Abstract

We develop the theoretical background of a holographic method in which the hologram is sampled simultaneously in space and in time by a charge-coupled device (CCD) sensor. With the use of temporal heterodyning (rather than spatial heterodyning, which is employed in conventional holography), in-line, single-sideband holograms of fields having an arbitrary degree of spatial coherence are recorded in an exposure time that can theoretically be as short as four frames of the CCD. The method is applied to microholography and is shown to avoid the main drawbacks of conventional holographic microscopy, namely, the need for high-spatial-bandwidth detectors and for a high degree of spatial coherence, which unavoidably leads to speckle noise. The possibility of a posteriori aberration compensation is demonstrated, and experimental results are presented.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature (London) 161, 777–778 (1948).
    [CrossRef]
  2. M. E. Haine, T. Mulvey, “The formation of the diffraction image with electrons in Gabor diffraction microscope,” J. Opt. Soc. Am. 42, 763–773 (1952).
    [CrossRef]
  3. E. N. Leith, J. Upatnieks, “Microscopy by wavefront reconstruction,” J. Opt. Soc. Am. 55, 569–570 (1965).
    [CrossRef]
  4. R. V. Ligten, H. Osterberg, “Holographic microscopy,” Nature (London) 211, 282–283 (1966).
    [CrossRef]
  5. B. J. Thompson, J. Ward, W. Zinky, “Application of hologram techniques for particle-size determination,” J. Opt. Soc. Am. 55, 1566A (1965); Appl. Opt. 6, 519–526 (1967).
    [CrossRef]
  6. E. Cuche, F. Bevilacqua, C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999);A. Dubois, A. C. Boccara, M. Lebec, “Real-time reflectivity and topography imagery of depth-resolved microscopic surfaces,” Opt. Lett. 24, 309–311 (1999) .
    [CrossRef]
  7. Y. Takaki, H. Ohzu, “Fast numerical reconstruction technique for high-resolution hybrid holographic microscopy,” Appl. Opt. 38, 2204–2211 (1999);Y. Takaki, H. Kawai, H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero order images,” Appl. Opt. 38, 4990–4996 (1999) .
    [CrossRef]
  8. I. Yamaguchi, T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997); Y. Surrel, “Design of phase-detection algorithms insensitive to bias modulation,” Appl. Opt. 36, 805–807 (1997) .
    [CrossRef] [PubMed]
  9. E. N. Leith, J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1130 (1962).
    [CrossRef]
  10. T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1339–1344 (1995).
    [CrossRef]
  11. B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506–1508 (1997).
    [CrossRef]
  12. J. C. Marron, T. J. Schulz, “Three-dimensional, fine resolution imaging using laser frequency diversity,” Opt. Lett. 17, 285–287 (1992).
    [CrossRef] [PubMed]
  13. R. Erf, ed., Holographic Nondestructive Testing (Academic, New York, 1974).
  14. A. W. Lohmann, “Wavefront reconstruction for incoherent objects,” J. Opt. Soc. Am. 55, 1555–1556 (1965).
    [CrossRef]
  15. L. Metz, Transformation in Optics (Wiley, New York, 1965).
  16. G. Indebetouw, P. Klysubun, “Space–time digital holography: a three-dimensional microscopic imaging scheme with an arbitrary degree of spatial coherence,” Appl. Phys. Lett. 75, 2017–2019 (1999).
    [CrossRef]
  17. P. Klysubun, G. Indebetouw, “A posteriori processing of spatiotemporal digital microholograms,” J. Opt. Soc. Am. A 18, 326–331 (2001).
    [CrossRef]
  18. W. Wang, A. T. Friberg, E. Wolf, “Structure of focused fields in system with large Fresnel numbers,” J. Opt. Soc. Am. A 12, 1947–1953 (1995).
    [CrossRef]
  19. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970).

2001 (1)

1999 (3)

1997 (2)

1995 (2)

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1339–1344 (1995).
[CrossRef]

W. Wang, A. T. Friberg, E. Wolf, “Structure of focused fields in system with large Fresnel numbers,” J. Opt. Soc. Am. A 12, 1947–1953 (1995).
[CrossRef]

1992 (1)

1966 (1)

R. V. Ligten, H. Osterberg, “Holographic microscopy,” Nature (London) 211, 282–283 (1966).
[CrossRef]

1965 (3)

B. J. Thompson, J. Ward, W. Zinky, “Application of hologram techniques for particle-size determination,” J. Opt. Soc. Am. 55, 1566A (1965); Appl. Opt. 6, 519–526 (1967).
[CrossRef]

E. N. Leith, J. Upatnieks, “Microscopy by wavefront reconstruction,” J. Opt. Soc. Am. 55, 569–570 (1965).
[CrossRef]

A. W. Lohmann, “Wavefront reconstruction for incoherent objects,” J. Opt. Soc. Am. 55, 1555–1556 (1965).
[CrossRef]

1962 (1)

1952 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature (London) 161, 777–778 (1948).
[CrossRef]

Bevilacqua, F.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970).

Cuche, E.

Depeursinge, C.

Doh, K. B.

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1339–1344 (1995).
[CrossRef]

Friberg, A. T.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature (London) 161, 777–778 (1948).
[CrossRef]

Haine, M. E.

Indebetouw, G.

Klysubun, P.

P. Klysubun, G. Indebetouw, “A posteriori processing of spatiotemporal digital microholograms,” J. Opt. Soc. Am. A 18, 326–331 (2001).
[CrossRef]

G. Indebetouw, P. Klysubun, “Space–time digital holography: a three-dimensional microscopic imaging scheme with an arbitrary degree of spatial coherence,” Appl. Phys. Lett. 75, 2017–2019 (1999).
[CrossRef]

Leith, E. N.

Ligten, R. V.

R. V. Ligten, H. Osterberg, “Holographic microscopy,” Nature (London) 211, 282–283 (1966).
[CrossRef]

Lohmann, A. W.

Marron, J. C.

Metz, L.

L. Metz, Transformation in Optics (Wiley, New York, 1965).

Mulvey, T.

Ohzu, H.

Osterberg, H.

R. V. Ligten, H. Osterberg, “Holographic microscopy,” Nature (London) 211, 282–283 (1966).
[CrossRef]

Poon, T.-C.

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506–1508 (1997).
[CrossRef]

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1339–1344 (1995).
[CrossRef]

Schilling, B. W.

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506–1508 (1997).
[CrossRef]

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1339–1344 (1995).
[CrossRef]

Schulz, T. J.

Shinoda, K.

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506–1508 (1997).
[CrossRef]

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1339–1344 (1995).
[CrossRef]

Storrie, B.

Suzuki, Y.

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506–1508 (1997).
[CrossRef]

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1339–1344 (1995).
[CrossRef]

Takaki, Y.

Thompson, B. J.

B. J. Thompson, J. Ward, W. Zinky, “Application of hologram techniques for particle-size determination,” J. Opt. Soc. Am. 55, 1566A (1965); Appl. Opt. 6, 519–526 (1967).
[CrossRef]

Upatnieks, J.

Wang, W.

Ward, J.

B. J. Thompson, J. Ward, W. Zinky, “Application of hologram techniques for particle-size determination,” J. Opt. Soc. Am. 55, 1566A (1965); Appl. Opt. 6, 519–526 (1967).
[CrossRef]

Wolf, E.

Wu, M. H.

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506–1508 (1997).
[CrossRef]

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1339–1344 (1995).
[CrossRef]

Yamaguchi, I.

Zhang, T.

Zinky, W.

B. J. Thompson, J. Ward, W. Zinky, “Application of hologram techniques for particle-size determination,” J. Opt. Soc. Am. 55, 1566A (1965); Appl. Opt. 6, 519–526 (1967).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. Indebetouw, P. Klysubun, “Space–time digital holography: a three-dimensional microscopic imaging scheme with an arbitrary degree of spatial coherence,” Appl. Phys. Lett. 75, 2017–2019 (1999).
[CrossRef]

J. Opt. Soc. Am. (5)

J. Opt. Soc. Am. A (2)

Nature (London) (2)

D. Gabor, “A new microscopic principle,” Nature (London) 161, 777–778 (1948).
[CrossRef]

R. V. Ligten, H. Osterberg, “Holographic microscopy,” Nature (London) 211, 282–283 (1966).
[CrossRef]

Opt. Eng. (1)

T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1339–1344 (1995).
[CrossRef]

Opt. Lett. (4)

Other (3)

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970).

R. Erf, ed., Holographic Nondestructive Testing (Academic, New York, 1974).

L. Metz, Transformation in Optics (Wiley, New York, 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Sketch of a spatiotemporal holographic microscope. The illumination is similar to that of a conventional microscope but must have adequate spectral purity. The scanning interferometer in box A produces, for each object scatterer, two mutually coherent wavelets that interfere dynamically on a charge-coupled-device (CCD) sensor. The interferogram is sampled simultaneously in space and in time, resulting in an in-line, single-sideband hologram. The Mach–Zehnder interferometer in box B accommodates transmission pupils and was used for the experiments. PZT, piezotranslator driven by a sawtooth voltage; M1,2,3, mirrors; P1,2, imaging and pinhole pupil, respectively; L1,2, afocal imaging system; Δ, defocus distance.

Fig. 2
Fig. 2

(a) Real part of the hologram of a 5-μm pinhole (the actual hologram is a phase distribution) and (b) reconstructed pinhole with the use of a spherical wave fitted to the hologram as a reconstruction function.

Fig. 3
Fig. 3

Reconstruction of the central part of a U.S. Air Force test chart using the same setup. The smallest element (7–6) has a spatial frequency of 228 lines/mm.

Fig. 4
Fig. 4

(a) Direct image of the test chart with astigmatism deliberately introduced by tilting the projection lens and (b) reconstruction of the hologram recorded with the aberrations and reconstructed by correlation with the hologram of a 5-μm pinhole having experienced the same aberrations.

Fig. 5
Fig. 5

Reconstruction of two different planes [(a) and (b)], 25 μm apart, of a slightly strained algae specimen of the type spirogyra.

Fig. 6
Fig. 6

Direct bright-field image of a group of oral epithelial cells shown for comparison.

Fig. 7
Fig. 7

(a) Display of the amplitude of the reconstruction of the unstained oral epithelial cells (hologram recorded with spatially partially coherent, bright-field illumination), (b) display of the phase distribution of the same reconstruction, (c) amplitude of the reconstruction of a hologram of the same specimen recorded with dark-field illumination.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

P1(ρ)=P0(ρ)exp(iπλΔρ2),
P2(ρ)=d(ρ)exp[i(Ωt+ϕ0)].
p1(2)(r)=P1(2)(ρ)exp(i2πρr)d2r.
a1NAofof1/fp.
p1(r)exp(iπr2/λΔ)circ(r/ΔNAi).
M=fof1/fpf2
b1ΔNAi
p2(r)2J1(X)X(X=2πra2/λf2),
b2λf2/2a2.
H(r)=Γg(r1-r2)Tg(r1; z)Tg*(r2; z)p1(r-r1; z)×p2*(r-r2; z)d2r1d2r2dz.
p1(r; z)exp[iπr2/λ(Δ-z)]circ(r/(Δ-z)NAi]p1(r; 0)exp(iπr2z/λΔ2),
Hi(r)=|T(r; z)|2p1(r-r; z)p2(r-r; z)d2rdz.
Hc(r)=A(r)T(r; z)p1(r-r; z)d2rdz.
h(r; z, zR)=pR(r-r; zR)p1(r; z)d2r.
H(ρ; z-zR)=F[h(r; z, zR)],

Metrics