Abstract

We propose an algorithm for face verification through tracking facial features by using sequential importance sampling. Specifically, we first formulate tracking as a Bayesian inference problem and propose to use Markov chain Monte Carlo techniques for obtaining an empirical solution. A reparameterization is introduced under parametric motion assumption, which facilitates the empirical estimation and also allows verification to be addressed along with tracking. The facial features to be tracked are defined on a grid with Gabor attributes (jets). The motion of facial feature points is modeled as a global two-dimensional (2-D) affine transformation (accounting for head motion) plus a local deformation (accounting for residual motion that is due to inaccuracies in 2-D affine modeling and other factors such as facial expression). Motion of both types is processed simultaneously by the tracker: The global motion is estimated by importance sampling, and the residual motion is handled by incorporating local deformation into the measurement likelihood in computing the weight of a sample. Experiments with a real database of face image sequences are presented.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription