyiannakis, J. B. Pendry, “Mie resonances and bonding in photonic crystals,” Europhys. Lett. 40, 613–681 (1997).
[CrossRef]

Perner, M.

T. Klar, M. Perner, S. Grosse, G. V. Plessen, W. Spirkl, J. Feldmann, “Surface plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Pinnick, R. G.

Plessen, G. V.

T. Klar, M. Perner, S. Grosse, G. V. Plessen, W. Spirkl, J. Feldmann, “Surface plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Quinten, M.

R. Wannemacher, A. Pack, M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B 68, 225–232 (1999).
[CrossRef]

M. Quinten, A. Pack, R. Wannemacher, “Scattering and extinction of evanescent waves by small particles,” Appl. Phys. B 68, 87–92 (1999).
[CrossRef]

Raimond, J. M.

Reinecke, T. L.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[CrossRef]

Reithmaier, J. P.

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[CrossRef]

Sandoghdar, V.

Schider, G.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Schweiger, G.

C. Liu, T. Kaiser, S. Lange, G. Schweiger, “Structural resonances in a dielectric sphere illuminated by an evanescent wave,” Opt. Commun. 117, 521–531 (1995).
[CrossRef]

Serpengüzel, A.

Spirkl, W.

T. Klar, M. Perner, S. Grosse, G. V. Plessen, W. Spirkl, J. Feldmann, “Surface plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

Sugiura, T.

S. Kawata, Y. Inouye, T. Sugiura, “Near-field scanning optical microscope with a laser-trapped probe,” Jpn. J. Appl. Phys., Part 1 33, 1725–1727 (1994).
[CrossRef]

Taskent, D.

Wannemacher, R.

R. Wannemacher, A. Pack, M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B 68, 225–232 (1999).
[CrossRef]

M. Quinten, A. Pack, R. Wannemacher, “Scattering and extinction of evanescent waves by small particles,” Appl. Phys. B 68, 87–92 (1999).
[CrossRef]

Weeber, J. C.

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Weiss, D. S.

Zhang, J.-Z.

Appl. Opt. (2)

Appl. Phys. B (2)

R. Wannemacher, A. Pack, M. Quinten, “Resonant absorption and scattering in evanescent fields,” Appl. Phys. B 68, 225–232 (1999).
[CrossRef]

M. Quinten, A. Pack, R. Wannemacher, “Scattering and extinction of evanescent waves by small particles,” Appl. Phys. B 68, 87–92 (1999).
[CrossRef]

Europhys. Lett. (2)

L. Collot, V. Lefèvre-Seguin, M. Brune, J. M. Raimond, S. Haroche, “Very-high-Q whispering-gallery mode resonances observed on fused silica microspheres,” Europhys. Lett. 23, 327–334 (1993).
[CrossRef]

M. I. Antonoyiannakis, J. B. Pendry, “Mie resonances and bonding in photonic crystals,” Europhys. Lett. 40, 613–681 (1997).
[CrossRef]

J. Opt. Soc. Am. A (5)

Jpn. J. Appl. Phys., Part 1 (1)

S. Kawata, Y. Inouye, T. Sugiura, “Near-field scanning optical microscope with a laser-trapped probe,” Jpn. J. Appl. Phys., Part 1 33, 1725–1727 (1994).
[CrossRef]

Opt. Commun. (2)

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, “Electromagnetic wave-scattering from a cylinder in front of a conducting surface-relief grating,” Opt. Commun. 111, 26–33 (1994).
[CrossRef]

C. Liu, T. Kaiser, S. Lange, G. Schweiger, “Structural resonances in a dielectric sphere illuminated by an evanescent wave,” Opt. Commun. 117, 521–531 (1995).
[CrossRef]

Opt. Lett. (7)

Phys. Rev. Lett. (4)

M. A. Burns, J. M. Fournier, J. A. Golovchenco, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef] [PubMed]

M. Bayer, T. Gutbrod, J. P. Reithmaier, A. Forchel, T. L. Reinecke, P. A. Knipp, A. A. Dremin, V. D. Kulakovskii, “Optical modes in photonic molecules,” Phys. Rev. Lett. 81, 2582–2585 (1998).
[CrossRef]

T. Klar, M. Perner, S. Grosse, G. V. Plessen, W. Spirkl, J. Feldmann, “Surface plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998).
[CrossRef]

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phys. Rev. Lett. 82, 2590–2593 (1999).
[CrossRef]

Prog. Surf. Sci. (1)

J. J. Greffet, R. Carminatti, “Image formation in near-field optics,” Prog. Surf. Sci. 56, 133–235 (1997).
[CrossRef]

Other (3)

D. W. Pohl, D. Courjon, eds. Near Field Optics (Kluwer Academic, Dordrecht, The Netherlands, 1993).

E. D. Palik, ed., Handbook of Optical Properties of Solids (Academic, London, 1985).

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scattering geometry.

Fig. 2
Fig. 2

(a) and (c) Scattering efficiency versus wavelength for an isolated silver cylinder of radius a=30 nm and a=200 nm, respectively. (b) and (d) Normalized scattered intensity at θs=45° versus wavelength for a silver cylinder of radius a=30 nm and a=200 nm, respectively. The cylinder is placed at d=0 for the isolated cases and at d=15.5 nm when it is placed on a dielectric plane with length either L=30,500 nm, (b), or L=40,500 nm, (d). The incidence is a P-polarized plane wave, either propagating or evanescent, when the particle is isolated, and a Gaussian beam with HWHM either W=3050 nm, (b), or W=4050 nm, (d), when the interaction with the plane is taken into account. Solid and dashed thin curves, isolated cylinder excited by either a plane propagating wave (θ0=0°) or a plane evanescent wave (θ0=60°), respectively. Solid and dashed thick curves, cylinder on a plane excited by a Gaussian incident beam at θ0=0° and θ0=60°, respectively.

Fig. 3
Fig. 3

|H/H0|2 for P polarization for a silver cylinder with a=30 nm on a dielectric plane at d=5 nm,L=30,500 nm, and W=4000 nm. (a) λ=317 nm,θ0=0°; (b) λ=346 nm,θ0=0°; (c) λ=317 nm,θ0=60°; (d) λ=346 nm,θ0=60°. The circular curves show the boundary of the cylinder.

Fig. 4
Fig. 4

|H/H0|2 for P polarization for a silver cylinder with a=200 nm on a dielectric plane at d=15 nm,L=30,000 nm, and W=4000 nm. (a) λ=317 nm,θ0=0°; (b) λ=366 nm,θ0=0°; (c) λ=317 nm,θ0=60°; (d) λ=366 nm,θ0=60°. The circular curves show the boundary of the cylinder.

Fig. 5
Fig. 5

Scattering efficiency for an isolated silicon cylinder of radius a=200 nm. The incidence is done with a plane wave either propagating or evanescent (see the code). (a) S polarization; (b), P polarization.

Fig. 6
Fig. 6

|E/E0|2 for S polarization for a silicon cylinder with a=200 nm and λ=919 nm. (a) Isolated object illuminated by a plane-propagating wave at θ0=0°; (b) object on a dielectric plane at d=15 nm and L=40,000 nm, illuminated by a Gaussian beam (W=4000 nm) at θ0=0°; (c) isolated object illuminated by an evanescent plane wave at θ0=60°(d=15 nm); (d) object on a plane at d=15 nm and L=40,000 nm, illuminated by a Gaussian beam (W=4000 nm) at θ0=60°. The circular curves show the boundary of the cylinder. Inset in (c): normalized near-field intensity along an internal circumference of radius r=165 nm: Solid and dashed thin curves, isolated cylinder excited by a plane propagating wave (θ0=0°) and a plane evanescent wave (θ0=60°), respectively. Solid and dashed thick curves, cylinder on a plane excited by a Gaussian incident beam of W=4000 nm at θ0=0° and θ0=60°, respectively. Inset in (d): real (solid curve) and imaginary (dashed curve) parts of the (n, l) external Mie coefficient amplitude.

Fig. 7
Fig. 7

(a), (c) |E/E0|2 for S polarization; (b), (d) |H/H0|2 for P polarization for a silicon cylinder with a=200 nm on a plane at d=15 nm,L=40,000 nm,W=4000 nm, and λ=690 nm. (a) and (b) θ0=0°; (c) and (d) θ0=60°. The circular curves show the boundary of the cylinder. Insets: real (solid curve) and imaginary (dashed curve) parts of the (n, l) external Mie coefficient amplitude.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E0(r, t)=[0, Φs(inc)(r), 0] exp(-iωt),
H0(r, t)=[0, Φp(inc)(r), 0] exp(-iωt),
Φα(inc)(r)=exp[ik0(x sin θ0-z cos θ0)g(x, z)]×exp[-(x cos θ0+z sin θ0)2/W2],
g(x, z)=1+1k02W22W2 (x cos θ0+z sin θ0)2-1.
I˜0=12aSincndA=I0n0n1sin θ0exp(-2κd) sinh(2κa)2κa,
I˜01+m=1(2κa)2m(2m+1)!,

Metrics