Abstract

For decades, crystalline silicon (Si) has been the semiconductor of choice for the majority of applications in microelectronics. Recent advances in material science have focused attention on the silicon-on-insulator (SOI) platform, a submicrometer-thick layer of single crystal Si resting on an insulating silicon dioxide (SiO2) layer. Here we calculate the lifetime of an electric dipole moment oscillating in the cover region of several canonical Si waveguiding structures. We show that the vicinity just above SOI produces the most dramatic changes to the radiative lifetime and thus the power spectrum of the emitting dipole. We demonstrate that SOI stands apart from other Si-based optoelectronic platforms in its ability to transport energy, in the form of light, away from an oscillating electric dipole via highly localized, optical- and IR-frequency guided waves.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription