Abstract

We suggest a numerical algorithm for complex ray tracing. Such an algorithm is intended for the computation of a wave field in the framework of complex geometrical optics. The main advantage of the complex method is the possibility to take into account diffraction effects by use of only ordinary differential equations of geometrical optics, thus reducing the calculation time. The efficiency of the suggested algorithm is illustrated by several numerical examples that allow comparison with known analytic solutions: the field of a plane wave behind a caustic in a linear layer, uniform field asymptotics on a caustic in a linear layer, and a Gaussian beam field in a homogeneous medium. It is pointed out that the approach under consideration can be readily applied to a great variety of real wave problems that have an analytical solution: nonplane waves, nonplane-stratified media, and the like. In particular, a numerical solution for Gaussian beam propagation through inhomogeneities of Gaussian form is presented.

© 2001 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Yu. A. Kravtsov, G. W. Forbes, A. A. Asatryan, “Theory and applications of complex rays,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1999), Vol. XXXIX, pp. 1–62.
  2. Yu. A. Kravtsov, “Complex rays and complex caustics,” Radiophys. Quantum Electron. 10, 719–730 (1967).
    [CrossRef]
  3. M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, 1975).
  4. Yu. A. Kravtsov, Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer-Verlag, Berlin, 1990).
  5. Yu. A. Kravtsov, Yu. I. Orlov, Caustics, Catastrophes and Wave Fields. 2nd ed. (Springer-Verlag, Berlin, 1998).
  6. R. A. Egorchenkov, Yu. A. Kravtsov, “Numerical realization of complex geometrical optics method,” Izv. Vyssh. Uchebn. Zaved. Radiodizika 43, 630–637 (2000) [English translation in Radiophys. Quantum Electron. 43, 512–517 (2000)].
  7. E. Poli, G. V. Pereverzev, A. G. Peeters, “Paraxial Gaussian wave beam propagation in an anisotropic inhomogeneous plasma,” Phys. Plasmas 6, 5–11 (1999).
    [CrossRef]

2000 (1)

R. A. Egorchenkov, Yu. A. Kravtsov, “Numerical realization of complex geometrical optics method,” Izv. Vyssh. Uchebn. Zaved. Radiodizika 43, 630–637 (2000) [English translation in Radiophys. Quantum Electron. 43, 512–517 (2000)].

1999 (1)

E. Poli, G. V. Pereverzev, A. G. Peeters, “Paraxial Gaussian wave beam propagation in an anisotropic inhomogeneous plasma,” Phys. Plasmas 6, 5–11 (1999).
[CrossRef]

1967 (1)

Yu. A. Kravtsov, “Complex rays and complex caustics,” Radiophys. Quantum Electron. 10, 719–730 (1967).
[CrossRef]

Asatryan, A. A.

Yu. A. Kravtsov, G. W. Forbes, A. A. Asatryan, “Theory and applications of complex rays,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1999), Vol. XXXIX, pp. 1–62.

Born, M.

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, 1975).

Egorchenkov, R. A.

R. A. Egorchenkov, Yu. A. Kravtsov, “Numerical realization of complex geometrical optics method,” Izv. Vyssh. Uchebn. Zaved. Radiodizika 43, 630–637 (2000) [English translation in Radiophys. Quantum Electron. 43, 512–517 (2000)].

Forbes, G. W.

Yu. A. Kravtsov, G. W. Forbes, A. A. Asatryan, “Theory and applications of complex rays,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1999), Vol. XXXIX, pp. 1–62.

Kravtsov, Yu. A.

R. A. Egorchenkov, Yu. A. Kravtsov, “Numerical realization of complex geometrical optics method,” Izv. Vyssh. Uchebn. Zaved. Radiodizika 43, 630–637 (2000) [English translation in Radiophys. Quantum Electron. 43, 512–517 (2000)].

Yu. A. Kravtsov, “Complex rays and complex caustics,” Radiophys. Quantum Electron. 10, 719–730 (1967).
[CrossRef]

Yu. A. Kravtsov, G. W. Forbes, A. A. Asatryan, “Theory and applications of complex rays,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1999), Vol. XXXIX, pp. 1–62.

Yu. A. Kravtsov, Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer-Verlag, Berlin, 1990).

Yu. A. Kravtsov, Yu. I. Orlov, Caustics, Catastrophes and Wave Fields. 2nd ed. (Springer-Verlag, Berlin, 1998).

Orlov, Yu. I.

Yu. A. Kravtsov, Yu. I. Orlov, Caustics, Catastrophes and Wave Fields. 2nd ed. (Springer-Verlag, Berlin, 1998).

Yu. A. Kravtsov, Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer-Verlag, Berlin, 1990).

Peeters, A. G.

E. Poli, G. V. Pereverzev, A. G. Peeters, “Paraxial Gaussian wave beam propagation in an anisotropic inhomogeneous plasma,” Phys. Plasmas 6, 5–11 (1999).
[CrossRef]

Pereverzev, G. V.

E. Poli, G. V. Pereverzev, A. G. Peeters, “Paraxial Gaussian wave beam propagation in an anisotropic inhomogeneous plasma,” Phys. Plasmas 6, 5–11 (1999).
[CrossRef]

Poli, E.

E. Poli, G. V. Pereverzev, A. G. Peeters, “Paraxial Gaussian wave beam propagation in an anisotropic inhomogeneous plasma,” Phys. Plasmas 6, 5–11 (1999).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, 1975).

Izv. Vyssh. Uchebn. Zaved. Radiodizika (1)

R. A. Egorchenkov, Yu. A. Kravtsov, “Numerical realization of complex geometrical optics method,” Izv. Vyssh. Uchebn. Zaved. Radiodizika 43, 630–637 (2000) [English translation in Radiophys. Quantum Electron. 43, 512–517 (2000)].

Phys. Plasmas (1)

E. Poli, G. V. Pereverzev, A. G. Peeters, “Paraxial Gaussian wave beam propagation in an anisotropic inhomogeneous plasma,” Phys. Plasmas 6, 5–11 (1999).
[CrossRef]

Radiophys. Quantum Electron. (1)

Yu. A. Kravtsov, “Complex rays and complex caustics,” Radiophys. Quantum Electron. 10, 719–730 (1967).
[CrossRef]

Other (4)

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, 1975).

Yu. A. Kravtsov, Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer-Verlag, Berlin, 1990).

Yu. A. Kravtsov, Yu. I. Orlov, Caustics, Catastrophes and Wave Fields. 2nd ed. (Springer-Verlag, Berlin, 1998).

Yu. A. Kravtsov, G. W. Forbes, A. A. Asatryan, “Theory and applications of complex rays,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1999), Vol. XXXIX, pp. 1–62.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics