Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Theoretical, experimental, and computational aspects of optical property determination of turbid media by using frequency-domain laser infrared photothermal radiometry

Not Accessible

Your library or personal account may give you access

Abstract

In this work, the optical and thermal properties of tissuelike materials are measured by using frequency-domain infrared photothermal radiometry. This technique is better suited for quantitative multiparameter optical measurements than the widely used pulsed-laser photothermal radiometry (PPTR) because of the availability of two independent signal channels, amplitude and phase, and the superior signal-to-noise ratio provided by synchronous lock-in detection. A rigorous three-dimensional (3-D) thermal-wave formulation with a 3-D diffuse and coherent photon-density-wave source is applied to data from model phantoms. The combined theoretical, experimental, and computational methodology shows good promise with regard to its analytical ability to measure optical properties of turbid media uniquely, as compared with PPTR, which exhibits uniqueness problems. From data sets obtained by using calibrated test phantoms, the reduced optical scattering and absorption coefficients were found to be within 20% and 10%, respectively, of the values independently derived by using Mie theory and spectrophotometric measurements.

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
Quantitative dental measurements by use of simultaneous frequency-domain laser infrared photothermal radiometry and luminescence

Lena Nicolaides, Chris Feng, Andreas Mandelis, and Stephen H. Abrams
Appl. Opt. 41(4) 768-777 (2002)

Determination of the optical properties of two-layer turbid media by use of a frequency-domain hybrid Monte Carlo diffusion model

George Alexandrakis, David R. Busch, Gregory W. Faris, and Michael S. Patterson
Appl. Opt. 40(22) 3810-3821 (2001)

Analysis of layered scattering materials by pulsed photothermal radiometry: application to photon propagation in tissue

I. Alex Vitkin, Brian C. Wilson, and R. Rox Anderson
Appl. Opt. 34(16) 2973-2982 (1995)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (33)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved