Abstract

Polarization-sensitive optical coherence tomography (PSOCT) is applied to determine the depth-resolved polarization state of light backreflected from the eye. The birefringence of the retinal nerve fiber layer (RNFL) was observed and measured from PSOCT images recorded postmortem in a Rhesus monkey. An image-processing algorithm was developed to identify birefringent regions in acquired PSOCT retinal images and automatically determine the thickness of the RNFL. Values of the RNFL thickness determined from histology and PSOCT were compared. PSOCT may provide a new method to determine RNFL thickness and birefringence for glaucoma diagnostics.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Quigley, “Reappraising the risks and benefits of aggressive glaucoma therapy,” Ophthalmology 104, 1985–1986 (1997).
    [CrossRef] [PubMed]
  2. H. A. Quigley, “The number of persons with glaucoma worldwide,” Br. J. Ophthamol. 80, 389–393 (1996).
    [CrossRef]
  3. D. Vaughan, T. Asbury, General Ophthalmology (Lange Medical Publications, Los Altos, Calif., 1986).
  4. A. Sommer, J. Katz, A. Quigley, N. R. Miller, A. L. Robin, R. C. Richter, K. A. Witt, “Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss,” Arch. Ophthalmol. (Chicago) 109, 77–83 (1991).
    [CrossRef]
  5. H. A. Quigley, E. M. Addicks, W. R. Green, “Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy,” Arch. Ophthalmol. (Chicago) 100, 135–146 (1982).
    [CrossRef]
  6. A. Ditchl, J. B. Jonas, G. O. Naumann, “Retinal nerve fiber layer thickness in human eyes,” Greafes Arch. Clin. Exp. Ophthalmol. 237, 474–479 (1999).
    [CrossRef]
  7. D. Poinoosawmy, J. C. Tan, C. Bunce, L. W. Membrey, R. A. Hitchings, “Longitudinal nerve fiber layer thickness change in normal-pressure glaucoma,” Graefes Arch. Clin. Exp. Ophthalmol. 238, 965–969 (2000).
    [CrossRef]
  8. J. B. Jonas, A. E. Grundler, “Correlation between mean visual field loss and morphometric optic disc variables in open angle glaucomas,” Am. J. Ophthalmol. 124, 488–497 (1997).
    [PubMed]
  9. R. P. Hemenger, “Birefringence of a medium of tenuous parallel cylinders,” Appl. Opt. 28, 4030–4034 (1989).
    [CrossRef] [PubMed]
  10. Q. Zhou, R. W. Knighton, “Light scattering and form birefringence of parallel cylindrical arrays that represent cellular organelles of the retinal nerve fiber layer,” Appl. Opt. 36, 2273–2285 (1997).
    [CrossRef] [PubMed]
  11. R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of the Fourier-ellipsometry measurements of the retinal nerve fiber layer thickness,” Arch. Ophthalmol. (Chicago) 108, 557–560 (1990).
    [CrossRef]
  12. A. G. J. E. Niessen, “Retinal nerve fiber layer assessment by scanning laser polarimetry and standardized photography,” Am. J. Ophthalmol. 121, 484–493 (1996).
    [PubMed]
  13. A. W. Dreher, K. Reiter, “Retinal laser ellipsometry: a new method for measuring the retinal nerve fiber layer thickness distribution?” Clin. Vision Sci. 7, 481–488 (1992).
  14. M. T. Tjon-fo-Sang, H. G. Lemij, “The sensitivity and specificity of nerve fiber layer measurements in glaucoma as determined with scanning laser polarimetry,” Am. J. Ophthalmol. 123, 62–69 (1997).
    [PubMed]
  15. R. N. Weinreb, “Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes,” Am. J. Ophthalmol. 119, 627–636 (1995).
    [PubMed]
  16. D. S. Greenfield, R. W. Knighton, X. Huang, “Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry,” Am. J. Ophthalmol. 129, 715–722 (2000).
    [CrossRef] [PubMed]
  17. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
    [CrossRef]
  18. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
    [CrossRef] [PubMed]
  19. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
    [CrossRef] [PubMed]
  20. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
    [CrossRef]
  21. J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Pufialito, J. G. Fujimoto, E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103, 1889–1898 (1996).
    [CrossRef] [PubMed]
  22. A. Mistelberger, J. M. Liebmann, D. S. Greenfield, M. E. Pons, S. T. Hoh, H. Ishikawa, R. Ritch, “Heidelberg retina tomograph and optical coherence tomography in normal, ocular-hypertensive, and glaucomatous eyes,” Ophthalmology 106, 2027–2032 (1999).
    [CrossRef]
  23. D. S. Chauhan, J. Marshall, “The interpretation of optical coherence tomography images of the retina,” Invest. Ophthalmol. Visual Sci. 40, 2332–2342 (1999).
  24. R. W. Knighton, X. Huang, “Optical coherence tomography of retinal nerve fiber layer, electronic letter to the editor,” Invest. Ophthalmol. Visual Sci., http://www.iovs.org/ (2000).
  25. M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992).
    [CrossRef]
  26. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
    [CrossRef] [PubMed]
  27. M. J. Everett, K. Schoenenberger, B. W. Colston, L. B. Da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23, 228–230 (1998).
    [CrossRef]
  28. J. F. de Boer, T. E. Milner, J. S. Nelson, “Determination of the depth resolved Stokes parameters of light backscattered from turbid media using polarization sensitive optical coherence tomography,” Opt. Lett. 24, 300–302 (1999).
    [CrossRef]
  29. M. G. Ducros, J. F. de Boer, H. Huang, L. Chao, Z. Chen, J. S. Nelson, T. E. Milner, H. G. Rylander, “Polarization sensitive optical coherence tomography of the rabbit eye,” IEEE J. Sel. Top. Quantum Electron. 5, 1159–1167 (1999).
    [CrossRef]
  30. American National Standard for Safe Use of Lasers (American National Standards Institute, New York, 1993).
  31. D. G. Hunter, J. C. Sandruck, S. Sau, S. N. Patel, D. L. Guyton, “Mathematical modeling of retinal birefringence scanning,” J. Opt. Soc. Am. A 16, 2103–2111 (1999).
    [CrossRef]
  32. W. A. Shurcliff, S. S. Ballard, Polarized Light (Van Nostrand, Princeton, N.J., 1964).
  33. M. J. Hogan, J. A. Alvarado, J. E. Weddell, Histology of the Human Eye (Saunders, Philadelphia, Pa., 1971).
  34. D. R. Williams, “Visual consequences of the foveal pit,” Invest. Ophthalmol. Visual Sci. 19, 653–667 (1980).
  35. R. W. Knighton, X. Huang, Q. Zhou, “Microtubules contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Visual Sci. 39, 189–193 (1998).
  36. R. Varma, M. Skaf, E. Barron, “Retinal nerve fiber layer thickness in normal human eyes,” Ophthalmology 103, 2114–2119 (1996).
    [CrossRef] [PubMed]
  37. G. J. van Blokland, S. C. Verhelst, “Corneal polarization in the living human eye explained with a biaxial model,” J. Opt. Soc. Am. A 4, 82–90 (1987).
    [CrossRef] [PubMed]
  38. A. Stanworth, “Polarized light studies of the cornea,” J. Exp. Biol. 30, 164–169 (1953).
  39. D. M. Maurice, “The structure and transparency of the cornea,” J. Physiol. (London) 136, 263–286 (1957).
  40. C. K. Hitzenberger, W. Drexler, A. Baumgartner, A. F. Fercher, “Dispersion effects in partial coherence interferometry,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications, V. V. Tuchin, H. Podbielska, B. Ovryn, eds., Proc. SPIE2981, 29–36 (1997).
    [CrossRef]
  41. C. A. Toth, D. G. Narayan, S. A. Boppart, M. R. Hee, J. G. Fujimoto, R. Birngruber, C. P. Cain, C. D. DiCarlo, W. P. Roach, “A comparison of retinal morphology viewed by optical coherence tomography and light microscopy,” Arch. Ophthalmol. (Chicago) 115, 1425–1428 (1997).
    [CrossRef]

2000 (3)

D. Poinoosawmy, J. C. Tan, C. Bunce, L. W. Membrey, R. A. Hitchings, “Longitudinal nerve fiber layer thickness change in normal-pressure glaucoma,” Graefes Arch. Clin. Exp. Ophthalmol. 238, 965–969 (2000).
[CrossRef]

D. S. Greenfield, R. W. Knighton, X. Huang, “Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry,” Am. J. Ophthalmol. 129, 715–722 (2000).
[CrossRef] [PubMed]

R. W. Knighton, X. Huang, “Optical coherence tomography of retinal nerve fiber layer, electronic letter to the editor,” Invest. Ophthalmol. Visual Sci., http://www.iovs.org/ (2000).

1999 (7)

A. Ditchl, J. B. Jonas, G. O. Naumann, “Retinal nerve fiber layer thickness in human eyes,” Greafes Arch. Clin. Exp. Ophthalmol. 237, 474–479 (1999).
[CrossRef]

A. Mistelberger, J. M. Liebmann, D. S. Greenfield, M. E. Pons, S. T. Hoh, H. Ishikawa, R. Ritch, “Heidelberg retina tomograph and optical coherence tomography in normal, ocular-hypertensive, and glaucomatous eyes,” Ophthalmology 106, 2027–2032 (1999).
[CrossRef]

D. S. Chauhan, J. Marshall, “The interpretation of optical coherence tomography images of the retina,” Invest. Ophthalmol. Visual Sci. 40, 2332–2342 (1999).

J. F. de Boer, T. E. Milner, J. S. Nelson, “Determination of the depth resolved Stokes parameters of light backscattered from turbid media using polarization sensitive optical coherence tomography,” Opt. Lett. 24, 300–302 (1999).
[CrossRef]

M. G. Ducros, J. F. de Boer, H. Huang, L. Chao, Z. Chen, J. S. Nelson, T. E. Milner, H. G. Rylander, “Polarization sensitive optical coherence tomography of the rabbit eye,” IEEE J. Sel. Top. Quantum Electron. 5, 1159–1167 (1999).
[CrossRef]

D. G. Hunter, J. C. Sandruck, S. Sau, S. N. Patel, D. L. Guyton, “Mathematical modeling of retinal birefringence scanning,” J. Opt. Soc. Am. A 16, 2103–2111 (1999).
[CrossRef]

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

1998 (2)

R. W. Knighton, X. Huang, Q. Zhou, “Microtubules contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Visual Sci. 39, 189–193 (1998).

M. J. Everett, K. Schoenenberger, B. W. Colston, L. B. Da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23, 228–230 (1998).
[CrossRef]

1997 (6)

C. A. Toth, D. G. Narayan, S. A. Boppart, M. R. Hee, J. G. Fujimoto, R. Birngruber, C. P. Cain, C. D. DiCarlo, W. P. Roach, “A comparison of retinal morphology viewed by optical coherence tomography and light microscopy,” Arch. Ophthalmol. (Chicago) 115, 1425–1428 (1997).
[CrossRef]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
[CrossRef] [PubMed]

M. T. Tjon-fo-Sang, H. G. Lemij, “The sensitivity and specificity of nerve fiber layer measurements in glaucoma as determined with scanning laser polarimetry,” Am. J. Ophthalmol. 123, 62–69 (1997).
[PubMed]

J. B. Jonas, A. E. Grundler, “Correlation between mean visual field loss and morphometric optic disc variables in open angle glaucomas,” Am. J. Ophthalmol. 124, 488–497 (1997).
[PubMed]

Q. Zhou, R. W. Knighton, “Light scattering and form birefringence of parallel cylindrical arrays that represent cellular organelles of the retinal nerve fiber layer,” Appl. Opt. 36, 2273–2285 (1997).
[CrossRef] [PubMed]

H. A. Quigley, “Reappraising the risks and benefits of aggressive glaucoma therapy,” Ophthalmology 104, 1985–1986 (1997).
[CrossRef] [PubMed]

1996 (5)

H. A. Quigley, “The number of persons with glaucoma worldwide,” Br. J. Ophthamol. 80, 389–393 (1996).
[CrossRef]

A. G. J. E. Niessen, “Retinal nerve fiber layer assessment by scanning laser polarimetry and standardized photography,” Am. J. Ophthalmol. 121, 484–493 (1996).
[PubMed]

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
[CrossRef] [PubMed]

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Pufialito, J. G. Fujimoto, E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103, 1889–1898 (1996).
[CrossRef] [PubMed]

R. Varma, M. Skaf, E. Barron, “Retinal nerve fiber layer thickness in normal human eyes,” Ophthalmology 103, 2114–2119 (1996).
[CrossRef] [PubMed]

1995 (2)

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[CrossRef]

R. N. Weinreb, “Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes,” Am. J. Ophthalmol. 119, 627–636 (1995).
[PubMed]

1993 (1)

1992 (2)

A. W. Dreher, K. Reiter, “Retinal laser ellipsometry: a new method for measuring the retinal nerve fiber layer thickness distribution?” Clin. Vision Sci. 7, 481–488 (1992).

M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992).
[CrossRef]

1991 (1)

A. Sommer, J. Katz, A. Quigley, N. R. Miller, A. L. Robin, R. C. Richter, K. A. Witt, “Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss,” Arch. Ophthalmol. (Chicago) 109, 77–83 (1991).
[CrossRef]

1990 (1)

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of the Fourier-ellipsometry measurements of the retinal nerve fiber layer thickness,” Arch. Ophthalmol. (Chicago) 108, 557–560 (1990).
[CrossRef]

1989 (1)

1987 (1)

1982 (1)

H. A. Quigley, E. M. Addicks, W. R. Green, “Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy,” Arch. Ophthalmol. (Chicago) 100, 135–146 (1982).
[CrossRef]

1980 (1)

D. R. Williams, “Visual consequences of the foveal pit,” Invest. Ophthalmol. Visual Sci. 19, 653–667 (1980).

1957 (1)

D. M. Maurice, “The structure and transparency of the cornea,” J. Physiol. (London) 136, 263–286 (1957).

1953 (1)

A. Stanworth, “Polarized light studies of the cornea,” J. Exp. Biol. 30, 164–169 (1953).

Addicks, E. M.

H. A. Quigley, E. M. Addicks, W. R. Green, “Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy,” Arch. Ophthalmol. (Chicago) 100, 135–146 (1982).
[CrossRef]

Alvarado, J. A.

M. J. Hogan, J. A. Alvarado, J. E. Weddell, Histology of the Human Eye (Saunders, Philadelphia, Pa., 1971).

Asbury, T.

D. Vaughan, T. Asbury, General Ophthalmology (Lange Medical Publications, Los Altos, Calif., 1986).

Ballard, S. S.

W. A. Shurcliff, S. S. Ballard, Polarized Light (Van Nostrand, Princeton, N.J., 1964).

Barron, E.

R. Varma, M. Skaf, E. Barron, “Retinal nerve fiber layer thickness in normal human eyes,” Ophthalmology 103, 2114–2119 (1996).
[CrossRef] [PubMed]

Baumgartner, A.

C. K. Hitzenberger, W. Drexler, A. Baumgartner, A. F. Fercher, “Dispersion effects in partial coherence interferometry,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications, V. V. Tuchin, H. Podbielska, B. Ovryn, eds., Proc. SPIE2981, 29–36 (1997).
[CrossRef]

Birngruber, R.

C. A. Toth, D. G. Narayan, S. A. Boppart, M. R. Hee, J. G. Fujimoto, R. Birngruber, C. P. Cain, C. D. DiCarlo, W. P. Roach, “A comparison of retinal morphology viewed by optical coherence tomography and light microscopy,” Arch. Ophthalmol. (Chicago) 115, 1425–1428 (1997).
[CrossRef]

Boppart, S. A.

C. A. Toth, D. G. Narayan, S. A. Boppart, M. R. Hee, J. G. Fujimoto, R. Birngruber, C. P. Cain, C. D. DiCarlo, W. P. Roach, “A comparison of retinal morphology viewed by optical coherence tomography and light microscopy,” Arch. Ophthalmol. (Chicago) 115, 1425–1428 (1997).
[CrossRef]

Bunce, C.

D. Poinoosawmy, J. C. Tan, C. Bunce, L. W. Membrey, R. A. Hitchings, “Longitudinal nerve fiber layer thickness change in normal-pressure glaucoma,” Graefes Arch. Clin. Exp. Ophthalmol. 238, 965–969 (2000).
[CrossRef]

Cain, C. P.

C. A. Toth, D. G. Narayan, S. A. Boppart, M. R. Hee, J. G. Fujimoto, R. Birngruber, C. P. Cain, C. D. DiCarlo, W. P. Roach, “A comparison of retinal morphology viewed by optical coherence tomography and light microscopy,” Arch. Ophthalmol. (Chicago) 115, 1425–1428 (1997).
[CrossRef]

Chao, L.

M. G. Ducros, J. F. de Boer, H. Huang, L. Chao, Z. Chen, J. S. Nelson, T. E. Milner, H. G. Rylander, “Polarization sensitive optical coherence tomography of the rabbit eye,” IEEE J. Sel. Top. Quantum Electron. 5, 1159–1167 (1999).
[CrossRef]

Chauhan, D. S.

D. S. Chauhan, J. Marshall, “The interpretation of optical coherence tomography images of the retina,” Invest. Ophthalmol. Visual Sci. 40, 2332–2342 (1999).

Chen, Z.

M. G. Ducros, J. F. de Boer, H. Huang, L. Chao, Z. Chen, J. S. Nelson, T. E. Milner, H. G. Rylander, “Polarization sensitive optical coherence tomography of the rabbit eye,” IEEE J. Sel. Top. Quantum Electron. 5, 1159–1167 (1999).
[CrossRef]

Coker, J. G.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Pufialito, J. G. Fujimoto, E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103, 1889–1898 (1996).
[CrossRef] [PubMed]

Coleman, A.

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of the Fourier-ellipsometry measurements of the retinal nerve fiber layer thickness,” Arch. Ophthalmol. (Chicago) 108, 557–560 (1990).
[CrossRef]

Colston, B. W.

Da Silva, L. B.

de Boer, J. F.

DiCarlo, C. D.

C. A. Toth, D. G. Narayan, S. A. Boppart, M. R. Hee, J. G. Fujimoto, R. Birngruber, C. P. Cain, C. D. DiCarlo, W. P. Roach, “A comparison of retinal morphology viewed by optical coherence tomography and light microscopy,” Arch. Ophthalmol. (Chicago) 115, 1425–1428 (1997).
[CrossRef]

Ditchl, A.

A. Ditchl, J. B. Jonas, G. O. Naumann, “Retinal nerve fiber layer thickness in human eyes,” Greafes Arch. Clin. Exp. Ophthalmol. 237, 474–479 (1999).
[CrossRef]

Dreher, A. W.

A. W. Dreher, K. Reiter, “Retinal laser ellipsometry: a new method for measuring the retinal nerve fiber layer thickness distribution?” Clin. Vision Sci. 7, 481–488 (1992).

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of the Fourier-ellipsometry measurements of the retinal nerve fiber layer thickness,” Arch. Ophthalmol. (Chicago) 108, 557–560 (1990).
[CrossRef]

Drexler, W.

C. K. Hitzenberger, W. Drexler, A. Baumgartner, A. F. Fercher, “Dispersion effects in partial coherence interferometry,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications, V. V. Tuchin, H. Podbielska, B. Ovryn, eds., Proc. SPIE2981, 29–36 (1997).
[CrossRef]

Ducros, M. G.

M. G. Ducros, J. F. de Boer, H. Huang, L. Chao, Z. Chen, J. S. Nelson, T. E. Milner, H. G. Rylander, “Polarization sensitive optical coherence tomography of the rabbit eye,” IEEE J. Sel. Top. Quantum Electron. 5, 1159–1167 (1999).
[CrossRef]

Everett, M. J.

Fercher, A. F.

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
[CrossRef] [PubMed]

C. K. Hitzenberger, W. Drexler, A. Baumgartner, A. F. Fercher, “Dispersion effects in partial coherence interferometry,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications, V. V. Tuchin, H. Podbielska, B. Ovryn, eds., Proc. SPIE2981, 29–36 (1997).
[CrossRef]

Fujimoto, J. G.

C. A. Toth, D. G. Narayan, S. A. Boppart, M. R. Hee, J. G. Fujimoto, R. Birngruber, C. P. Cain, C. D. DiCarlo, W. P. Roach, “A comparison of retinal morphology viewed by optical coherence tomography and light microscopy,” Arch. Ophthalmol. (Chicago) 115, 1425–1428 (1997).
[CrossRef]

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Pufialito, J. G. Fujimoto, E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103, 1889–1898 (1996).
[CrossRef] [PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[CrossRef]

M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992).
[CrossRef]

Green, W. R.

H. A. Quigley, E. M. Addicks, W. R. Green, “Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy,” Arch. Ophthalmol. (Chicago) 100, 135–146 (1982).
[CrossRef]

Greenfield, D. S.

D. S. Greenfield, R. W. Knighton, X. Huang, “Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry,” Am. J. Ophthalmol. 129, 715–722 (2000).
[CrossRef] [PubMed]

A. Mistelberger, J. M. Liebmann, D. S. Greenfield, M. E. Pons, S. T. Hoh, H. Ishikawa, R. Ritch, “Heidelberg retina tomograph and optical coherence tomography in normal, ocular-hypertensive, and glaucomatous eyes,” Ophthalmology 106, 2027–2032 (1999).
[CrossRef]

Grundler, A. E.

J. B. Jonas, A. E. Grundler, “Correlation between mean visual field loss and morphometric optic disc variables in open angle glaucomas,” Am. J. Ophthalmol. 124, 488–497 (1997).
[PubMed]

Guyton, D. L.

Hee, M. R.

C. A. Toth, D. G. Narayan, S. A. Boppart, M. R. Hee, J. G. Fujimoto, R. Birngruber, C. P. Cain, C. D. DiCarlo, W. P. Roach, “A comparison of retinal morphology viewed by optical coherence tomography and light microscopy,” Arch. Ophthalmol. (Chicago) 115, 1425–1428 (1997).
[CrossRef]

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Pufialito, J. G. Fujimoto, E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103, 1889–1898 (1996).
[CrossRef] [PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[CrossRef]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef] [PubMed]

M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992).
[CrossRef]

Hemenger, R. P.

Hertzmark, E.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Pufialito, J. G. Fujimoto, E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103, 1889–1898 (1996).
[CrossRef] [PubMed]

Hitchings, R. A.

D. Poinoosawmy, J. C. Tan, C. Bunce, L. W. Membrey, R. A. Hitchings, “Longitudinal nerve fiber layer thickness change in normal-pressure glaucoma,” Graefes Arch. Clin. Exp. Ophthalmol. 238, 965–969 (2000).
[CrossRef]

Hitzenberger, C. K.

C. K. Hitzenberger, W. Drexler, A. Baumgartner, A. F. Fercher, “Dispersion effects in partial coherence interferometry,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications, V. V. Tuchin, H. Podbielska, B. Ovryn, eds., Proc. SPIE2981, 29–36 (1997).
[CrossRef]

Hogan, M. J.

M. J. Hogan, J. A. Alvarado, J. E. Weddell, Histology of the Human Eye (Saunders, Philadelphia, Pa., 1971).

Hoh, S. T.

A. Mistelberger, J. M. Liebmann, D. S. Greenfield, M. E. Pons, S. T. Hoh, H. Ishikawa, R. Ritch, “Heidelberg retina tomograph and optical coherence tomography in normal, ocular-hypertensive, and glaucomatous eyes,” Ophthalmology 106, 2027–2032 (1999).
[CrossRef]

Huang, D.

Huang, H.

M. G. Ducros, J. F. de Boer, H. Huang, L. Chao, Z. Chen, J. S. Nelson, T. E. Milner, H. G. Rylander, “Polarization sensitive optical coherence tomography of the rabbit eye,” IEEE J. Sel. Top. Quantum Electron. 5, 1159–1167 (1999).
[CrossRef]

Huang, X.

R. W. Knighton, X. Huang, “Optical coherence tomography of retinal nerve fiber layer, electronic letter to the editor,” Invest. Ophthalmol. Visual Sci., http://www.iovs.org/ (2000).

D. S. Greenfield, R. W. Knighton, X. Huang, “Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry,” Am. J. Ophthalmol. 129, 715–722 (2000).
[CrossRef] [PubMed]

R. W. Knighton, X. Huang, Q. Zhou, “Microtubules contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Visual Sci. 39, 189–193 (1998).

Hunter, D. G.

Ishikawa, H.

A. Mistelberger, J. M. Liebmann, D. S. Greenfield, M. E. Pons, S. T. Hoh, H. Ishikawa, R. Ritch, “Heidelberg retina tomograph and optical coherence tomography in normal, ocular-hypertensive, and glaucomatous eyes,” Ophthalmology 106, 2027–2032 (1999).
[CrossRef]

Izatt, J. A.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[CrossRef]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef] [PubMed]

Jonas, J. B.

A. Ditchl, J. B. Jonas, G. O. Naumann, “Retinal nerve fiber layer thickness in human eyes,” Greafes Arch. Clin. Exp. Ophthalmol. 237, 474–479 (1999).
[CrossRef]

J. B. Jonas, A. E. Grundler, “Correlation between mean visual field loss and morphometric optic disc variables in open angle glaucomas,” Am. J. Ophthalmol. 124, 488–497 (1997).
[PubMed]

Katz, J.

A. Sommer, J. Katz, A. Quigley, N. R. Miller, A. L. Robin, R. C. Richter, K. A. Witt, “Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss,” Arch. Ophthalmol. (Chicago) 109, 77–83 (1991).
[CrossRef]

Knighton, R. W.

D. S. Greenfield, R. W. Knighton, X. Huang, “Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry,” Am. J. Ophthalmol. 129, 715–722 (2000).
[CrossRef] [PubMed]

R. W. Knighton, X. Huang, “Optical coherence tomography of retinal nerve fiber layer, electronic letter to the editor,” Invest. Ophthalmol. Visual Sci., http://www.iovs.org/ (2000).

R. W. Knighton, X. Huang, Q. Zhou, “Microtubules contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Visual Sci. 39, 189–193 (1998).

Q. Zhou, R. W. Knighton, “Light scattering and form birefringence of parallel cylindrical arrays that represent cellular organelles of the retinal nerve fiber layer,” Appl. Opt. 36, 2273–2285 (1997).
[CrossRef] [PubMed]

Lemij, H. G.

M. T. Tjon-fo-Sang, H. G. Lemij, “The sensitivity and specificity of nerve fiber layer measurements in glaucoma as determined with scanning laser polarimetry,” Am. J. Ophthalmol. 123, 62–69 (1997).
[PubMed]

Liebmann, J. M.

A. Mistelberger, J. M. Liebmann, D. S. Greenfield, M. E. Pons, S. T. Hoh, H. Ishikawa, R. Ritch, “Heidelberg retina tomograph and optical coherence tomography in normal, ocular-hypertensive, and glaucomatous eyes,” Ophthalmology 106, 2027–2032 (1999).
[CrossRef]

Lin, C. P.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[CrossRef]

Marshall, J.

D. S. Chauhan, J. Marshall, “The interpretation of optical coherence tomography images of the retina,” Invest. Ophthalmol. Visual Sci. 40, 2332–2342 (1999).

Maurice, D. M.

D. M. Maurice, “The structure and transparency of the cornea,” J. Physiol. (London) 136, 263–286 (1957).

Membrey, L. W.

D. Poinoosawmy, J. C. Tan, C. Bunce, L. W. Membrey, R. A. Hitchings, “Longitudinal nerve fiber layer thickness change in normal-pressure glaucoma,” Graefes Arch. Clin. Exp. Ophthalmol. 238, 965–969 (2000).
[CrossRef]

Miller, N. R.

A. Sommer, J. Katz, A. Quigley, N. R. Miller, A. L. Robin, R. C. Richter, K. A. Witt, “Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss,” Arch. Ophthalmol. (Chicago) 109, 77–83 (1991).
[CrossRef]

Milner, T. E.

Mistelberger, A.

A. Mistelberger, J. M. Liebmann, D. S. Greenfield, M. E. Pons, S. T. Hoh, H. Ishikawa, R. Ritch, “Heidelberg retina tomograph and optical coherence tomography in normal, ocular-hypertensive, and glaucomatous eyes,” Ophthalmology 106, 2027–2032 (1999).
[CrossRef]

Narayan, D. G.

C. A. Toth, D. G. Narayan, S. A. Boppart, M. R. Hee, J. G. Fujimoto, R. Birngruber, C. P. Cain, C. D. DiCarlo, W. P. Roach, “A comparison of retinal morphology viewed by optical coherence tomography and light microscopy,” Arch. Ophthalmol. (Chicago) 115, 1425–1428 (1997).
[CrossRef]

Naumann, G. O.

A. Ditchl, J. B. Jonas, G. O. Naumann, “Retinal nerve fiber layer thickness in human eyes,” Greafes Arch. Clin. Exp. Ophthalmol. 237, 474–479 (1999).
[CrossRef]

Nelson, J. S.

Niessen, A. G. J. E.

A. G. J. E. Niessen, “Retinal nerve fiber layer assessment by scanning laser polarimetry and standardized photography,” Am. J. Ophthalmol. 121, 484–493 (1996).
[PubMed]

Patel, S. N.

Pedut-Kloizman, T.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Pufialito, J. G. Fujimoto, E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103, 1889–1898 (1996).
[CrossRef] [PubMed]

Poinoosawmy, D.

D. Poinoosawmy, J. C. Tan, C. Bunce, L. W. Membrey, R. A. Hitchings, “Longitudinal nerve fiber layer thickness change in normal-pressure glaucoma,” Graefes Arch. Clin. Exp. Ophthalmol. 238, 965–969 (2000).
[CrossRef]

Pons, M. E.

A. Mistelberger, J. M. Liebmann, D. S. Greenfield, M. E. Pons, S. T. Hoh, H. Ishikawa, R. Ritch, “Heidelberg retina tomograph and optical coherence tomography in normal, ocular-hypertensive, and glaucomatous eyes,” Ophthalmology 106, 2027–2032 (1999).
[CrossRef]

Pufialito, C. A.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Pufialito, J. G. Fujimoto, E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103, 1889–1898 (1996).
[CrossRef] [PubMed]

Puliafito, C. A.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[CrossRef]

Quigley, A.

A. Sommer, J. Katz, A. Quigley, N. R. Miller, A. L. Robin, R. C. Richter, K. A. Witt, “Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss,” Arch. Ophthalmol. (Chicago) 109, 77–83 (1991).
[CrossRef]

Quigley, H.

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of the Fourier-ellipsometry measurements of the retinal nerve fiber layer thickness,” Arch. Ophthalmol. (Chicago) 108, 557–560 (1990).
[CrossRef]

Quigley, H. A.

H. A. Quigley, “Reappraising the risks and benefits of aggressive glaucoma therapy,” Ophthalmology 104, 1985–1986 (1997).
[CrossRef] [PubMed]

H. A. Quigley, “The number of persons with glaucoma worldwide,” Br. J. Ophthamol. 80, 389–393 (1996).
[CrossRef]

H. A. Quigley, E. M. Addicks, W. R. Green, “Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy,” Arch. Ophthalmol. (Chicago) 100, 135–146 (1982).
[CrossRef]

Reiter, K.

A. W. Dreher, K. Reiter, “Retinal laser ellipsometry: a new method for measuring the retinal nerve fiber layer thickness distribution?” Clin. Vision Sci. 7, 481–488 (1992).

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of the Fourier-ellipsometry measurements of the retinal nerve fiber layer thickness,” Arch. Ophthalmol. (Chicago) 108, 557–560 (1990).
[CrossRef]

Richter, R. C.

A. Sommer, J. Katz, A. Quigley, N. R. Miller, A. L. Robin, R. C. Richter, K. A. Witt, “Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss,” Arch. Ophthalmol. (Chicago) 109, 77–83 (1991).
[CrossRef]

Ritch, R.

A. Mistelberger, J. M. Liebmann, D. S. Greenfield, M. E. Pons, S. T. Hoh, H. Ishikawa, R. Ritch, “Heidelberg retina tomograph and optical coherence tomography in normal, ocular-hypertensive, and glaucomatous eyes,” Ophthalmology 106, 2027–2032 (1999).
[CrossRef]

Roach, W. P.

C. A. Toth, D. G. Narayan, S. A. Boppart, M. R. Hee, J. G. Fujimoto, R. Birngruber, C. P. Cain, C. D. DiCarlo, W. P. Roach, “A comparison of retinal morphology viewed by optical coherence tomography and light microscopy,” Arch. Ophthalmol. (Chicago) 115, 1425–1428 (1997).
[CrossRef]

Robin, A. L.

A. Sommer, J. Katz, A. Quigley, N. R. Miller, A. L. Robin, R. C. Richter, K. A. Witt, “Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss,” Arch. Ophthalmol. (Chicago) 109, 77–83 (1991).
[CrossRef]

Rylander, H. G.

M. G. Ducros, J. F. de Boer, H. Huang, L. Chao, Z. Chen, J. S. Nelson, T. E. Milner, H. G. Rylander, “Polarization sensitive optical coherence tomography of the rabbit eye,” IEEE J. Sel. Top. Quantum Electron. 5, 1159–1167 (1999).
[CrossRef]

Sandruck, J. C.

Sau, S.

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

Schoenenberger, K.

Schuman, J. S.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Pufialito, J. G. Fujimoto, E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103, 1889–1898 (1996).
[CrossRef] [PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[CrossRef]

Shaw, B.

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of the Fourier-ellipsometry measurements of the retinal nerve fiber layer thickness,” Arch. Ophthalmol. (Chicago) 108, 557–560 (1990).
[CrossRef]

Shurcliff, W. A.

W. A. Shurcliff, S. S. Ballard, Polarized Light (Van Nostrand, Princeton, N.J., 1964).

Skaf, M.

R. Varma, M. Skaf, E. Barron, “Retinal nerve fiber layer thickness in normal human eyes,” Ophthalmology 103, 2114–2119 (1996).
[CrossRef] [PubMed]

Sommer, A.

A. Sommer, J. Katz, A. Quigley, N. R. Miller, A. L. Robin, R. C. Richter, K. A. Witt, “Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss,” Arch. Ophthalmol. (Chicago) 109, 77–83 (1991).
[CrossRef]

Stanworth, A.

A. Stanworth, “Polarized light studies of the cornea,” J. Exp. Biol. 30, 164–169 (1953).

Swanson, E. A.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Pufialito, J. G. Fujimoto, E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103, 1889–1898 (1996).
[CrossRef] [PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[CrossRef]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864–1866 (1993).
[CrossRef] [PubMed]

M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992).
[CrossRef]

Tan, J. C.

D. Poinoosawmy, J. C. Tan, C. Bunce, L. W. Membrey, R. A. Hitchings, “Longitudinal nerve fiber layer thickness change in normal-pressure glaucoma,” Graefes Arch. Clin. Exp. Ophthalmol. 238, 965–969 (2000).
[CrossRef]

Tjon-fo-Sang, M. T.

M. T. Tjon-fo-Sang, H. G. Lemij, “The sensitivity and specificity of nerve fiber layer measurements in glaucoma as determined with scanning laser polarimetry,” Am. J. Ophthalmol. 123, 62–69 (1997).
[PubMed]

Toth, C. A.

C. A. Toth, D. G. Narayan, S. A. Boppart, M. R. Hee, J. G. Fujimoto, R. Birngruber, C. P. Cain, C. D. DiCarlo, W. P. Roach, “A comparison of retinal morphology viewed by optical coherence tomography and light microscopy,” Arch. Ophthalmol. (Chicago) 115, 1425–1428 (1997).
[CrossRef]

van Blokland, G. J.

van Gemert, M. J. C.

Varma, R.

R. Varma, M. Skaf, E. Barron, “Retinal nerve fiber layer thickness in normal human eyes,” Ophthalmology 103, 2114–2119 (1996).
[CrossRef] [PubMed]

Vaughan, D.

D. Vaughan, T. Asbury, General Ophthalmology (Lange Medical Publications, Los Altos, Calif., 1986).

Verhelst, S. C.

Weddell, J. E.

M. J. Hogan, J. A. Alvarado, J. E. Weddell, Histology of the Human Eye (Saunders, Philadelphia, Pa., 1971).

Weinreb, R. N.

R. N. Weinreb, “Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes,” Am. J. Ophthalmol. 119, 627–636 (1995).
[PubMed]

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of the Fourier-ellipsometry measurements of the retinal nerve fiber layer thickness,” Arch. Ophthalmol. (Chicago) 108, 557–560 (1990).
[CrossRef]

Wilkins, J. R.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Pufialito, J. G. Fujimoto, E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103, 1889–1898 (1996).
[CrossRef] [PubMed]

Williams, D. R.

D. R. Williams, “Visual consequences of the foveal pit,” Invest. Ophthalmol. Visual Sci. 19, 653–667 (1980).

Witt, K. A.

A. Sommer, J. Katz, A. Quigley, N. R. Miller, A. L. Robin, R. C. Richter, K. A. Witt, “Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss,” Arch. Ophthalmol. (Chicago) 109, 77–83 (1991).
[CrossRef]

Zhou, Q.

R. W. Knighton, X. Huang, Q. Zhou, “Microtubules contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Visual Sci. 39, 189–193 (1998).

Q. Zhou, R. W. Knighton, “Light scattering and form birefringence of parallel cylindrical arrays that represent cellular organelles of the retinal nerve fiber layer,” Appl. Opt. 36, 2273–2285 (1997).
[CrossRef] [PubMed]

Am. J. Ophthalmol. (5)

J. B. Jonas, A. E. Grundler, “Correlation between mean visual field loss and morphometric optic disc variables in open angle glaucomas,” Am. J. Ophthalmol. 124, 488–497 (1997).
[PubMed]

A. G. J. E. Niessen, “Retinal nerve fiber layer assessment by scanning laser polarimetry and standardized photography,” Am. J. Ophthalmol. 121, 484–493 (1996).
[PubMed]

M. T. Tjon-fo-Sang, H. G. Lemij, “The sensitivity and specificity of nerve fiber layer measurements in glaucoma as determined with scanning laser polarimetry,” Am. J. Ophthalmol. 123, 62–69 (1997).
[PubMed]

R. N. Weinreb, “Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes,” Am. J. Ophthalmol. 119, 627–636 (1995).
[PubMed]

D. S. Greenfield, R. W. Knighton, X. Huang, “Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry,” Am. J. Ophthalmol. 129, 715–722 (2000).
[CrossRef] [PubMed]

Appl. Opt. (2)

Arch. Ophthalmol. (Chicago) (5)

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, “Histopathologic validation of the Fourier-ellipsometry measurements of the retinal nerve fiber layer thickness,” Arch. Ophthalmol. (Chicago) 108, 557–560 (1990).
[CrossRef]

A. Sommer, J. Katz, A. Quigley, N. R. Miller, A. L. Robin, R. C. Richter, K. A. Witt, “Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss,” Arch. Ophthalmol. (Chicago) 109, 77–83 (1991).
[CrossRef]

H. A. Quigley, E. M. Addicks, W. R. Green, “Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy,” Arch. Ophthalmol. (Chicago) 100, 135–146 (1982).
[CrossRef]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. (Chicago) 113, 325–332 (1995).
[CrossRef]

C. A. Toth, D. G. Narayan, S. A. Boppart, M. R. Hee, J. G. Fujimoto, R. Birngruber, C. P. Cain, C. D. DiCarlo, W. P. Roach, “A comparison of retinal morphology viewed by optical coherence tomography and light microscopy,” Arch. Ophthalmol. (Chicago) 115, 1425–1428 (1997).
[CrossRef]

Br. J. Ophthamol. (1)

H. A. Quigley, “The number of persons with glaucoma worldwide,” Br. J. Ophthamol. 80, 389–393 (1996).
[CrossRef]

Clin. Vision Sci. (1)

A. W. Dreher, K. Reiter, “Retinal laser ellipsometry: a new method for measuring the retinal nerve fiber layer thickness distribution?” Clin. Vision Sci. 7, 481–488 (1992).

Graefes Arch. Clin. Exp. Ophthalmol. (1)

D. Poinoosawmy, J. C. Tan, C. Bunce, L. W. Membrey, R. A. Hitchings, “Longitudinal nerve fiber layer thickness change in normal-pressure glaucoma,” Graefes Arch. Clin. Exp. Ophthalmol. 238, 965–969 (2000).
[CrossRef]

Greafes Arch. Clin. Exp. Ophthalmol. (1)

A. Ditchl, J. B. Jonas, G. O. Naumann, “Retinal nerve fiber layer thickness in human eyes,” Greafes Arch. Clin. Exp. Ophthalmol. 237, 474–479 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

M. G. Ducros, J. F. de Boer, H. Huang, L. Chao, Z. Chen, J. S. Nelson, T. E. Milner, H. G. Rylander, “Polarization sensitive optical coherence tomography of the rabbit eye,” IEEE J. Sel. Top. Quantum Electron. 5, 1159–1167 (1999).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (4)

D. S. Chauhan, J. Marshall, “The interpretation of optical coherence tomography images of the retina,” Invest. Ophthalmol. Visual Sci. 40, 2332–2342 (1999).

R. W. Knighton, X. Huang, “Optical coherence tomography of retinal nerve fiber layer, electronic letter to the editor,” Invest. Ophthalmol. Visual Sci., http://www.iovs.org/ (2000).

D. R. Williams, “Visual consequences of the foveal pit,” Invest. Ophthalmol. Visual Sci. 19, 653–667 (1980).

R. W. Knighton, X. Huang, Q. Zhou, “Microtubules contribution to the reflectance of the retinal nerve fiber layer,” Invest. Ophthalmol. Visual Sci. 39, 189–193 (1998).

J. Biomed. Opt. (1)

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996).
[CrossRef] [PubMed]

J. Exp. Biol. (1)

A. Stanworth, “Polarized light studies of the cornea,” J. Exp. Biol. 30, 164–169 (1953).

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Physiol. (London) (1)

D. M. Maurice, “The structure and transparency of the cornea,” J. Physiol. (London) 136, 263–286 (1957).

Ophthalmology (4)

R. Varma, M. Skaf, E. Barron, “Retinal nerve fiber layer thickness in normal human eyes,” Ophthalmology 103, 2114–2119 (1996).
[CrossRef] [PubMed]

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Pufialito, J. G. Fujimoto, E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103, 1889–1898 (1996).
[CrossRef] [PubMed]

A. Mistelberger, J. M. Liebmann, D. S. Greenfield, M. E. Pons, S. T. Hoh, H. Ishikawa, R. Ritch, “Heidelberg retina tomograph and optical coherence tomography in normal, ocular-hypertensive, and glaucomatous eyes,” Ophthalmology 106, 2027–2032 (1999).
[CrossRef]

H. A. Quigley, “Reappraising the risks and benefits of aggressive glaucoma therapy,” Ophthalmology 104, 1985–1986 (1997).
[CrossRef] [PubMed]

Opt. Lett. (4)

Other (5)

American National Standard for Safe Use of Lasers (American National Standards Institute, New York, 1993).

W. A. Shurcliff, S. S. Ballard, Polarized Light (Van Nostrand, Princeton, N.J., 1964).

M. J. Hogan, J. A. Alvarado, J. E. Weddell, Histology of the Human Eye (Saunders, Philadelphia, Pa., 1971).

C. K. Hitzenberger, W. Drexler, A. Baumgartner, A. F. Fercher, “Dispersion effects in partial coherence interferometry,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications, V. V. Tuchin, H. Podbielska, B. Ovryn, eds., Proc. SPIE2981, 29–36 (1997).
[CrossRef]

D. Vaughan, T. Asbury, General Ophthalmology (Lange Medical Publications, Los Altos, Calif., 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

PSOCT system schematic with the following elements illustrated: superluminescent diode (SLD), polarization controller (PC), red aiming laser (AL), dichroic beam splitters (DBS1 and DBS2), achromatic lenses (L1–L4), polarizers (P1 and P2), nonpolarizing and polarizing beam splitters (BS and PBS, respectively), quarter-wave plate at 850 nm (QWP), XY scanning mirrors mounted on galvanometer motors (XY galvos), surgical ophthalmic microscope (M), Goldman contact lens (GL) on the eye, retroreflector (R) in the reference arm, function generator (FG) to drive the loudspeaker on which the retroreflector is mounted, photodetectors for the vertical and horizontal polarization component detection (D1 and D2, respectively), amplifiers and bandpass filters (BPF), analog-to-digital and digital-to-analog cards (A/D, D/A) to acquire the data, and computer (C) to control the system, process the data, and display and analyze the PSOCT images.

Fig. 2
Fig. 2

I, Q, U, and V Stokes parameter images in a region superior to the optic nerve head. Each image is 2 mm (lateral) ×1.32 mm (longitudinal). The lateral scan direction is nasal to temporal (left to right). The lateral scan is represented by a black line in the fundus image in Fig. 5 below. The I-parameter intensity scale is in decibels. The Q, U, and V parameters have no unit. The bar represents 300 µm in length.

Fig. 3
Fig. 3

I, Q, U, and V Stokes parameters and B-parameter images acquired in scanned region indicated by the black arrow in Fig. 6. Each image is 4 mm (lateral) ×1.32 mm (longitudinal). The intensity scale for I and B are in dB and mm-1, respectively. Q, U, and V parameters have no unit. The bar represents 300 µm in length.

Fig. 4
Fig. 4

Plots of (b) I, Q, U, and V Stokes parameters and (c) B parameter as a function of optical depth in a sample obtained by averaging 50 adjacent A scans in the region between the two vertical white lines in (a). The I parameter is normalized to 1 in (b) and to the maximum value of B in (c). RNFL indicates a region where the B parameter is above the 3-mm-1 threshold value indicated by the horizontal dotted line in (c), and U varies quasi-monotonically in (b). The RNFL optical thickness is 180 µm, corresponding to 132-µm physical thickness. The total retinal thickness, indicated by the arrows, is 450 µm. PE indicates the location of the pigmented epithelium. (d) Schematic illustration of the rotation of Stokes vectors of light backreflected from the RNFL in the Poincaré sphere representation. P1 and P2 indicate the Stokes vectors measured at the detector of light reflected from the anterior and the posterior RNFL, respectively, and θ, the angle between P1 and P2, is an estimate of the round-trip phase retardation.

Fig. 5
Fig. 5

Fundus image of Rhesus monkey eye obtained with an ophthalmologic operation microscope. The optic nerve head at the lower right corner appears white and is approximately 2 mm in diameter. The superior quadrant is in the upper part of the image, and the temporal side is the left. Images presented in Fig. 2 were acquired in a lateral scan indicated by the black arrow. The arrow indicates the direction of the scan (nasal to temporal). The aiming beam is visible at the end of the arrow. The white box indicates the histological tissue sample taken, and the dotted white line indicates the position of the histology section used to compare PSOCT and histology measurements of RNFL thickness. The white spot in the left part of the image is an artifact that is due to light reflection on focusing optics. The white bar represents 2 mm in length.

Fig. 6
Fig. 6

Rhesus monkey fundus. The black arrow illustrates the scanned line. The Stokes parameter images acquired in this scan are presented in Fig. 3. The arrow indicates lateral scanning direction: The left and right sides of images correspond to the start and the end of the arrow, respectively. The aiming beam is visible at the start of the arrow. The two white boxes indicate the histology samples taken from the retina, and the white dotted lines indicate the histology section used to measure RNFL thickness along the PSOCT scan. Cross registration between histology and PSOCT RNFL thickness measurement locations is done by using anatomical features such as blood vessels and optic nerve head. The bar represents 2 mm in length.

Fig. 7
Fig. 7

(a) B-parameter image obtained from the Q, U, and V parameters presented in Fig. 2 and (b) binary birefringence image computed from the B-parameter image. The bar represents 300 µm in length. (c) RNFL thickness as a function of lateral position measured with PSOCT (solid line) and with histology (solid squares). Error bars arise from the uncertainty in cross-registering PSOCT scans and histology sections. Horizontal error bars are ±100 µm. The method to compute the length of the vertical error bars is explained in the text.

Fig. 8
Fig. 8

RNFL thickness as a function of lateral position calculated by thresholding the B-parameter image (solid curve) and measured on histology sections (solid squares). The threshold is set at 3 mm-1. Error bars arise from the uncertainty in cross-registering PSOCT scans and histology sections. Horizontal error bars are ±100 µm. The method to compute the length of the vertical error bars is explained in the text.

Fig. 9
Fig. 9

Single-pass phase retardation between orthogonal-polarization components that is due to propagation through the anterior eye segment as a function of lateral position along PSOCT scans. Plots (a) and (b) were derived from the values of the Stokes parameters at the vitreous–retinal interface in Figs. 2 and 3.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Lz=2 ln 2πλ2Δλ.
f=2vrλ0,
I(z)=10 log10[AH(z)2+AV(z)2],
Q(z)=[AH(z)]2-[Av(z)]2[AH(z)]2+[AV(z)]2,
U(z)=AH(z)Av(z)cos[ϕH(z)-ϕV(z)][AH(z)]2+[AV(z)]2,
V(z)=-AH(z)Av(z)sin[ϕH(z)-ϕV(z)][AH(z)]2+[AV(z)]2,
B=dQdz+dUdz+dVdz,
θ=arccosP1·P2|P1||P2|±kπ,
Δn=nλθ4πd,

Metrics