Abstract

Scheimpflug photographs of the zero-diopter-accommodated anterior segments of 100 human subjects, aged 18 to 70 yr and evenly spaced over this range, were digitized and analyzed to characterize lens and lens nucleus shape as a function of age by the Hough transform and other image analysis methods. Anterior and posterior lens surface curves exhibit a decrease in radius of curvature with increasing age, in qualitative but not quantitative agreement with the earlier observations of Brown [Exp. Eye Res. 19, 175 (1974)]. In contrast, the shape of the lens nuclear boundaries changes little with age. Overall lens volume at zero diopters increases with age, but the volume of the lens nucleus remains unchanged. The lens center of mass moves anteriorly with increasing age, as does the central clear region of the lens. Although these data sets were found to be more variable than those of Brown, the complementary variability of other factors, such as anterior chamber depth, for each subject leads to a very high statistical correlation between lens shape and lens location relative to the cornea. This supports the finding of previous work that image formation on the retina for a given individual results from the multifactorial balancing of related factors.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Bron, G. F. Vrensen, J. Koretz, G. Maraini, J. J. Harding, “The ageing lens,” Ophthalmologica 214, 86–104 (2000).
    [CrossRef] [PubMed]
  2. N. Brown, “The change in lens curvature with age,” Exp. Eye Res. 19, 175–183 (1974).
    [CrossRef] [PubMed]
  3. N. Brown, “An advanced slit-image camera,” Br. J. Ophthamol. 56, 624–631 (1972).
    [CrossRef]
  4. N. Brown, “The change in shape and internal form of the lens of the eye on accommodation,” Exp. Eye Res. 15, 441–459 (1973).
    [CrossRef] [PubMed]
  5. N. Brown, “The shape of the lens equator,” Exp. Eye Res. 19, 571–576 (1974).
    [CrossRef] [PubMed]
  6. J. F. Koretz, G. H. Handelman, N. P. Brown, “Analysis of human crystalline lens curvature as a function of accommodative state and age,” Vision Res. 24, 1141–1151 (1984).
    [CrossRef] [PubMed]
  7. J. F. Koretz, C. A. Cook, J. R. Kuszak, “The zones of discontinuity in the human lens: development and distribution with age,” Vision Res. 34, 2955–2962 (1994).
    [CrossRef] [PubMed]
  8. J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye. 1: Evaluation of in vivo measurement techniques,” Appl. Opt. 28, 1097–1102 (1989).
    [CrossRef] [PubMed]
  9. J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692 (1989).
    [CrossRef]
  10. J. F. Koretz, C. A. Cook, P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Visual Sci. 38, 569–578 (1997).
  11. C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, P. L. Kaufman, “Aging of the human crystallin lens and anterior segment,” Vision Res. 34, 2945–2954 (1994).
    [CrossRef] [PubMed]
  12. J. R. Kuszak, Department of Pathology and Ophthalmology, Rush-Presbyterian St. Luke’s Medical Center, 1653 West Congress Parkway, Chicago, Ill. 60612 (personal communication, 1994).
  13. J. F. Koretz, G. H. Handelman, “How the human eye focuses,” Sci. Am. 259, 92–99 (1988).
    [CrossRef] [PubMed]
  14. J. F. Koretz, G. H. Handelman, “The ‘lens paradox’ and image formation in accommodating human eyes,” in The Lens: Transparency and Cataract, G. Duncan, ed., Topics in Aging Research in Europe (Annual Vol.)6, 57–64 (1986).
  15. G. Smith, D. A. Atchison, B. K. Pierscionek, “Modeling the power of the aging human eye,” J. Opt. Soc. Am. A 9, 2111–2117 (1992).
    [CrossRef] [PubMed]
  16. B. K. Pierscionek, D. Y. Chan, “Refractive index gradient of human lenses,” Optom. Vision Sci. 66, 822–829 (1989).
    [CrossRef]
  17. B. Pierscionek, “What we know and understand about presbyopia,” Clin. Exp. Optom. 76, 83–91 (1993).
    [CrossRef]
  18. C. A. Cook, J. F. Koretz, “Acquisition of the curves of the human crystalline lens from slit lamp images: an application of the Hough transform,” Appl. Opt. 30, 2088–2099 (1991).
    [CrossRef] [PubMed]
  19. C. A. Cook, J. F. Koretz, “Methods to obtain quantitative parametric descriptions of the optical surfaces of the human crystalline lens from Scheimpflug slit-lamp iamges. I. Image processing methods,” J. Opt. Soc. Am. A 15, 1473–1485 (1998).
    [CrossRef]
  20. D. A. Atchison, G. Smith, “Continuous gradient index and shell models of the human lens,” Vision Res. 35, 2529–2538 (1995).
    [CrossRef] [PubMed]
  21. A. Popiolek Masajada, “Numerical study of the influence of the shell structure of the crystalline lens on the refractive properties of the human eye,” Ophthalmic Physiol. Opt. 19, 41–49 (1999).
    [CrossRef]
  22. G. Smith, B. K. Pierscionek, D. A. Atchison, “The optical modelling of the human lens,” Ophthalmic Physiol. Opt. 11, 359–369 (1991).
    [CrossRef] [PubMed]
  23. G. T. Smith, R. C. Smith, N. A. Brown, A. J. Bron, M. L. Harris, “Changes in light scatter and width measurements from the human lens cortex with age,” Eye 6, 55–59 (1992).
    [CrossRef] [PubMed]
  24. J. R. Kuszak, “The ultrastructure of epithelial and fiber cells in the crystalline lens,” Int. Rev. Cytol. 163, 305–350 (1995).
    [CrossRef] [PubMed]
  25. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, New York, 1989).
  26. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).
  27. S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Muñoz, J. Grönlund-Jacob, J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Visual Sci. 40, 1162–1169 (1999).
  28. V. L. Taylor, K. J. al-Ghoul, C. W. Lane, V. A. Davis, J. R. Kuszak, M. J. Costello, “Morphology of the normal human lens,” Invest. Ophthalmol. Visual Sci. 37, 1396–1410 (1996).
  29. J. R. Kuszak, K. L. Peterson, J. G. Sivak, K. L. Herbert, “The interrelationship of lens anatomy and optical quality. II. Primate lenses,” Exp. Eye Res. 59, 521–535 (1994).
    [CrossRef] [PubMed]
  30. J. F. Koretz, A. Rogot, P. L. Kaufman, “Physiological strategies for emmetropia,” Trans. Am. Ophthalmol. Soc. 93, 105–118 (1995);Trans. Am. Ophthalmol. Soc. 93, 118–122 (1995), discussion.
    [PubMed]
  31. A. Sorsby, B. Benjamin, J. B. Davey, M. Sheridan, J. M. Tanner, Emmetropia and Its Aberrations (Her Majesty’s Stationery Office, London, 1957).
  32. A. Sorsby, B. Benjamin, M. Sheridan, Refraction and Its Components during the Growth of the Eye from the Age of Three (Her Majesty’s Stationery Office, London, 1961).
  33. A. Sorsby, B. Benjamin, A. G. Bennett, “Steiger on refraction: a reappraisal,” Br. J. Ophthamol. 65, 805–811 (1981).
    [CrossRef]
  34. N. P. Brown, J. F. Koretz, A. J. Bron, “The development and maintenance of emmetropia,” Eye 13, 83–92 (1999).
    [CrossRef] [PubMed]

2000 (1)

A. J. Bron, G. F. Vrensen, J. Koretz, G. Maraini, J. J. Harding, “The ageing lens,” Ophthalmologica 214, 86–104 (2000).
[CrossRef] [PubMed]

1999 (3)

A. Popiolek Masajada, “Numerical study of the influence of the shell structure of the crystalline lens on the refractive properties of the human eye,” Ophthalmic Physiol. Opt. 19, 41–49 (1999).
[CrossRef]

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Muñoz, J. Grönlund-Jacob, J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Visual Sci. 40, 1162–1169 (1999).

N. P. Brown, J. F. Koretz, A. J. Bron, “The development and maintenance of emmetropia,” Eye 13, 83–92 (1999).
[CrossRef] [PubMed]

1998 (1)

1997 (1)

J. F. Koretz, C. A. Cook, P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Visual Sci. 38, 569–578 (1997).

1996 (1)

V. L. Taylor, K. J. al-Ghoul, C. W. Lane, V. A. Davis, J. R. Kuszak, M. J. Costello, “Morphology of the normal human lens,” Invest. Ophthalmol. Visual Sci. 37, 1396–1410 (1996).

1995 (3)

J. R. Kuszak, “The ultrastructure of epithelial and fiber cells in the crystalline lens,” Int. Rev. Cytol. 163, 305–350 (1995).
[CrossRef] [PubMed]

J. F. Koretz, A. Rogot, P. L. Kaufman, “Physiological strategies for emmetropia,” Trans. Am. Ophthalmol. Soc. 93, 105–118 (1995);Trans. Am. Ophthalmol. Soc. 93, 118–122 (1995), discussion.
[PubMed]

D. A. Atchison, G. Smith, “Continuous gradient index and shell models of the human lens,” Vision Res. 35, 2529–2538 (1995).
[CrossRef] [PubMed]

1994 (3)

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, P. L. Kaufman, “Aging of the human crystallin lens and anterior segment,” Vision Res. 34, 2945–2954 (1994).
[CrossRef] [PubMed]

J. F. Koretz, C. A. Cook, J. R. Kuszak, “The zones of discontinuity in the human lens: development and distribution with age,” Vision Res. 34, 2955–2962 (1994).
[CrossRef] [PubMed]

J. R. Kuszak, K. L. Peterson, J. G. Sivak, K. L. Herbert, “The interrelationship of lens anatomy and optical quality. II. Primate lenses,” Exp. Eye Res. 59, 521–535 (1994).
[CrossRef] [PubMed]

1993 (1)

B. Pierscionek, “What we know and understand about presbyopia,” Clin. Exp. Optom. 76, 83–91 (1993).
[CrossRef]

1992 (2)

G. Smith, D. A. Atchison, B. K. Pierscionek, “Modeling the power of the aging human eye,” J. Opt. Soc. Am. A 9, 2111–2117 (1992).
[CrossRef] [PubMed]

G. T. Smith, R. C. Smith, N. A. Brown, A. J. Bron, M. L. Harris, “Changes in light scatter and width measurements from the human lens cortex with age,” Eye 6, 55–59 (1992).
[CrossRef] [PubMed]

1991 (2)

1989 (3)

B. K. Pierscionek, D. Y. Chan, “Refractive index gradient of human lenses,” Optom. Vision Sci. 66, 822–829 (1989).
[CrossRef]

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye. 1: Evaluation of in vivo measurement techniques,” Appl. Opt. 28, 1097–1102 (1989).
[CrossRef] [PubMed]

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692 (1989).
[CrossRef]

1988 (1)

J. F. Koretz, G. H. Handelman, “How the human eye focuses,” Sci. Am. 259, 92–99 (1988).
[CrossRef] [PubMed]

1984 (1)

J. F. Koretz, G. H. Handelman, N. P. Brown, “Analysis of human crystalline lens curvature as a function of accommodative state and age,” Vision Res. 24, 1141–1151 (1984).
[CrossRef] [PubMed]

1981 (1)

A. Sorsby, B. Benjamin, A. G. Bennett, “Steiger on refraction: a reappraisal,” Br. J. Ophthamol. 65, 805–811 (1981).
[CrossRef]

1974 (2)

N. Brown, “The change in lens curvature with age,” Exp. Eye Res. 19, 175–183 (1974).
[CrossRef] [PubMed]

N. Brown, “The shape of the lens equator,” Exp. Eye Res. 19, 571–576 (1974).
[CrossRef] [PubMed]

1973 (1)

N. Brown, “The change in shape and internal form of the lens of the eye on accommodation,” Exp. Eye Res. 15, 441–459 (1973).
[CrossRef] [PubMed]

1972 (1)

N. Brown, “An advanced slit-image camera,” Br. J. Ophthamol. 56, 624–631 (1972).
[CrossRef]

al-Ghoul, K. J.

V. L. Taylor, K. J. al-Ghoul, C. W. Lane, V. A. Davis, J. R. Kuszak, M. J. Costello, “Morphology of the normal human lens,” Invest. Ophthalmol. Visual Sci. 37, 1396–1410 (1996).

Atchison, D. A.

D. A. Atchison, G. Smith, “Continuous gradient index and shell models of the human lens,” Vision Res. 35, 2529–2538 (1995).
[CrossRef] [PubMed]

G. Smith, D. A. Atchison, B. K. Pierscionek, “Modeling the power of the aging human eye,” J. Opt. Soc. Am. A 9, 2111–2117 (1992).
[CrossRef] [PubMed]

G. Smith, B. K. Pierscionek, D. A. Atchison, “The optical modelling of the human lens,” Ophthalmic Physiol. Opt. 11, 359–369 (1991).
[CrossRef] [PubMed]

Benjamin, B.

A. Sorsby, B. Benjamin, A. G. Bennett, “Steiger on refraction: a reappraisal,” Br. J. Ophthamol. 65, 805–811 (1981).
[CrossRef]

A. Sorsby, B. Benjamin, J. B. Davey, M. Sheridan, J. M. Tanner, Emmetropia and Its Aberrations (Her Majesty’s Stationery Office, London, 1957).

A. Sorsby, B. Benjamin, M. Sheridan, Refraction and Its Components during the Growth of the Eye from the Age of Three (Her Majesty’s Stationery Office, London, 1961).

Bennett, A. G.

A. Sorsby, B. Benjamin, A. G. Bennett, “Steiger on refraction: a reappraisal,” Br. J. Ophthamol. 65, 805–811 (1981).
[CrossRef]

Bevington, P. R.

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).

Bron, A. J.

A. J. Bron, G. F. Vrensen, J. Koretz, G. Maraini, J. J. Harding, “The ageing lens,” Ophthalmologica 214, 86–104 (2000).
[CrossRef] [PubMed]

N. P. Brown, J. F. Koretz, A. J. Bron, “The development and maintenance of emmetropia,” Eye 13, 83–92 (1999).
[CrossRef] [PubMed]

G. T. Smith, R. C. Smith, N. A. Brown, A. J. Bron, M. L. Harris, “Changes in light scatter and width measurements from the human lens cortex with age,” Eye 6, 55–59 (1992).
[CrossRef] [PubMed]

Brown, N.

N. Brown, “The change in lens curvature with age,” Exp. Eye Res. 19, 175–183 (1974).
[CrossRef] [PubMed]

N. Brown, “The shape of the lens equator,” Exp. Eye Res. 19, 571–576 (1974).
[CrossRef] [PubMed]

N. Brown, “The change in shape and internal form of the lens of the eye on accommodation,” Exp. Eye Res. 15, 441–459 (1973).
[CrossRef] [PubMed]

N. Brown, “An advanced slit-image camera,” Br. J. Ophthamol. 56, 624–631 (1972).
[CrossRef]

Brown, N. A.

G. T. Smith, R. C. Smith, N. A. Brown, A. J. Bron, M. L. Harris, “Changes in light scatter and width measurements from the human lens cortex with age,” Eye 6, 55–59 (1992).
[CrossRef] [PubMed]

Brown, N. P.

N. P. Brown, J. F. Koretz, A. J. Bron, “The development and maintenance of emmetropia,” Eye 13, 83–92 (1999).
[CrossRef] [PubMed]

J. F. Koretz, G. H. Handelman, N. P. Brown, “Analysis of human crystalline lens curvature as a function of accommodative state and age,” Vision Res. 24, 1141–1151 (1984).
[CrossRef] [PubMed]

Chan, D. Y.

B. K. Pierscionek, D. Y. Chan, “Refractive index gradient of human lenses,” Optom. Vision Sci. 66, 822–829 (1989).
[CrossRef]

Cook, C. A.

C. A. Cook, J. F. Koretz, “Methods to obtain quantitative parametric descriptions of the optical surfaces of the human crystalline lens from Scheimpflug slit-lamp iamges. I. Image processing methods,” J. Opt. Soc. Am. A 15, 1473–1485 (1998).
[CrossRef]

J. F. Koretz, C. A. Cook, P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Visual Sci. 38, 569–578 (1997).

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, P. L. Kaufman, “Aging of the human crystallin lens and anterior segment,” Vision Res. 34, 2945–2954 (1994).
[CrossRef] [PubMed]

J. F. Koretz, C. A. Cook, J. R. Kuszak, “The zones of discontinuity in the human lens: development and distribution with age,” Vision Res. 34, 2955–2962 (1994).
[CrossRef] [PubMed]

C. A. Cook, J. F. Koretz, “Acquisition of the curves of the human crystalline lens from slit lamp images: an application of the Hough transform,” Appl. Opt. 30, 2088–2099 (1991).
[CrossRef] [PubMed]

Costello, M. J.

V. L. Taylor, K. J. al-Ghoul, C. W. Lane, V. A. Davis, J. R. Kuszak, M. J. Costello, “Morphology of the normal human lens,” Invest. Ophthalmol. Visual Sci. 37, 1396–1410 (1996).

Davey, J. B.

A. Sorsby, B. Benjamin, J. B. Davey, M. Sheridan, J. M. Tanner, Emmetropia and Its Aberrations (Her Majesty’s Stationery Office, London, 1957).

Davis, V. A.

V. L. Taylor, K. J. al-Ghoul, C. W. Lane, V. A. Davis, J. R. Kuszak, M. J. Costello, “Morphology of the normal human lens,” Invest. Ophthalmol. Visual Sci. 37, 1396–1410 (1996).

DeMarco, J. K.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Muñoz, J. Grönlund-Jacob, J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Visual Sci. 40, 1162–1169 (1999).

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, New York, 1989).

Goeckner, P. A.

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692 (1989).
[CrossRef]

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye. 1: Evaluation of in vivo measurement techniques,” Appl. Opt. 28, 1097–1102 (1989).
[CrossRef] [PubMed]

Grönlund-Jacob, J.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Muñoz, J. Grönlund-Jacob, J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Visual Sci. 40, 1162–1169 (1999).

Handelman, G. H.

J. F. Koretz, G. H. Handelman, “How the human eye focuses,” Sci. Am. 259, 92–99 (1988).
[CrossRef] [PubMed]

J. F. Koretz, G. H. Handelman, N. P. Brown, “Analysis of human crystalline lens curvature as a function of accommodative state and age,” Vision Res. 24, 1141–1151 (1984).
[CrossRef] [PubMed]

J. F. Koretz, G. H. Handelman, “The ‘lens paradox’ and image formation in accommodating human eyes,” in The Lens: Transparency and Cataract, G. Duncan, ed., Topics in Aging Research in Europe (Annual Vol.)6, 57–64 (1986).

Harding, J. J.

A. J. Bron, G. F. Vrensen, J. Koretz, G. Maraini, J. J. Harding, “The ageing lens,” Ophthalmologica 214, 86–104 (2000).
[CrossRef] [PubMed]

Harris, M. L.

G. T. Smith, R. C. Smith, N. A. Brown, A. J. Bron, M. L. Harris, “Changes in light scatter and width measurements from the human lens cortex with age,” Eye 6, 55–59 (1992).
[CrossRef] [PubMed]

Herbert, K. L.

J. R. Kuszak, K. L. Peterson, J. G. Sivak, K. L. Herbert, “The interrelationship of lens anatomy and optical quality. II. Primate lenses,” Exp. Eye Res. 59, 521–535 (1994).
[CrossRef] [PubMed]

Hyun, J.

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, P. L. Kaufman, “Aging of the human crystallin lens and anterior segment,” Vision Res. 34, 2945–2954 (1994).
[CrossRef] [PubMed]

Kaufman, P. L.

J. F. Koretz, C. A. Cook, P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Visual Sci. 38, 569–578 (1997).

J. F. Koretz, A. Rogot, P. L. Kaufman, “Physiological strategies for emmetropia,” Trans. Am. Ophthalmol. Soc. 93, 105–118 (1995);Trans. Am. Ophthalmol. Soc. 93, 118–122 (1995), discussion.
[PubMed]

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, P. L. Kaufman, “Aging of the human crystallin lens and anterior segment,” Vision Res. 34, 2945–2954 (1994).
[CrossRef] [PubMed]

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692 (1989).
[CrossRef]

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye. 1: Evaluation of in vivo measurement techniques,” Appl. Opt. 28, 1097–1102 (1989).
[CrossRef] [PubMed]

Koretz, J.

A. J. Bron, G. F. Vrensen, J. Koretz, G. Maraini, J. J. Harding, “The ageing lens,” Ophthalmologica 214, 86–104 (2000).
[CrossRef] [PubMed]

Koretz, J. F.

N. P. Brown, J. F. Koretz, A. J. Bron, “The development and maintenance of emmetropia,” Eye 13, 83–92 (1999).
[CrossRef] [PubMed]

C. A. Cook, J. F. Koretz, “Methods to obtain quantitative parametric descriptions of the optical surfaces of the human crystalline lens from Scheimpflug slit-lamp iamges. I. Image processing methods,” J. Opt. Soc. Am. A 15, 1473–1485 (1998).
[CrossRef]

J. F. Koretz, C. A. Cook, P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Visual Sci. 38, 569–578 (1997).

J. F. Koretz, A. Rogot, P. L. Kaufman, “Physiological strategies for emmetropia,” Trans. Am. Ophthalmol. Soc. 93, 105–118 (1995);Trans. Am. Ophthalmol. Soc. 93, 118–122 (1995), discussion.
[PubMed]

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, P. L. Kaufman, “Aging of the human crystallin lens and anterior segment,” Vision Res. 34, 2945–2954 (1994).
[CrossRef] [PubMed]

J. F. Koretz, C. A. Cook, J. R. Kuszak, “The zones of discontinuity in the human lens: development and distribution with age,” Vision Res. 34, 2955–2962 (1994).
[CrossRef] [PubMed]

C. A. Cook, J. F. Koretz, “Acquisition of the curves of the human crystalline lens from slit lamp images: an application of the Hough transform,” Appl. Opt. 30, 2088–2099 (1991).
[CrossRef] [PubMed]

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye. 1: Evaluation of in vivo measurement techniques,” Appl. Opt. 28, 1097–1102 (1989).
[CrossRef] [PubMed]

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692 (1989).
[CrossRef]

J. F. Koretz, G. H. Handelman, “How the human eye focuses,” Sci. Am. 259, 92–99 (1988).
[CrossRef] [PubMed]

J. F. Koretz, G. H. Handelman, N. P. Brown, “Analysis of human crystalline lens curvature as a function of accommodative state and age,” Vision Res. 24, 1141–1151 (1984).
[CrossRef] [PubMed]

J. F. Koretz, G. H. Handelman, “The ‘lens paradox’ and image formation in accommodating human eyes,” in The Lens: Transparency and Cataract, G. Duncan, ed., Topics in Aging Research in Europe (Annual Vol.)6, 57–64 (1986).

Kuszak, J. R.

V. L. Taylor, K. J. al-Ghoul, C. W. Lane, V. A. Davis, J. R. Kuszak, M. J. Costello, “Morphology of the normal human lens,” Invest. Ophthalmol. Visual Sci. 37, 1396–1410 (1996).

J. R. Kuszak, “The ultrastructure of epithelial and fiber cells in the crystalline lens,” Int. Rev. Cytol. 163, 305–350 (1995).
[CrossRef] [PubMed]

J. R. Kuszak, K. L. Peterson, J. G. Sivak, K. L. Herbert, “The interrelationship of lens anatomy and optical quality. II. Primate lenses,” Exp. Eye Res. 59, 521–535 (1994).
[CrossRef] [PubMed]

J. F. Koretz, C. A. Cook, J. R. Kuszak, “The zones of discontinuity in the human lens: development and distribution with age,” Vision Res. 34, 2955–2962 (1994).
[CrossRef] [PubMed]

J. R. Kuszak, Department of Pathology and Ophthalmology, Rush-Presbyterian St. Luke’s Medical Center, 1653 West Congress Parkway, Chicago, Ill. 60612 (personal communication, 1994).

Lane, C. W.

V. L. Taylor, K. J. al-Ghoul, C. W. Lane, V. A. Davis, J. R. Kuszak, M. J. Costello, “Morphology of the normal human lens,” Invest. Ophthalmol. Visual Sci. 37, 1396–1410 (1996).

Maraini, G.

A. J. Bron, G. F. Vrensen, J. Koretz, G. Maraini, J. J. Harding, “The ageing lens,” Ophthalmologica 214, 86–104 (2000).
[CrossRef] [PubMed]

Muñoz, P.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Muñoz, J. Grönlund-Jacob, J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Visual Sci. 40, 1162–1169 (1999).

Neider, M. W.

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692 (1989).
[CrossRef]

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye. 1: Evaluation of in vivo measurement techniques,” Appl. Opt. 28, 1097–1102 (1989).
[CrossRef] [PubMed]

Peterson, K. L.

J. R. Kuszak, K. L. Peterson, J. G. Sivak, K. L. Herbert, “The interrelationship of lens anatomy and optical quality. II. Primate lenses,” Exp. Eye Res. 59, 521–535 (1994).
[CrossRef] [PubMed]

Pfahnl, A.

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, P. L. Kaufman, “Aging of the human crystallin lens and anterior segment,” Vision Res. 34, 2945–2954 (1994).
[CrossRef] [PubMed]

Pierscionek, B.

B. Pierscionek, “What we know and understand about presbyopia,” Clin. Exp. Optom. 76, 83–91 (1993).
[CrossRef]

Pierscionek, B. K.

G. Smith, D. A. Atchison, B. K. Pierscionek, “Modeling the power of the aging human eye,” J. Opt. Soc. Am. A 9, 2111–2117 (1992).
[CrossRef] [PubMed]

G. Smith, B. K. Pierscionek, D. A. Atchison, “The optical modelling of the human lens,” Ophthalmic Physiol. Opt. 11, 359–369 (1991).
[CrossRef] [PubMed]

B. K. Pierscionek, D. Y. Chan, “Refractive index gradient of human lenses,” Optom. Vision Sci. 66, 822–829 (1989).
[CrossRef]

Popiolek Masajada, A.

A. Popiolek Masajada, “Numerical study of the influence of the shell structure of the crystalline lens on the refractive properties of the human eye,” Ophthalmic Physiol. Opt. 19, 41–49 (1999).
[CrossRef]

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, New York, 1989).

Rogot, A.

J. F. Koretz, A. Rogot, P. L. Kaufman, “Physiological strategies for emmetropia,” Trans. Am. Ophthalmol. Soc. 93, 105–118 (1995);Trans. Am. Ophthalmol. Soc. 93, 118–122 (1995), discussion.
[PubMed]

Semmlow, J. L.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Muñoz, J. Grönlund-Jacob, J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Visual Sci. 40, 1162–1169 (1999).

Sheridan, M.

A. Sorsby, B. Benjamin, M. Sheridan, Refraction and Its Components during the Growth of the Eye from the Age of Three (Her Majesty’s Stationery Office, London, 1961).

A. Sorsby, B. Benjamin, J. B. Davey, M. Sheridan, J. M. Tanner, Emmetropia and Its Aberrations (Her Majesty’s Stationery Office, London, 1957).

Sivak, J. G.

J. R. Kuszak, K. L. Peterson, J. G. Sivak, K. L. Herbert, “The interrelationship of lens anatomy and optical quality. II. Primate lenses,” Exp. Eye Res. 59, 521–535 (1994).
[CrossRef] [PubMed]

Smith, G.

D. A. Atchison, G. Smith, “Continuous gradient index and shell models of the human lens,” Vision Res. 35, 2529–2538 (1995).
[CrossRef] [PubMed]

G. Smith, D. A. Atchison, B. K. Pierscionek, “Modeling the power of the aging human eye,” J. Opt. Soc. Am. A 9, 2111–2117 (1992).
[CrossRef] [PubMed]

G. Smith, B. K. Pierscionek, D. A. Atchison, “The optical modelling of the human lens,” Ophthalmic Physiol. Opt. 11, 359–369 (1991).
[CrossRef] [PubMed]

Smith, G. T.

G. T. Smith, R. C. Smith, N. A. Brown, A. J. Bron, M. L. Harris, “Changes in light scatter and width measurements from the human lens cortex with age,” Eye 6, 55–59 (1992).
[CrossRef] [PubMed]

Smith, R. C.

G. T. Smith, R. C. Smith, N. A. Brown, A. J. Bron, M. L. Harris, “Changes in light scatter and width measurements from the human lens cortex with age,” Eye 6, 55–59 (1992).
[CrossRef] [PubMed]

Sorsby, A.

A. Sorsby, B. Benjamin, A. G. Bennett, “Steiger on refraction: a reappraisal,” Br. J. Ophthamol. 65, 805–811 (1981).
[CrossRef]

A. Sorsby, B. Benjamin, M. Sheridan, Refraction and Its Components during the Growth of the Eye from the Age of Three (Her Majesty’s Stationery Office, London, 1961).

A. Sorsby, B. Benjamin, J. B. Davey, M. Sheridan, J. M. Tanner, Emmetropia and Its Aberrations (Her Majesty’s Stationery Office, London, 1957).

Strenk, L. M.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Muñoz, J. Grönlund-Jacob, J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Visual Sci. 40, 1162–1169 (1999).

Strenk, S. A.

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Muñoz, J. Grönlund-Jacob, J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Visual Sci. 40, 1162–1169 (1999).

Tanner, J. M.

A. Sorsby, B. Benjamin, J. B. Davey, M. Sheridan, J. M. Tanner, Emmetropia and Its Aberrations (Her Majesty’s Stationery Office, London, 1957).

Taylor, V. L.

V. L. Taylor, K. J. al-Ghoul, C. W. Lane, V. A. Davis, J. R. Kuszak, M. J. Costello, “Morphology of the normal human lens,” Invest. Ophthalmol. Visual Sci. 37, 1396–1410 (1996).

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, New York, 1989).

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, New York, 1989).

Vrensen, G. F.

A. J. Bron, G. F. Vrensen, J. Koretz, G. Maraini, J. J. Harding, “The ageing lens,” Ophthalmologica 214, 86–104 (2000).
[CrossRef] [PubMed]

Appl. Opt. (2)

Br. J. Ophthamol. (2)

A. Sorsby, B. Benjamin, A. G. Bennett, “Steiger on refraction: a reappraisal,” Br. J. Ophthamol. 65, 805–811 (1981).
[CrossRef]

N. Brown, “An advanced slit-image camera,” Br. J. Ophthamol. 56, 624–631 (1972).
[CrossRef]

Clin. Exp. Optom. (1)

B. Pierscionek, “What we know and understand about presbyopia,” Clin. Exp. Optom. 76, 83–91 (1993).
[CrossRef]

Exp. Eye Res. (4)

N. Brown, “The change in shape and internal form of the lens of the eye on accommodation,” Exp. Eye Res. 15, 441–459 (1973).
[CrossRef] [PubMed]

N. Brown, “The shape of the lens equator,” Exp. Eye Res. 19, 571–576 (1974).
[CrossRef] [PubMed]

N. Brown, “The change in lens curvature with age,” Exp. Eye Res. 19, 175–183 (1974).
[CrossRef] [PubMed]

J. R. Kuszak, K. L. Peterson, J. G. Sivak, K. L. Herbert, “The interrelationship of lens anatomy and optical quality. II. Primate lenses,” Exp. Eye Res. 59, 521–535 (1994).
[CrossRef] [PubMed]

Eye (2)

G. T. Smith, R. C. Smith, N. A. Brown, A. J. Bron, M. L. Harris, “Changes in light scatter and width measurements from the human lens cortex with age,” Eye 6, 55–59 (1992).
[CrossRef] [PubMed]

N. P. Brown, J. F. Koretz, A. J. Bron, “The development and maintenance of emmetropia,” Eye 13, 83–92 (1999).
[CrossRef] [PubMed]

Int. Rev. Cytol. (1)

J. R. Kuszak, “The ultrastructure of epithelial and fiber cells in the crystalline lens,” Int. Rev. Cytol. 163, 305–350 (1995).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. (3)

S. A. Strenk, J. L. Semmlow, L. M. Strenk, P. Muñoz, J. Grönlund-Jacob, J. K. DeMarco, “Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study,” Invest. Ophthalmol. Visual Sci. 40, 1162–1169 (1999).

V. L. Taylor, K. J. al-Ghoul, C. W. Lane, V. A. Davis, J. R. Kuszak, M. J. Costello, “Morphology of the normal human lens,” Invest. Ophthalmol. Visual Sci. 37, 1396–1410 (1996).

J. F. Koretz, C. A. Cook, P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Visual Sci. 38, 569–578 (1997).

J. Opt. Soc. Am. A (2)

Ophthalmic Physiol. Opt. (2)

A. Popiolek Masajada, “Numerical study of the influence of the shell structure of the crystalline lens on the refractive properties of the human eye,” Ophthalmic Physiol. Opt. 19, 41–49 (1999).
[CrossRef]

G. Smith, B. K. Pierscionek, D. A. Atchison, “The optical modelling of the human lens,” Ophthalmic Physiol. Opt. 11, 359–369 (1991).
[CrossRef] [PubMed]

Ophthalmologica (1)

A. J. Bron, G. F. Vrensen, J. Koretz, G. Maraini, J. J. Harding, “The ageing lens,” Ophthalmologica 214, 86–104 (2000).
[CrossRef] [PubMed]

Optom. Vision Sci. (1)

B. K. Pierscionek, D. Y. Chan, “Refractive index gradient of human lenses,” Optom. Vision Sci. 66, 822–829 (1989).
[CrossRef]

Sci. Am. (1)

J. F. Koretz, G. H. Handelman, “How the human eye focuses,” Sci. Am. 259, 92–99 (1988).
[CrossRef] [PubMed]

Trans. Am. Ophthalmol. Soc. (1)

J. F. Koretz, A. Rogot, P. L. Kaufman, “Physiological strategies for emmetropia,” Trans. Am. Ophthalmol. Soc. 93, 105–118 (1995);Trans. Am. Ophthalmol. Soc. 93, 118–122 (1995), discussion.
[PubMed]

Vision Res. (5)

J. F. Koretz, G. H. Handelman, N. P. Brown, “Analysis of human crystalline lens curvature as a function of accommodative state and age,” Vision Res. 24, 1141–1151 (1984).
[CrossRef] [PubMed]

J. F. Koretz, C. A. Cook, J. R. Kuszak, “The zones of discontinuity in the human lens: development and distribution with age,” Vision Res. 34, 2955–2962 (1994).
[CrossRef] [PubMed]

D. A. Atchison, G. Smith, “Continuous gradient index and shell models of the human lens,” Vision Res. 35, 2529–2538 (1995).
[CrossRef] [PubMed]

C. A. Cook, J. F. Koretz, A. Pfahnl, J. Hyun, P. L. Kaufman, “Aging of the human crystallin lens and anterior segment,” Vision Res. 34, 2945–2954 (1994).
[CrossRef] [PubMed]

J. F. Koretz, P. L. Kaufman, M. W. Neider, P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692 (1989).
[CrossRef]

Other (6)

J. R. Kuszak, Department of Pathology and Ophthalmology, Rush-Presbyterian St. Luke’s Medical Center, 1653 West Congress Parkway, Chicago, Ill. 60612 (personal communication, 1994).

J. F. Koretz, G. H. Handelman, “The ‘lens paradox’ and image formation in accommodating human eyes,” in The Lens: Transparency and Cataract, G. Duncan, ed., Topics in Aging Research in Europe (Annual Vol.)6, 57–64 (1986).

A. Sorsby, B. Benjamin, J. B. Davey, M. Sheridan, J. M. Tanner, Emmetropia and Its Aberrations (Her Majesty’s Stationery Office, London, 1957).

A. Sorsby, B. Benjamin, M. Sheridan, Refraction and Its Components during the Growth of the Eye from the Age of Three (Her Majesty’s Stationery Office, London, 1961).

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, New York, 1989).

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Scheimpflug photograph of the anterior segment of a 45-yr-old subject at 0-D accommodation. The central clear region appears to divide the lens into anterior and posterior halves. Note that it extends beyond the equatorial margins of the lens nucleus, supporting the idea that it arises from the orientation of lens fiber cells parallel to each other and to the optical axis. The boundary of the lens nucleus is delineated by the first zone of discontinuity, seen here as the innermost darker region around the central area.

Fig. 2
Fig. 2

Changes in the volume of the human crystalline lens and lens nucleus with age, estimated from the solid of revolution for each. Overall lens volume increases linearly with age, while the lens nucleus, defined as the volume within the first zone of discontinuity, remains constant. For lens volume, the line fits with r2=0.133 and p=0.001. Nuclear volume line fit, in contrast, exhibits r2<0.001 and p=0.776.

Fig. 3
Fig. 3

Changes in (a) the location of the lens COM and in (b) the location of the central clear region relative to the center of the anterior cornea with age. The plus signs represent the measured values at 0-D accommodation, while the open circles represent the intercept extrapolated back to 0D of a linear fit to the accommodation-dependent change in each variable’s location where a change in accommodative amplitude was observed by us (to be reported at a later date); for perfect correlation, each plus sign should be centered in an open circle. The solid curve in each case is the best least-squares fit to the 0-D accommodation data set, while the dotted curve represents the best fit for the intercepts. Analyses of these data are shown in Tables 1 and 2.

Fig. 4
Fig. 4

Changes in (a) the LAS curvature and in (b) the LPS curvature at 0-D accommodation with age. R0 values (plus signs and solid curves) are derived from the 0-D accommodation data, while Rb values (open circles and dotted curves) are derived from the intercept of the linear fit to accommodation-dependent change extrapolated back to 0D. Analyses of these data are shown in Tables 3 and 4.

Fig. 5
Fig. 5

Changes in the curvature of (a) the lens anterior nuclear boundary (NAB) and of (b) the lens posterior nuclear boundary (NPB) at 0-D accommodation with age. Format is as in Fig. 3, and analyses are listed in Tables 3 and 4.

Fig. 6
Fig. 6

Interrelation between zero accommodation anterior chamber depth (ACD) and LAS ROC. The line fit exhibits r2=0.606 and p<0.001.

Fig. 7
Fig. 7

Interrelation between zero accommodation anterior chamber depth (ACD) and LPS ROC. The line fit, showing r2=0.122 and p<0.001, is statistically significant but much less powerful than the relationship between anterior chamber depth and anterior lens curvature (Fig. 5).

Fig. 8
Fig. 8

Interrelation between zero accommodation anterior chamber depth (ACD) and lens thickness (LT). The line fit exhibits r2=0.275 and p<0.001.

Tables (4)

Tables Icon

Table 1 Age Dependence of y from the 0-D Accommodation Data Set for the COM and the CS Shown in Fig. 3

Tables Icon

Table 2 Age Dependence of y Extrapolated to 0 D from Accommodation-Dependent Data Set for the COM and the CS Shown in Fig. 3

Tables Icon

Table 3 Age Dependence of R0 —the 0-D Accommodation Data Set—for Lens Surfaces and Nuclear Boundaries

Tables Icon

Table 4 Age Dependence of the Linear Rb —Derived from the Accommodation Data Extrapolated Back to 0 D—for Lens Surfaces and Nuclear Boundaries

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Rlas=+16.815-0.104×age(mm),
Rlps=-8.719+0.015×age(mm).

Metrics