W. C. Chew, W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microwave Opt. Technol. Lett. 7, 599–604 (1994).

[CrossRef]

D. B. Davidson, R. W. Ziolkowski, “Body-of-revolution finite-difference time-domain modeling of space-time focusing by a three-dimensional lens,” J. Opt. Soc. Am. A 11, 1471–1490 (1994).

[CrossRef]

D. A. Pommet, M. G. Moharam, E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827–1834 (1994).

[CrossRef]

A. A. Kishk, L. Shafai, “Different formulations for numerical solution of single or multibodies of revolution with mixed boundary conditions,” IEEE Trans. Antennas Propag. 34, 666–673 (1986).

[CrossRef]

A. A. Kishk, L. Shafai, “On the accuracy limits of different integral-equation formulations for numerical solution of dielectric bodies of revolution,” Can. J. Phys. 63, 1532–1539 (1985).

[CrossRef]

M. A. Morgan, K. K. Mei, “Finite-element computation of scattering by inhomogeneous penetrable bodies of revolution,” IEEE Trans. Antennas Propag. 27, 202–214 (1979).

[CrossRef]

T. K. Wu, L. L. Tsai, “Scattering from arbitrarily-shaped lossy dielectric bodies of revolution,” Radio Sci. 12, 709–718 (1977).

[CrossRef]

J. R. Mautz, R. F. Harrington, “Radiation and scattering from bodies of revolution,” Appl. Sci. Res. 20, 405–435 (1969).

[CrossRef]

M. G. Andreasen, “Scattering from bodies of revolution,” IEEE Trans. Antennas Propag. 13, 303–310 (1965).

[CrossRef]

M. G. Andreasen, “Scattering from bodies of revolution,” IEEE Trans. Antennas Propag. 13, 303–310 (1965).

[CrossRef]

W. C. Chew, W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microwave Opt. Technol. Lett. 7, 599–604 (1994).

[CrossRef]

J. R. Mautz, R. F. Harrington, “Radiation and scattering from bodies of revolution,” Appl. Sci. Res. 20, 405–435 (1969).

[CrossRef]

A. A. Kishk, L. Shafai, “Different formulations for numerical solution of single or multibodies of revolution with mixed boundary conditions,” IEEE Trans. Antennas Propag. 34, 666–673 (1986).

[CrossRef]

A. A. Kishk, L. Shafai, “On the accuracy limits of different integral-equation formulations for numerical solution of dielectric bodies of revolution,” Can. J. Phys. 63, 1532–1539 (1985).

[CrossRef]

J. R. Mautz, R. F. Harrington, “Radiation and scattering from bodies of revolution,” Appl. Sci. Res. 20, 405–435 (1969).

[CrossRef]

M. A. Morgan, K. K. Mei, “Finite-element computation of scattering by inhomogeneous penetrable bodies of revolution,” IEEE Trans. Antennas Propag. 27, 202–214 (1979).

[CrossRef]

M. A. Morgan, K. K. Mei, “Finite-element computation of scattering by inhomogeneous penetrable bodies of revolution,” IEEE Trans. Antennas Propag. 27, 202–214 (1979).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, W. A. Beck, S. Shi, X. Gao, “Three-dimensional analysis of subwavelength diffractive optical elements with the finite-difference time-domain method,” Appl. Opt. 39, 2871–1880 (2000).

[CrossRef]

D. W. Prather, S. Shi, “Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric DOEs,” J. Opt. Soc. Am. A 16, 1131–1142 (1999).

[CrossRef]

S. Shi, D. W. Prather, “Vector-based plane-wave spectrum method for the propagation of cylindrical electromagnetic fields,” Opt. Lett. 24, 1445–1447 (1999).

[CrossRef]

A. A. Kishk, L. Shafai, “Different formulations for numerical solution of single or multibodies of revolution with mixed boundary conditions,” IEEE Trans. Antennas Propag. 34, 666–673 (1986).

[CrossRef]

A. A. Kishk, L. Shafai, “On the accuracy limits of different integral-equation formulations for numerical solution of dielectric bodies of revolution,” Can. J. Phys. 63, 1532–1539 (1985).

[CrossRef]

M. S. Mirotznik, D. W. Prather, J. N. Mait, W. A. Beck, S. Shi, X. Gao, “Three-dimensional analysis of subwavelength diffractive optical elements with the finite-difference time-domain method,” Appl. Opt. 39, 2871–1880 (2000).

[CrossRef]

D. W. Prather, S. Shi, “Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric DOEs,” J. Opt. Soc. Am. A 16, 1131–1142 (1999).

[CrossRef]

S. Shi, D. W. Prather, “Vector-based plane-wave spectrum method for the propagation of cylindrical electromagnetic fields,” Opt. Lett. 24, 1445–1447 (1999).

[CrossRef]

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

A. Taflove, Computational Electromagnetics: The Finite-Difference Time Domain Method (Artech House, Boston, Mass., 1995).

T. K. Wu, L. L. Tsai, “Scattering from arbitrarily-shaped lossy dielectric bodies of revolution,” Radio Sci. 12, 709–718 (1977).

[CrossRef]

W. C. Chew, W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microwave Opt. Technol. Lett. 7, 599–604 (1994).

[CrossRef]

T. K. Wu, L. L. Tsai, “Scattering from arbitrarily-shaped lossy dielectric bodies of revolution,” Radio Sci. 12, 709–718 (1977).

[CrossRef]

D. A. Gremaux, N. C. Gallagher, “Limits of scalar diffraction theory for conducting gratings,” Appl. Opt. 32, 1948–1953 (1993).

[CrossRef]
[PubMed]

M. S. Mirotznik, D. W. Prather, J. N. Mait, W. A. Beck, S. Shi, X. Gao, “Three-dimensional analysis of subwavelength diffractive optical elements with the finite-difference time-domain method,” Appl. Opt. 39, 2871–1880 (2000).

[CrossRef]

J. R. Mautz, R. F. Harrington, “Radiation and scattering from bodies of revolution,” Appl. Sci. Res. 20, 405–435 (1969).

[CrossRef]

A. A. Kishk, L. Shafai, “On the accuracy limits of different integral-equation formulations for numerical solution of dielectric bodies of revolution,” Can. J. Phys. 63, 1532–1539 (1985).

[CrossRef]

A. A. Kishk, L. Shafai, “Different formulations for numerical solution of single or multibodies of revolution with mixed boundary conditions,” IEEE Trans. Antennas Propag. 34, 666–673 (1986).

[CrossRef]

M. G. Andreasen, “Scattering from bodies of revolution,” IEEE Trans. Antennas Propag. 13, 303–310 (1965).

[CrossRef]

M. A. Morgan, K. K. Mei, “Finite-element computation of scattering by inhomogeneous penetrable bodies of revolution,” IEEE Trans. Antennas Propag. 27, 202–214 (1979).

[CrossRef]

D. B. Davidson, R. W. Ziolkowski, “Body-of-revolution finite-difference time-domain modeling of space-time focusing by a three-dimensional lens,” J. Opt. Soc. Am. A 11, 1471–1490 (1994).

[CrossRef]

D. W. Prather, S. Shi, “Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric DOEs,” J. Opt. Soc. Am. A 16, 1131–1142 (1999).

[CrossRef]

D. A. Pommet, M. G. Moharam, E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827–1834 (1994).

[CrossRef]

W. C. Chew, W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microwave Opt. Technol. Lett. 7, 599–604 (1994).

[CrossRef]

T. K. Wu, L. L. Tsai, “Scattering from arbitrarily-shaped lossy dielectric bodies of revolution,” Radio Sci. 12, 709–718 (1977).

[CrossRef]

A. Taflove, Computational Electromagnetics: The Finite-Difference Time Domain Method (Artech House, Boston, Mass., 1995).

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).