M. El-Shenawee, C. Rappaport, E. Miller, M. Silevitch, “3-D subsurface analysis of electromagnetic scattering from penetrable/PEC objects buried under rough surfaces: use of the steepest descent fast multipole method (SDFMM),” IEEE Trans. Geosci. Remote Sens. 39, 1174–1182 (2001).

[CrossRef]

N. Geng, A. Sullivan, L. Carin, “Multilevel fast-multipole algorithm for scattering from conducting targets above or embedded in a lossy half space,” IEEE Trans. Geosci. Remote Sens. 38, 1561–1573 (2000).

[CrossRef]

S. Li, C. H. Chan, L. Tsang, Q. Li, L. Zhou, “Parallel implementation of the parse matrix/canonical grid method for the analysis of two-dimensional random rough surfaces (three-dimensional scattering problem) on a Beowulf system,” IEEE Trans. Geosci. Remote Sens. 38, 1600–1608 (2000).

[CrossRef]

V. Jandhyala, B. Shanker, E. Michielssen, W. C. Chew, “A fast algorithm for the analysis of scattering by dielectric rough surfaces,” J. Opt. Soc. Am. A 15, 1877–1885 (1998).

[CrossRef]

G. Zhang, L. Tsang, K. Pak, “Angular correlation function and scattering coefficient of electromagnetic waves scattered by a buried object under a two-dimensional rough surface,” J. Opt. Soc. Am. A 15, 2995–3002 (1998).

[CrossRef]

C. H. Chan, L. Tsang, Q. Li, “Monte Carlo simulations of large-scale one dimensional random rough-surface scattering at near grazing incidence: penetrable case,” IEEE Trans. Antennas Propag. 46, 142–149 (1998).

[CrossRef]

V. Jandhyala, E. Michielssen, B. Shanker, W. C. Chew, “A combined steepest descent–fast multipole algorithm for the fast analysis of three-dimensional scattering by rough surfaces,” IEEE Trans. Geosci. Remote Sens. 36, 738–748 (1998).

[CrossRef]

R. L. Wagner, J. Song, W. C. Chew, “Monte Carlo simulation of electromagnetic scattering from two-dimensional random rough surfaces,” IEEE Trans. Antennas Propag. 45, 235–245 (1997).

[CrossRef]

A. Madrazo, M. Nieto-Vesperinas, “Scattering of light and other electromagnetic waves from a body buried beneath a highly rough random surface,” J. Opt. Soc. Am. A 14, 1859–1866 (1997).

[CrossRef]

G. Zhang, L. Tsang, Y. Kuga, “Studies of the angular correlation function of scattering by random rough surfaces with and without a buried object,” IEEE Trans. Geosci. Remote Sens. 35, 444–453 (1997).

[CrossRef]

J. T. Johnson, L. Tsang, R. T. Shin, K. Pak, C. H. Chan, A. Ishimaru, Y. Kuga, “Backscattering enhancement of electromagnetic waves from two-dimensional perfectly conducting random rough surfaces: comparison of Monte Carlo simulations with experimental data,” IEEE Trans. Antennas Propag. 44, 748–756 (1996).

[CrossRef]

K. O’Neill, R. F. Lussky, K. D. Paulsen, “Scattering from a metallic object embedded near the randomly rough surface of a lossy dielectric,” IEEE Trans. Geosci. Remote Sens. 34, 367–376 (1996).

[CrossRef]

F. D. Hastings, J. B. Schneider, S. L. Broschat, “A Monte Carlo FDTD technique for rough surface scattering,” IEEE Trans. Antennas Propag. 43, 1183–1191 (1995).

[CrossRef]

J. M. Song, W. C. Chew, “Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering,” Microwave Opt. Technol. Lett. 10, 14–19 (1995).

[CrossRef]

C. C. Lu, W. C. Chew, “A multilevel fast-algorithm for solving a boundary integral equation of wave scattering,” Microwave Opt. Technol. Lett. 7, 466–470 (1994).

[CrossRef]

L. Tsang, C. H. Chan, K. Pak, H. Sangani, A. Ishimaru, P. Phu, “Monte Carlo simulations of large-scale composite random rough-surface scattering based on the banded-matrix iterative approach,” J. Opt. Soc. Am. A 11, 691–696 (1994).

[CrossRef]

L. Medgyesti-Mitschang, J. Putnam, M. Gedera, “Generalized method of moments for three-dimensional penetrable scatterers,” J. Opt. Soc. Am. A 11, 1383–1398 (1994).

[CrossRef]

R. W. Freund, “A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems,” SIAM J. Sci. Comput. 14, 470–482 (1993).

[CrossRef]

R. Coifman, V. Rokhlin, S. Wandzura, “The fast multipole method for the wave equation: a pedestrian description,” IEEE Antennas Propag. Mag. 35 (No. 3), 7–12 (1993).

[CrossRef]

C. C. Lu, W. C. Chew, “Fast algorithm for solving hybrid integral equations,” IEE Proc. Pt. H 140, 455–460 (1993).

P. Tran, A. A. Maradudin, “Scattering of a scalar beamfrom a two-dimensional randomly rough hard wall: enhanced backscatter,” Phys. Rev. B 45, 3936–3939 (1992).

[CrossRef]

V. Rokhlin, “Rapid solution of integral equations of scattering theory in two dimensions,” J. Comput. Phys. 36, 414–439 (1990).

[CrossRef]

P. L. Huddleston, L. N. Medgyesi-Mitschang, J. M. Putnam, “Combined field integral equation formulation for scattering from dielectrically coated conducting bodies,” IEEE Trans. Antennas Propag. AP-34, 510–520 (1986).

[CrossRef]

S. M. Rao, D. R. Wilton, A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. AP-30, 409–418 (1982).

[CrossRef]

J. R. Mautz, R. F. Harrington, “H-field, E-field, and combined field solutions for conducting bodies of revolutions,” Arch. Elektr. Uebertrag. 32, 157–164 (1978).

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, New York, 1989), Chap. 6, pp. 254–309.

F. D. Hastings, J. B. Schneider, S. L. Broschat, “A Monte Carlo FDTD technique for rough surface scattering,” IEEE Trans. Antennas Propag. 43, 1183–1191 (1995).

[CrossRef]

N. Geng, A. Sullivan, L. Carin, “Multilevel fast-multipole algorithm for scattering from conducting targets above or embedded in a lossy half space,” IEEE Trans. Geosci. Remote Sens. 38, 1561–1573 (2000).

[CrossRef]

S. Li, C. H. Chan, L. Tsang, Q. Li, L. Zhou, “Parallel implementation of the parse matrix/canonical grid method for the analysis of two-dimensional random rough surfaces (three-dimensional scattering problem) on a Beowulf system,” IEEE Trans. Geosci. Remote Sens. 38, 1600–1608 (2000).

[CrossRef]

C. H. Chan, L. Tsang, Q. Li, “Monte Carlo simulations of large-scale one dimensional random rough-surface scattering at near grazing incidence: penetrable case,” IEEE Trans. Antennas Propag. 46, 142–149 (1998).

[CrossRef]

J. T. Johnson, L. Tsang, R. T. Shin, K. Pak, C. H. Chan, A. Ishimaru, Y. Kuga, “Backscattering enhancement of electromagnetic waves from two-dimensional perfectly conducting random rough surfaces: comparison of Monte Carlo simulations with experimental data,” IEEE Trans. Antennas Propag. 44, 748–756 (1996).

[CrossRef]

L. Tsang, C. H. Chan, K. Pak, H. Sangani, A. Ishimaru, P. Phu, “Monte Carlo simulations of large-scale composite random rough-surface scattering based on the banded-matrix iterative approach,” J. Opt. Soc. Am. A 11, 691–696 (1994).

[CrossRef]

V. Jandhyala, B. Shanker, E. Michielssen, W. C. Chew, “A fast algorithm for the analysis of scattering by dielectric rough surfaces,” J. Opt. Soc. Am. A 15, 1877–1885 (1998).

[CrossRef]

V. Jandhyala, E. Michielssen, B. Shanker, W. C. Chew, “A combined steepest descent–fast multipole algorithm for the fast analysis of three-dimensional scattering by rough surfaces,” IEEE Trans. Geosci. Remote Sens. 36, 738–748 (1998).

[CrossRef]

R. L. Wagner, J. Song, W. C. Chew, “Monte Carlo simulation of electromagnetic scattering from two-dimensional random rough surfaces,” IEEE Trans. Antennas Propag. 45, 235–245 (1997).

[CrossRef]

J. M. Song, W. C. Chew, “Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering,” Microwave Opt. Technol. Lett. 10, 14–19 (1995).

[CrossRef]

C. C. Lu, W. C. Chew, “A multilevel fast-algorithm for solving a boundary integral equation of wave scattering,” Microwave Opt. Technol. Lett. 7, 466–470 (1994).

[CrossRef]

C. C. Lu, W. C. Chew, “Fast algorithm for solving hybrid integral equations,” IEE Proc. Pt. H 140, 455–460 (1993).

M. El-Shenawee, V. Jandhyala, E. Michielssen, W. C. Chew, “The steepest descent fast multipole method (SDFMM) for solving combined field integral equation pertinent to rough surface scattering,” in Proceedings of the IEEE APS/URSI ’99 Conference (Institute of Electrical and Electronics Engineers, New York, 1999), pp. 534–537.

R. Coifman, V. Rokhlin, S. Wandzura, “The fast multipole method for the wave equation: a pedestrian description,” IEEE Antennas Propag. Mag. 35 (No. 3), 7–12 (1993).

[CrossRef]

J. Curtis, “Dielectric properties of soils; various sites in Bosnia,” (U.S. Army Corps of Engineers, Waterways Experiment, Washington, D.C., 1996).

M. El-Shenawee, C. Rappaport, E. Miller, M. Silevitch, “3-D subsurface analysis of electromagnetic scattering from penetrable/PEC objects buried under rough surfaces: use of the steepest descent fast multipole method (SDFMM),” IEEE Trans. Geosci. Remote Sens. 39, 1174–1182 (2001).

[CrossRef]

M. El-Shenawee, V. Jandhyala, E. Michielssen, W. C. Chew, “The steepest descent fast multipole method (SDFMM) for solving combined field integral equation pertinent to rough surface scattering,” in Proceedings of the IEEE APS/URSI ’99 Conference (Institute of Electrical and Electronics Engineers, New York, 1999), pp. 534–537.

R. W. Freund, “A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems,” SIAM J. Sci. Comput. 14, 470–482 (1993).

[CrossRef]

N. Geng, A. Sullivan, L. Carin, “Multilevel fast-multipole algorithm for scattering from conducting targets above or embedded in a lossy half space,” IEEE Trans. Geosci. Remote Sens. 38, 1561–1573 (2000).

[CrossRef]

S. M. Rao, D. R. Wilton, A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. AP-30, 409–418 (1982).

[CrossRef]

J. R. Mautz, R. F. Harrington, “H-field, E-field, and combined field solutions for conducting bodies of revolutions,” Arch. Elektr. Uebertrag. 32, 157–164 (1978).

F. D. Hastings, J. B. Schneider, S. L. Broschat, “A Monte Carlo FDTD technique for rough surface scattering,” IEEE Trans. Antennas Propag. 43, 1183–1191 (1995).

[CrossRef]

P. L. Huddleston, L. N. Medgyesi-Mitschang, J. M. Putnam, “Combined field integral equation formulation for scattering from dielectrically coated conducting bodies,” IEEE Trans. Antennas Propag. AP-34, 510–520 (1986).

[CrossRef]

J. T. Johnson, L. Tsang, R. T. Shin, K. Pak, C. H. Chan, A. Ishimaru, Y. Kuga, “Backscattering enhancement of electromagnetic waves from two-dimensional perfectly conducting random rough surfaces: comparison of Monte Carlo simulations with experimental data,” IEEE Trans. Antennas Propag. 44, 748–756 (1996).

[CrossRef]

L. Tsang, C. H. Chan, K. Pak, H. Sangani, A. Ishimaru, P. Phu, “Monte Carlo simulations of large-scale composite random rough-surface scattering based on the banded-matrix iterative approach,” J. Opt. Soc. Am. A 11, 691–696 (1994).

[CrossRef]

V. Jandhyala, B. Shanker, E. Michielssen, W. C. Chew, “A fast algorithm for the analysis of scattering by dielectric rough surfaces,” J. Opt. Soc. Am. A 15, 1877–1885 (1998).

[CrossRef]

V. Jandhyala, E. Michielssen, B. Shanker, W. C. Chew, “A combined steepest descent–fast multipole algorithm for the fast analysis of three-dimensional scattering by rough surfaces,” IEEE Trans. Geosci. Remote Sens. 36, 738–748 (1998).

[CrossRef]

M. El-Shenawee, V. Jandhyala, E. Michielssen, W. C. Chew, “The steepest descent fast multipole method (SDFMM) for solving combined field integral equation pertinent to rough surface scattering,” in Proceedings of the IEEE APS/URSI ’99 Conference (Institute of Electrical and Electronics Engineers, New York, 1999), pp. 534–537.

V. Jandhyala, “Fast multilevel algorithms for the efficient electromagnetic analysis of quasi-planar structures,” Ph.D. thesis (Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana Champaign, Ill., 1998).

J. T. Johnson, L. Tsang, R. T. Shin, K. Pak, C. H. Chan, A. Ishimaru, Y. Kuga, “Backscattering enhancement of electromagnetic waves from two-dimensional perfectly conducting random rough surfaces: comparison of Monte Carlo simulations with experimental data,” IEEE Trans. Antennas Propag. 44, 748–756 (1996).

[CrossRef]

G. Zhang, L. Tsang, Y. Kuga, “Studies of the angular correlation function of scattering by random rough surfaces with and without a buried object,” IEEE Trans. Geosci. Remote Sens. 35, 444–453 (1997).

[CrossRef]

J. T. Johnson, L. Tsang, R. T. Shin, K. Pak, C. H. Chan, A. Ishimaru, Y. Kuga, “Backscattering enhancement of electromagnetic waves from two-dimensional perfectly conducting random rough surfaces: comparison of Monte Carlo simulations with experimental data,” IEEE Trans. Antennas Propag. 44, 748–756 (1996).

[CrossRef]

S. Li, C. H. Chan, L. Tsang, Q. Li, L. Zhou, “Parallel implementation of the parse matrix/canonical grid method for the analysis of two-dimensional random rough surfaces (three-dimensional scattering problem) on a Beowulf system,” IEEE Trans. Geosci. Remote Sens. 38, 1600–1608 (2000).

[CrossRef]

C. H. Chan, L. Tsang, Q. Li, “Monte Carlo simulations of large-scale one dimensional random rough-surface scattering at near grazing incidence: penetrable case,” IEEE Trans. Antennas Propag. 46, 142–149 (1998).

[CrossRef]

S. Li, C. H. Chan, L. Tsang, Q. Li, L. Zhou, “Parallel implementation of the parse matrix/canonical grid method for the analysis of two-dimensional random rough surfaces (three-dimensional scattering problem) on a Beowulf system,” IEEE Trans. Geosci. Remote Sens. 38, 1600–1608 (2000).

[CrossRef]

C. C. Lu, W. C. Chew, “A multilevel fast-algorithm for solving a boundary integral equation of wave scattering,” Microwave Opt. Technol. Lett. 7, 466–470 (1994).

[CrossRef]

C. C. Lu, W. C. Chew, “Fast algorithm for solving hybrid integral equations,” IEE Proc. Pt. H 140, 455–460 (1993).

K. O’Neill, R. F. Lussky, K. D. Paulsen, “Scattering from a metallic object embedded near the randomly rough surface of a lossy dielectric,” IEEE Trans. Geosci. Remote Sens. 34, 367–376 (1996).

[CrossRef]

P. Tran, A. A. Maradudin, “Scattering of a scalar beamfrom a two-dimensional randomly rough hard wall: enhanced backscatter,” Phys. Rev. B 45, 3936–3939 (1992).

[CrossRef]

J. R. Mautz, R. F. Harrington, “H-field, E-field, and combined field solutions for conducting bodies of revolutions,” Arch. Elektr. Uebertrag. 32, 157–164 (1978).

P. L. Huddleston, L. N. Medgyesi-Mitschang, J. M. Putnam, “Combined field integral equation formulation for scattering from dielectrically coated conducting bodies,” IEEE Trans. Antennas Propag. AP-34, 510–520 (1986).

[CrossRef]

V. Jandhyala, E. Michielssen, B. Shanker, W. C. Chew, “A combined steepest descent–fast multipole algorithm for the fast analysis of three-dimensional scattering by rough surfaces,” IEEE Trans. Geosci. Remote Sens. 36, 738–748 (1998).

[CrossRef]

V. Jandhyala, B. Shanker, E. Michielssen, W. C. Chew, “A fast algorithm for the analysis of scattering by dielectric rough surfaces,” J. Opt. Soc. Am. A 15, 1877–1885 (1998).

[CrossRef]

M. El-Shenawee, V. Jandhyala, E. Michielssen, W. C. Chew, “The steepest descent fast multipole method (SDFMM) for solving combined field integral equation pertinent to rough surface scattering,” in Proceedings of the IEEE APS/URSI ’99 Conference (Institute of Electrical and Electronics Engineers, New York, 1999), pp. 534–537.

M. El-Shenawee, C. Rappaport, E. Miller, M. Silevitch, “3-D subsurface analysis of electromagnetic scattering from penetrable/PEC objects buried under rough surfaces: use of the steepest descent fast multipole method (SDFMM),” IEEE Trans. Geosci. Remote Sens. 39, 1174–1182 (2001).

[CrossRef]

K. O’Neill, R. F. Lussky, K. D. Paulsen, “Scattering from a metallic object embedded near the randomly rough surface of a lossy dielectric,” IEEE Trans. Geosci. Remote Sens. 34, 367–376 (1996).

[CrossRef]

G. Zhang, L. Tsang, K. Pak, “Angular correlation function and scattering coefficient of electromagnetic waves scattered by a buried object under a two-dimensional rough surface,” J. Opt. Soc. Am. A 15, 2995–3002 (1998).

[CrossRef]

J. T. Johnson, L. Tsang, R. T. Shin, K. Pak, C. H. Chan, A. Ishimaru, Y. Kuga, “Backscattering enhancement of electromagnetic waves from two-dimensional perfectly conducting random rough surfaces: comparison of Monte Carlo simulations with experimental data,” IEEE Trans. Antennas Propag. 44, 748–756 (1996).

[CrossRef]

L. Tsang, C. H. Chan, K. Pak, H. Sangani, A. Ishimaru, P. Phu, “Monte Carlo simulations of large-scale composite random rough-surface scattering based on the banded-matrix iterative approach,” J. Opt. Soc. Am. A 11, 691–696 (1994).

[CrossRef]

K. O’Neill, R. F. Lussky, K. D. Paulsen, “Scattering from a metallic object embedded near the randomly rough surface of a lossy dielectric,” IEEE Trans. Geosci. Remote Sens. 34, 367–376 (1996).

[CrossRef]

P. L. Huddleston, L. N. Medgyesi-Mitschang, J. M. Putnam, “Combined field integral equation formulation for scattering from dielectrically coated conducting bodies,” IEEE Trans. Antennas Propag. AP-34, 510–520 (1986).

[CrossRef]

S. M. Rao, D. R. Wilton, A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. AP-30, 409–418 (1982).

[CrossRef]

M. El-Shenawee, C. Rappaport, E. Miller, M. Silevitch, “3-D subsurface analysis of electromagnetic scattering from penetrable/PEC objects buried under rough surfaces: use of the steepest descent fast multipole method (SDFMM),” IEEE Trans. Geosci. Remote Sens. 39, 1174–1182 (2001).

[CrossRef]

R. Coifman, V. Rokhlin, S. Wandzura, “The fast multipole method for the wave equation: a pedestrian description,” IEEE Antennas Propag. Mag. 35 (No. 3), 7–12 (1993).

[CrossRef]

V. Rokhlin, “Rapid solution of integral equations of scattering theory in two dimensions,” J. Comput. Phys. 36, 414–439 (1990).

[CrossRef]

F. D. Hastings, J. B. Schneider, S. L. Broschat, “A Monte Carlo FDTD technique for rough surface scattering,” IEEE Trans. Antennas Propag. 43, 1183–1191 (1995).

[CrossRef]

V. Jandhyala, B. Shanker, E. Michielssen, W. C. Chew, “A fast algorithm for the analysis of scattering by dielectric rough surfaces,” J. Opt. Soc. Am. A 15, 1877–1885 (1998).

[CrossRef]

V. Jandhyala, E. Michielssen, B. Shanker, W. C. Chew, “A combined steepest descent–fast multipole algorithm for the fast analysis of three-dimensional scattering by rough surfaces,” IEEE Trans. Geosci. Remote Sens. 36, 738–748 (1998).

[CrossRef]

J. T. Johnson, L. Tsang, R. T. Shin, K. Pak, C. H. Chan, A. Ishimaru, Y. Kuga, “Backscattering enhancement of electromagnetic waves from two-dimensional perfectly conducting random rough surfaces: comparison of Monte Carlo simulations with experimental data,” IEEE Trans. Antennas Propag. 44, 748–756 (1996).

[CrossRef]

M. El-Shenawee, C. Rappaport, E. Miller, M. Silevitch, “3-D subsurface analysis of electromagnetic scattering from penetrable/PEC objects buried under rough surfaces: use of the steepest descent fast multipole method (SDFMM),” IEEE Trans. Geosci. Remote Sens. 39, 1174–1182 (2001).

[CrossRef]

R. L. Wagner, J. Song, W. C. Chew, “Monte Carlo simulation of electromagnetic scattering from two-dimensional random rough surfaces,” IEEE Trans. Antennas Propag. 45, 235–245 (1997).

[CrossRef]

J. M. Song, W. C. Chew, “Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering,” Microwave Opt. Technol. Lett. 10, 14–19 (1995).

[CrossRef]

N. Geng, A. Sullivan, L. Carin, “Multilevel fast-multipole algorithm for scattering from conducting targets above or embedded in a lossy half space,” IEEE Trans. Geosci. Remote Sens. 38, 1561–1573 (2000).

[CrossRef]

P. Tran, A. A. Maradudin, “Scattering of a scalar beamfrom a two-dimensional randomly rough hard wall: enhanced backscatter,” Phys. Rev. B 45, 3936–3939 (1992).

[CrossRef]

S. Li, C. H. Chan, L. Tsang, Q. Li, L. Zhou, “Parallel implementation of the parse matrix/canonical grid method for the analysis of two-dimensional random rough surfaces (three-dimensional scattering problem) on a Beowulf system,” IEEE Trans. Geosci. Remote Sens. 38, 1600–1608 (2000).

[CrossRef]

G. Zhang, L. Tsang, K. Pak, “Angular correlation function and scattering coefficient of electromagnetic waves scattered by a buried object under a two-dimensional rough surface,” J. Opt. Soc. Am. A 15, 2995–3002 (1998).

[CrossRef]

C. H. Chan, L. Tsang, Q. Li, “Monte Carlo simulations of large-scale one dimensional random rough-surface scattering at near grazing incidence: penetrable case,” IEEE Trans. Antennas Propag. 46, 142–149 (1998).

[CrossRef]

G. Zhang, L. Tsang, Y. Kuga, “Studies of the angular correlation function of scattering by random rough surfaces with and without a buried object,” IEEE Trans. Geosci. Remote Sens. 35, 444–453 (1997).

[CrossRef]

J. T. Johnson, L. Tsang, R. T. Shin, K. Pak, C. H. Chan, A. Ishimaru, Y. Kuga, “Backscattering enhancement of electromagnetic waves from two-dimensional perfectly conducting random rough surfaces: comparison of Monte Carlo simulations with experimental data,” IEEE Trans. Antennas Propag. 44, 748–756 (1996).

[CrossRef]

L. Tsang, C. H. Chan, K. Pak, H. Sangani, A. Ishimaru, P. Phu, “Monte Carlo simulations of large-scale composite random rough-surface scattering based on the banded-matrix iterative approach,” J. Opt. Soc. Am. A 11, 691–696 (1994).

[CrossRef]

R. L. Wagner, J. Song, W. C. Chew, “Monte Carlo simulation of electromagnetic scattering from two-dimensional random rough surfaces,” IEEE Trans. Antennas Propag. 45, 235–245 (1997).

[CrossRef]

R. Coifman, V. Rokhlin, S. Wandzura, “The fast multipole method for the wave equation: a pedestrian description,” IEEE Antennas Propag. Mag. 35 (No. 3), 7–12 (1993).

[CrossRef]

S. M. Rao, D. R. Wilton, A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. AP-30, 409–418 (1982).

[CrossRef]

G. Zhang, L. Tsang, K. Pak, “Angular correlation function and scattering coefficient of electromagnetic waves scattered by a buried object under a two-dimensional rough surface,” J. Opt. Soc. Am. A 15, 2995–3002 (1998).

[CrossRef]

G. Zhang, L. Tsang, Y. Kuga, “Studies of the angular correlation function of scattering by random rough surfaces with and without a buried object,” IEEE Trans. Geosci. Remote Sens. 35, 444–453 (1997).

[CrossRef]

S. Li, C. H. Chan, L. Tsang, Q. Li, L. Zhou, “Parallel implementation of the parse matrix/canonical grid method for the analysis of two-dimensional random rough surfaces (three-dimensional scattering problem) on a Beowulf system,” IEEE Trans. Geosci. Remote Sens. 38, 1600–1608 (2000).

[CrossRef]

J. R. Mautz, R. F. Harrington, “H-field, E-field, and combined field solutions for conducting bodies of revolutions,” Arch. Elektr. Uebertrag. 32, 157–164 (1978).

C. C. Lu, W. C. Chew, “Fast algorithm for solving hybrid integral equations,” IEE Proc. Pt. H 140, 455–460 (1993).

R. Coifman, V. Rokhlin, S. Wandzura, “The fast multipole method for the wave equation: a pedestrian description,” IEEE Antennas Propag. Mag. 35 (No. 3), 7–12 (1993).

[CrossRef]

R. L. Wagner, J. Song, W. C. Chew, “Monte Carlo simulation of electromagnetic scattering from two-dimensional random rough surfaces,” IEEE Trans. Antennas Propag. 45, 235–245 (1997).

[CrossRef]

C. H. Chan, L. Tsang, Q. Li, “Monte Carlo simulations of large-scale one dimensional random rough-surface scattering at near grazing incidence: penetrable case,” IEEE Trans. Antennas Propag. 46, 142–149 (1998).

[CrossRef]

F. D. Hastings, J. B. Schneider, S. L. Broschat, “A Monte Carlo FDTD technique for rough surface scattering,” IEEE Trans. Antennas Propag. 43, 1183–1191 (1995).

[CrossRef]

J. T. Johnson, L. Tsang, R. T. Shin, K. Pak, C. H. Chan, A. Ishimaru, Y. Kuga, “Backscattering enhancement of electromagnetic waves from two-dimensional perfectly conducting random rough surfaces: comparison of Monte Carlo simulations with experimental data,” IEEE Trans. Antennas Propag. 44, 748–756 (1996).

[CrossRef]

P. L. Huddleston, L. N. Medgyesi-Mitschang, J. M. Putnam, “Combined field integral equation formulation for scattering from dielectrically coated conducting bodies,” IEEE Trans. Antennas Propag. AP-34, 510–520 (1986).

[CrossRef]

S. M. Rao, D. R. Wilton, A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. AP-30, 409–418 (1982).

[CrossRef]

S. Li, C. H. Chan, L. Tsang, Q. Li, L. Zhou, “Parallel implementation of the parse matrix/canonical grid method for the analysis of two-dimensional random rough surfaces (three-dimensional scattering problem) on a Beowulf system,” IEEE Trans. Geosci. Remote Sens. 38, 1600–1608 (2000).

[CrossRef]

K. O’Neill, R. F. Lussky, K. D. Paulsen, “Scattering from a metallic object embedded near the randomly rough surface of a lossy dielectric,” IEEE Trans. Geosci. Remote Sens. 34, 367–376 (1996).

[CrossRef]

G. Zhang, L. Tsang, Y. Kuga, “Studies of the angular correlation function of scattering by random rough surfaces with and without a buried object,” IEEE Trans. Geosci. Remote Sens. 35, 444–453 (1997).

[CrossRef]

N. Geng, A. Sullivan, L. Carin, “Multilevel fast-multipole algorithm for scattering from conducting targets above or embedded in a lossy half space,” IEEE Trans. Geosci. Remote Sens. 38, 1561–1573 (2000).

[CrossRef]

V. Jandhyala, E. Michielssen, B. Shanker, W. C. Chew, “A combined steepest descent–fast multipole algorithm for the fast analysis of three-dimensional scattering by rough surfaces,” IEEE Trans. Geosci. Remote Sens. 36, 738–748 (1998).

[CrossRef]

M. El-Shenawee, C. Rappaport, E. Miller, M. Silevitch, “3-D subsurface analysis of electromagnetic scattering from penetrable/PEC objects buried under rough surfaces: use of the steepest descent fast multipole method (SDFMM),” IEEE Trans. Geosci. Remote Sens. 39, 1174–1182 (2001).

[CrossRef]

V. Rokhlin, “Rapid solution of integral equations of scattering theory in two dimensions,” J. Comput. Phys. 36, 414–439 (1990).

[CrossRef]

L. Tsang, C. H. Chan, K. Pak, H. Sangani, A. Ishimaru, P. Phu, “Monte Carlo simulations of large-scale composite random rough-surface scattering based on the banded-matrix iterative approach,” J. Opt. Soc. Am. A 11, 691–696 (1994).

[CrossRef]

L. Medgyesti-Mitschang, J. Putnam, M. Gedera, “Generalized method of moments for three-dimensional penetrable scatterers,” J. Opt. Soc. Am. A 11, 1383–1398 (1994).

[CrossRef]

V. Jandhyala, B. Shanker, E. Michielssen, W. C. Chew, “A fast algorithm for the analysis of scattering by dielectric rough surfaces,” J. Opt. Soc. Am. A 15, 1877–1885 (1998).

[CrossRef]

A. Madrazo, M. Nieto-Vesperinas, “Scattering of light and other electromagnetic waves from a body buried beneath a highly rough random surface,” J. Opt. Soc. Am. A 14, 1859–1866 (1997).

[CrossRef]

G. Zhang, L. Tsang, K. Pak, “Angular correlation function and scattering coefficient of electromagnetic waves scattered by a buried object under a two-dimensional rough surface,” J. Opt. Soc. Am. A 15, 2995–3002 (1998).

[CrossRef]

C. C. Lu, W. C. Chew, “A multilevel fast-algorithm for solving a boundary integral equation of wave scattering,” Microwave Opt. Technol. Lett. 7, 466–470 (1994).

[CrossRef]

J. M. Song, W. C. Chew, “Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering,” Microwave Opt. Technol. Lett. 10, 14–19 (1995).

[CrossRef]

P. Tran, A. A. Maradudin, “Scattering of a scalar beamfrom a two-dimensional randomly rough hard wall: enhanced backscatter,” Phys. Rev. B 45, 3936–3939 (1992).

[CrossRef]

R. W. Freund, “A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems,” SIAM J. Sci. Comput. 14, 470–482 (1993).

[CrossRef]

J. Curtis, “Dielectric properties of soils; various sites in Bosnia,” (U.S. Army Corps of Engineers, Waterways Experiment, Washington, D.C., 1996).

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, New York, 1989), Chap. 6, pp. 254–309.

V. Jandhyala, “Fast multilevel algorithms for the efficient electromagnetic analysis of quasi-planar structures,” Ph.D. thesis (Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana Champaign, Ill., 1998).

M. El-Shenawee, V. Jandhyala, E. Michielssen, W. C. Chew, “The steepest descent fast multipole method (SDFMM) for solving combined field integral equation pertinent to rough surface scattering,” in Proceedings of the IEEE APS/URSI ’99 Conference (Institute of Electrical and Electronics Engineers, New York, 1999), pp. 534–537.