Abstract

The effect of inherent location uncertainty on the detection of stationary targets was determined in noisy image sequences. Targets were thick and thin projected cylinders mimicking arteries, catheters, and guide wires in medical imaging x-ray fluoroscopy. With the use of an adaptive forced-choice method, detection contrast sensitivity (the inverse of contrast) was measured both with and without marker cues that directed the attention of observers to the target location. With the probability correct clamped at 80%, contrast sensitivity increased an average of 77% when the marker was added to the thin-cylinder target. There was an insignificant effect on the thick cylinder. The large enhancement with the thin cylinder was obtained even though the target was located exactly in the center of a small panel, giving observers the impression that it was well localized. Psychometric functions consisting of d plotted as a function of the square root of the signal-energy-to-noise-ratio gave a positive x intercept for the case of the thin cylinder without a marker. This x intercept, characteristic of uncertainty in other types of detection experiments, disappeared when the marker was added or when the thick cylinder was used. Inherent location uncertainty was further characterized by using four different markers with varying proximity to the target. Visual detection by human observers increased monotonically as the markers better localized the target. Human performance was modeled as a matched-filter detector with an uncertainty in the placement of the template. The removal of a location cue was modeled by introducing a location uncertainty of ≈0.4 mm on the display device or only 7 μm on the retina, a size on the order of a single photoreceptor field. We conclude that detection is affected by target location uncertainty on the order of cellular dimensions, an observation with important implications for detection mechanisms in humans. In medical imaging, the results argue strongly for inclusion of high-contrast visualization markers on catheters and other interventional devices.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription