Abstract

Multilevel diffractive optical elements are necessary for achieving high-efficiency performance. Here the diffraction efficiency of a multilevel phase-only diffractive lens is analyzed. Approximate, as well as more accurate, approaches are presented. Both plane-wave and Gaussian illumination are discussed. It is shown that for many practical cases the diffraction efficiency can be determined by only a single parameter that takes into account the spatial bandwidth product as well as the focal length of the lens and the illumination wavelength. The analysis is based on the scalar theory and the thin-element approximation. Justification for doing this is presented. The results are valid for lenses with at least F/5.

© 2001 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription