Abstract

The utility of using inertial data for the structure-from-motion (SfM) problem is addressed. We show how inertial data can be used for improved noise resistance, reduction of inherent ambiguities, and handling of mixed-domain sequences. We also show that the number of feature points needed for accurate and robust SfM estimation can be significantly reduced when inertial data are employed. Cramér–Rao lower bounds are computed to quantify the improvements in estimating motion parameters. A robust extended-Kalman-filter-based SfM algorithm using inertial data is then developed to fully exploit the inertial information. This algorithm has been tested by using synthetic and real image sequences, and the results show the efficacy of using inertial data for the SfM problem.

© 2001 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Projection-based, frequency-domain estimation of superimposed translational motions

Peyman Milanfar
J. Opt. Soc. Am. A 13(11) 2151-2162 (1996)

Frontally placed eyes versus laterally placed eyes: computational comparison of their functions for ego-motion estimation

Zhi Gao, Pengfei Wang, Ruifang Zhai, and Yazhe Tang
J. Opt. Soc. Am. A 33(4) 501-507 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (54)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription