J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, “Metallic surface-relief on-axis and off-axis focusing diffractive cylindrical mirrors,” J. Opt. Soc. Am. A 16, 113–130 (1999).

[CrossRef]

K. Hirayama, K. Igarashi, Y. Hayashi, E. N. Glytsis, T. K. Gaylord, “Finite-substrate-thickness cylindrical diffractive lenses: exact and approximate boundary-element methods,” J. Opt. Soc. Am. A 16, 1294–1302 (1999).

[CrossRef]

D. W. Prather, S. Shi, J. S. Bergey, “Field stitching algorithm for the analysis of electrically large diffractive optical elements,” Opt. Lett. 24, 273–275 (1999).

[CrossRef]

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, “Scalar integral diffraction methods: unification, accuracy, and comparison with a rigorous boundary element method with application to diffractive cylindrical lenses,” J. Opt. Soc. Am. A 15, 1822–1837 (1998).

[CrossRef]

D. W. Prather, J. N. Mait, M. S. Mirotznik, J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15, 1599–1607 (1998).

[CrossRef]

P. Blattner, H. P. Herzig, “Rigorous diffraction theory applied to microlenses,” J. Mod. Opt. 45, 1395–1403 (1998).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).

[CrossRef]

V. Moreno, J. F. Roman, J. R. Salgueiro, “High efficiency diffractive lenses: deduction of kinoform profile,” Am. J. Phys. 65, 556–562 (1997).

[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, D. W. Wilson, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A 13, 2219–2231 (1996).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite element-boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1321 (1996).

[CrossRef]

V. P. Koronkevich, I. G. Pal’chikova, “Modern zone plates,” Avtometriya 1, 85–100 (1992).

K. Yashiro, S. Ohkawa, “Boundary-element method for electromagnetic field problems,” IEEE Trans. Antennas Propag. AP-33, 383–389 (1985).

[CrossRef]

S. Kagami, I. Fukai, “Application of boundary-element method to electromagnetic field problems,” IEEE Trans. Microwave Theory Tech. MTT-32, 455–461 (1984).

[CrossRef]

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, “Metallic surface-relief on-axis and off-axis focusing diffractive cylindrical mirrors,” J. Opt. Soc. Am. A 16, 113–130 (1999).

[CrossRef]

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, “Scalar integral diffraction methods: unification, accuracy, and comparison with a rigorous boundary element method with application to diffractive cylindrical lenses,” J. Opt. Soc. Am. A 15, 1822–1837 (1998).

[CrossRef]

P. Blattner, H. P. Herzig, “Rigorous diffraction theory applied to microlenses,” J. Mod. Opt. 45, 1395–1403 (1998).

[CrossRef]

S. Kagami, I. Fukai, “Application of boundary-element method to electromagnetic field problems,” IEEE Trans. Microwave Theory Tech. MTT-32, 455–461 (1984).

[CrossRef]

B. Lichtenberg, N. C. Gallagher, “Numerical modeling of diffractive devices using the finite element method,” Opt. Eng. 33, 3518–3526 (1994).

[CrossRef]

K. Hirayama, K. Igarashi, Y. Hayashi, E. N. Glytsis, T. K. Gaylord, “Finite-substrate-thickness cylindrical diffractive lenses: exact and approximate boundary-element methods,” J. Opt. Soc. Am. A 16, 1294–1302 (1999).

[CrossRef]

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, “Metallic surface-relief on-axis and off-axis focusing diffractive cylindrical mirrors,” J. Opt. Soc. Am. A 16, 113–130 (1999).

[CrossRef]

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, “Scalar integral diffraction methods: unification, accuracy, and comparison with a rigorous boundary element method with application to diffractive cylindrical lenses,” J. Opt. Soc. Am. A 15, 1822–1837 (1998).

[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, D. W. Wilson, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A 13, 2219–2231 (1996).

[CrossRef]

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, “Metallic surface-relief on-axis and off-axis focusing diffractive cylindrical mirrors,” J. Opt. Soc. Am. A 16, 113–130 (1999).

[CrossRef]

K. Hirayama, K. Igarashi, Y. Hayashi, E. N. Glytsis, T. K. Gaylord, “Finite-substrate-thickness cylindrical diffractive lenses: exact and approximate boundary-element methods,” J. Opt. Soc. Am. A 16, 1294–1302 (1999).

[CrossRef]

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, “Scalar integral diffraction methods: unification, accuracy, and comparison with a rigorous boundary element method with application to diffractive cylindrical lenses,” J. Opt. Soc. Am. A 15, 1822–1837 (1998).

[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, D. W. Wilson, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A 13, 2219–2231 (1996).

[CrossRef]

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968), Chaps. 3, 4, and 6.

P. Blattner, H. P. Herzig, “Rigorous diffraction theory applied to microlenses,” J. Mod. Opt. 45, 1395–1403 (1998).

[CrossRef]

K. Hirayama, K. Igarashi, Y. Hayashi, E. N. Glytsis, T. K. Gaylord, “Finite-substrate-thickness cylindrical diffractive lenses: exact and approximate boundary-element methods,” J. Opt. Soc. Am. A 16, 1294–1302 (1999).

[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, D. W. Wilson, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A 13, 2219–2231 (1996).

[CrossRef]

S. Kagami, I. Fukai, “Application of boundary-element method to electromagnetic field problems,” IEEE Trans. Microwave Theory Tech. MTT-32, 455–461 (1984).

[CrossRef]

V. P. Koronkevich, I. G. Pal’chikova, “Modern zone plates,” Avtometriya 1, 85–100 (1992).

B. Lichtenberg, N. C. Gallagher, “Numerical modeling of diffractive devices using the finite element method,” Opt. Eng. 33, 3518–3526 (1994).

[CrossRef]

D. W. Prather, J. N. Mait, M. S. Mirotznik, J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15, 1599–1607 (1998).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite element-boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1321 (1996).

[CrossRef]

J. N. Mait, “Understanding diffractive optic design in the scalar domain,” J. Opt. Soc. Am. A 12, 2145–2158 (1995).

[CrossRef]

D. W. Prather, J. N. Mait, M. S. Mirotznik, J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15, 1599–1607 (1998).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite element-boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1321 (1996).

[CrossRef]

V. Moreno, J. F. Roman, J. R. Salgueiro, “High efficiency diffractive lenses: deduction of kinoform profile,” Am. J. Phys. 65, 556–562 (1997).

[CrossRef]

K. Yashiro, S. Ohkawa, “Boundary-element method for electromagnetic field problems,” IEEE Trans. Antennas Propag. AP-33, 383–389 (1985).

[CrossRef]

V. P. Koronkevich, I. G. Pal’chikova, “Modern zone plates,” Avtometriya 1, 85–100 (1992).

D. W. Prather, S. Shi, J. S. Bergey, “Field stitching algorithm for the analysis of electrically large diffractive optical elements,” Opt. Lett. 24, 273–275 (1999).

[CrossRef]

D. W. Prather, J. N. Mait, M. S. Mirotznik, J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15, 1599–1607 (1998).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite element-boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1321 (1996).

[CrossRef]

V. Moreno, J. F. Roman, J. R. Salgueiro, “High efficiency diffractive lenses: deduction of kinoform profile,” Am. J. Phys. 65, 556–562 (1997).

[CrossRef]

V. Moreno, J. F. Roman, J. R. Salgueiro, “High efficiency diffractive lenses: deduction of kinoform profile,” Am. J. Phys. 65, 556–562 (1997).

[CrossRef]

K. Yashiro, S. Ohkawa, “Boundary-element method for electromagnetic field problems,” IEEE Trans. Antennas Propag. AP-33, 383–389 (1985).

[CrossRef]

V. Moreno, J. F. Roman, J. R. Salgueiro, “High efficiency diffractive lenses: deduction of kinoform profile,” Am. J. Phys. 65, 556–562 (1997).

[CrossRef]

V. P. Koronkevich, I. G. Pal’chikova, “Modern zone plates,” Avtometriya 1, 85–100 (1992).

K. Yashiro, S. Ohkawa, “Boundary-element method for electromagnetic field problems,” IEEE Trans. Antennas Propag. AP-33, 383–389 (1985).

[CrossRef]

S. Kagami, I. Fukai, “Application of boundary-element method to electromagnetic field problems,” IEEE Trans. Microwave Theory Tech. MTT-32, 455–461 (1984).

[CrossRef]

P. Blattner, H. P. Herzig, “Rigorous diffraction theory applied to microlenses,” J. Mod. Opt. 45, 1395–1403 (1998).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, “A hybrid finite element-boundary element method for the analysis of diffractive elements,” J. Mod. Opt. 43, 1309–1321 (1996).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the analysis of diffractive optical elements,” J. Opt. Soc. Am. A 14, 34–43 (1997).

[CrossRef]

D. W. Prather, J. N. Mait, M. S. Mirotznik, J. P. Collins, “Vector-based synthesis of finite aperiodic subwavelength diffractive optical elements,” J. Opt. Soc. Am. A 15, 1599–1607 (1998).

[CrossRef]

E. Noponen, J. Turunen, A. Vasara, “Electromagnetic theory and design of diffractive-lens arrays,” J. Opt. Soc. Am. A 10, 434–443 (1993).

[CrossRef]

Y. Nakata, M. Koshiba, “Boundary-element analysis of plane-wave diffraction from groove-type dielectric and metallic gratings,” J. Opt. Soc. Am. A 7, 1494–1502 (1990).

[CrossRef]

J. N. Mait, “Understanding diffractive optic design in the scalar domain,” J. Opt. Soc. Am. A 12, 2145–2158 (1995).

[CrossRef]

D. A. Pommet, M. G. Moharam, E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827–1837 (1994).

[CrossRef]

A. Wang, A. Prata, “Lenslet analysis by rigorous vector diffraction theory,” J. Opt. Soc. Am. A 12, 1161–1169 (1995).

[CrossRef]

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, “Scalar integral diffraction methods: unification, accuracy, and comparison with a rigorous boundary element method with application to diffractive cylindrical lenses,” J. Opt. Soc. Am. A 15, 1822–1837 (1998).

[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, D. W. Wilson, “Rigorous electromagnetic analysis of diffractive cylindrical lenses,” J. Opt. Soc. Am. A 13, 2219–2231 (1996).

[CrossRef]

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, “Metallic surface-relief on-axis and off-axis focusing diffractive cylindrical mirrors,” J. Opt. Soc. Am. A 16, 113–130 (1999).

[CrossRef]

K. Hirayama, K. Igarashi, Y. Hayashi, E. N. Glytsis, T. K. Gaylord, “Finite-substrate-thickness cylindrical diffractive lenses: exact and approximate boundary-element methods,” J. Opt. Soc. Am. A 16, 1294–1302 (1999).

[CrossRef]

B. Lichtenberg, N. C. Gallagher, “Numerical modeling of diffractive devices using the finite element method,” Opt. Eng. 33, 3518–3526 (1994).

[CrossRef]

M. Koshiba, Optical Waveguide Theory by the Finite Element Method (KTK Scientific, Tokyo, 1992), pp. 43–47.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, Calif., 1968), Chaps. 3, 4, and 6.

R. Petit, ed., Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980), Chap. 6.