Abstract

We study the use of coherent counterpropagating interfering waves to increase threefold to sevenfold the optical bandwidth and the resolution of fluorescence microscopy along the optic axis. Systematic comparison of the point-spread function and the optical transfer function (OTF) for the standing-wave microscope (SWM), the incoherent illumination interference image interference microscope (I5M), and the 4Pi confocal microscope reveals essential differences among their resolution capabilities. It is shown that the OTF’s of these microscopes differ strongly in contiguity and amplitude within the enlarged range of transferred frequencies, and therefore they also differ in their ability to provide data from which interference artifacts can be removed. We demonstrate that for practical aperture angles the production of an interference pattern is insufficient for improving the axial resolution by the expected factor of 3–7. Conditions of the OTF for unambiguous improvement of axial resolution of arbitrary objects are fulfilled not at all in the SWM, partially in the I5M, and fully in the two-photon 4Pi confocal microscope.

© 2001 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion microscopy,” Opt. Lett. 19, 780–782 (1994).
    [CrossRef] [PubMed]
  2. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution limit broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97, 8206–8210 (2000).
    [CrossRef]
  3. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1993).
  4. J. Pawley, Handbook of Biological Confocal Microscopy (Plenum, New York, 1995).
  5. T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).
  6. F. Lanni, Applications of Fluorescence in the Biomedical Sciences, 1st ed. (Liss, New York, 1986).
  7. B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature (London) 366, 44–48 (1993).
    [CrossRef]
  8. S. Hell, E. H. K. Stelzer, “Properties of a 4Pi-confocal fluorescence microscope,” J. Opt. Soc. Am. A 9, 2159–2166 (1992).
    [CrossRef]
  9. S. W. Hell, M. Schrader, H. T. M. van der Voort, “Far-field fluorescence microscopy with three-dimensional resolution in the 100 nm range,” J. Microsc. (Oxford) 185, 1–5 (1997).
    [CrossRef]
  10. M. G. L. Gustafsson, D. A. Agard, J. W. Sedat, “Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses,” in Three-Dimensional Microscopy: Image Acquisition and Processing II, T. Wilson, C. J. Cogswell, eds., Proc. SPIE2412, 147–156 (1995).
  11. M. G. L. Gustafsson, D. A. Agard, J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100 nm axial resolution,” J. Microsc. (Oxford) 195, 10–16 (1999).
    [CrossRef]
  12. F. Lanni, B. Bailey, D. L. Farkas, D. L. Taylor, “Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscopy,” Bioimaging 1, 187–192 (1994).
    [CrossRef]
  13. M. G. L. Gustafsson, “Extended resolution fluorescence microscopy,” Curr. Opin. Struct. Biol. 9, 627–634 (1999).
    [CrossRef] [PubMed]
  14. M. Gu, C. J. R. Sheppard, “Three-dimensional transfer functions in 4Pi confocal microscopes,” J. Opt. Soc. Am. A 11, 1619–1627 (1994).
    [CrossRef]
  15. V. Krishnamurthi, B. Bailey, F. Lanni, “Image processing in 3-D standing wave fluorescence microscopy,” in Three-Dimensional Microscopy: Image Acquisition and Processing III, C. J. Cogswell, G. S. Kino, T. Wilson, eds., Proc. SPIE2655, 18–25 (1996).
  16. R. Freimann, S. Pentz, H. Hörler, “Development of a standing-wave fluorescence microscope with high nodal plane flatness,” J. Microsc. 187, 193–200 (1997).
    [CrossRef] [PubMed]
  17. M. Schrader, S. W. Hell, “4Pi-confocal images with axial superresolution,” J. Microsc. (Oxford) 183, 189–193 (1996).
  18. M. Nagorni, S. Hell, “4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100- to 150-nm resolution,” J. Struct. Bio. 123, 236–247 (1998).
    [CrossRef]
  19. K. Bahlmann, S. Jakobs, S. W. Hell, “4Pi-confocal microscopy of live cells,” Ultramicroscopy (to be published).
  20. S. W. Hell, “Increasing the resolution of far-field fluorescence light microscopy by point-spread-function engineering,” in Topics in Fluorescence Spectroscopy, J. R. Lakowicz, ed. (Plenum, New York, 1997), Vol. 5, pp. 361–422.
  21. W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [CrossRef] [PubMed]
  22. B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959).
    [CrossRef]
  23. K. Bahlmann, S. W. Hell, “Polarization effects in 4Pi confocal microscopy studied with water-immersion lenses,” Appl. Opt. 39, 1653–1658 (2000).
    [CrossRef]
  24. S. W. Hell, E. H. K. Stelzer, “Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation,” Opt. Commun. 93, 277–282 (1992).
    [CrossRef]
  25. S. W. Hell, M. Schrader, P. E. Hänninen, E. Soini, “Resolving fluorescence beads at 100–200 distance with a two-photon 4Pi-microscope working in the near infrared,” Opt. Commun. 117, 20–24 (1995).
    [CrossRef]
  26. M. Schrader, K. Bahlmann, G. Giese, S. W. Hell, “4Pi-confocal imaging in fixed biological specimens,” Biophys. J. 75, 1659–1668 (1998).
    [CrossRef] [PubMed]
  27. M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996), p. 142.
  28. M. Bertero, P. Boccacci, G. J. Brakenhoff, F. Malfanti, H. T. M. Van der Voort, “Three-dimensional image restoration and super-resolution in fluorescence confocal microscopy,” J. Microsc. (Oxford) 157, 3–20 (1990).
    [CrossRef]
  29. S. W. Hell, M. Nagorni, “4Pi confocal microscopy with alternate interference,” Opt. Lett. 23, 1567–1569 (1998).
    [CrossRef]
  30. R. Heintzmann, C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, P. M. Viallet, eds., Proc. SPIE3568, 185–195 (1998).
  31. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. (Oxford) 198, 82–87 (2000).
    [CrossRef]

2000 (3)

K. Bahlmann, S. W. Hell, “Polarization effects in 4Pi confocal microscopy studied with water-immersion lenses,” Appl. Opt. 39, 1653–1658 (2000).
[CrossRef]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution limit broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97, 8206–8210 (2000).
[CrossRef]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. (Oxford) 198, 82–87 (2000).
[CrossRef]

1999 (2)

M. G. L. Gustafsson, D. A. Agard, J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100 nm axial resolution,” J. Microsc. (Oxford) 195, 10–16 (1999).
[CrossRef]

M. G. L. Gustafsson, “Extended resolution fluorescence microscopy,” Curr. Opin. Struct. Biol. 9, 627–634 (1999).
[CrossRef] [PubMed]

1998 (3)

S. W. Hell, M. Nagorni, “4Pi confocal microscopy with alternate interference,” Opt. Lett. 23, 1567–1569 (1998).
[CrossRef]

M. Schrader, K. Bahlmann, G. Giese, S. W. Hell, “4Pi-confocal imaging in fixed biological specimens,” Biophys. J. 75, 1659–1668 (1998).
[CrossRef] [PubMed]

M. Nagorni, S. Hell, “4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100- to 150-nm resolution,” J. Struct. Bio. 123, 236–247 (1998).
[CrossRef]

1997 (2)

R. Freimann, S. Pentz, H. Hörler, “Development of a standing-wave fluorescence microscope with high nodal plane flatness,” J. Microsc. 187, 193–200 (1997).
[CrossRef] [PubMed]

S. W. Hell, M. Schrader, H. T. M. van der Voort, “Far-field fluorescence microscopy with three-dimensional resolution in the 100 nm range,” J. Microsc. (Oxford) 185, 1–5 (1997).
[CrossRef]

1996 (1)

M. Schrader, S. W. Hell, “4Pi-confocal images with axial superresolution,” J. Microsc. (Oxford) 183, 189–193 (1996).

1995 (1)

S. W. Hell, M. Schrader, P. E. Hänninen, E. Soini, “Resolving fluorescence beads at 100–200 distance with a two-photon 4Pi-microscope working in the near infrared,” Opt. Commun. 117, 20–24 (1995).
[CrossRef]

1994 (3)

1993 (1)

B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature (London) 366, 44–48 (1993).
[CrossRef]

1992 (2)

S. W. Hell, E. H. K. Stelzer, “Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation,” Opt. Commun. 93, 277–282 (1992).
[CrossRef]

S. Hell, E. H. K. Stelzer, “Properties of a 4Pi-confocal fluorescence microscope,” J. Opt. Soc. Am. A 9, 2159–2166 (1992).
[CrossRef]

1990 (2)

M. Bertero, P. Boccacci, G. J. Brakenhoff, F. Malfanti, H. T. M. Van der Voort, “Three-dimensional image restoration and super-resolution in fluorescence confocal microscopy,” J. Microsc. (Oxford) 157, 3–20 (1990).
[CrossRef]

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

1959 (1)

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959).
[CrossRef]

Agard, D. A.

M. G. L. Gustafsson, D. A. Agard, J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100 nm axial resolution,” J. Microsc. (Oxford) 195, 10–16 (1999).
[CrossRef]

M. G. L. Gustafsson, D. A. Agard, J. W. Sedat, “Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses,” in Three-Dimensional Microscopy: Image Acquisition and Processing II, T. Wilson, C. J. Cogswell, eds., Proc. SPIE2412, 147–156 (1995).

Bahlmann, K.

K. Bahlmann, S. W. Hell, “Polarization effects in 4Pi confocal microscopy studied with water-immersion lenses,” Appl. Opt. 39, 1653–1658 (2000).
[CrossRef]

M. Schrader, K. Bahlmann, G. Giese, S. W. Hell, “4Pi-confocal imaging in fixed biological specimens,” Biophys. J. 75, 1659–1668 (1998).
[CrossRef] [PubMed]

K. Bahlmann, S. Jakobs, S. W. Hell, “4Pi-confocal microscopy of live cells,” Ultramicroscopy (to be published).

Bailey, B.

F. Lanni, B. Bailey, D. L. Farkas, D. L. Taylor, “Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscopy,” Bioimaging 1, 187–192 (1994).
[CrossRef]

B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature (London) 366, 44–48 (1993).
[CrossRef]

V. Krishnamurthi, B. Bailey, F. Lanni, “Image processing in 3-D standing wave fluorescence microscopy,” in Three-Dimensional Microscopy: Image Acquisition and Processing III, C. J. Cogswell, G. S. Kino, T. Wilson, eds., Proc. SPIE2655, 18–25 (1996).

Bertero, M.

M. Bertero, P. Boccacci, G. J. Brakenhoff, F. Malfanti, H. T. M. Van der Voort, “Three-dimensional image restoration and super-resolution in fluorescence confocal microscopy,” J. Microsc. (Oxford) 157, 3–20 (1990).
[CrossRef]

Boccacci, P.

M. Bertero, P. Boccacci, G. J. Brakenhoff, F. Malfanti, H. T. M. Van der Voort, “Three-dimensional image restoration and super-resolution in fluorescence confocal microscopy,” J. Microsc. (Oxford) 157, 3–20 (1990).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1993).

Brakenhoff, G. J.

M. Bertero, P. Boccacci, G. J. Brakenhoff, F. Malfanti, H. T. M. Van der Voort, “Three-dimensional image restoration and super-resolution in fluorescence confocal microscopy,” J. Microsc. (Oxford) 157, 3–20 (1990).
[CrossRef]

Cremer, C.

R. Heintzmann, C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, P. M. Viallet, eds., Proc. SPIE3568, 185–195 (1998).

Denk, W.

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Dyba, M.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution limit broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97, 8206–8210 (2000).
[CrossRef]

Egner, A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution limit broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97, 8206–8210 (2000).
[CrossRef]

Farkas, D. L.

F. Lanni, B. Bailey, D. L. Farkas, D. L. Taylor, “Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscopy,” Bioimaging 1, 187–192 (1994).
[CrossRef]

B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature (London) 366, 44–48 (1993).
[CrossRef]

Freimann, R.

R. Freimann, S. Pentz, H. Hörler, “Development of a standing-wave fluorescence microscope with high nodal plane flatness,” J. Microsc. 187, 193–200 (1997).
[CrossRef] [PubMed]

Giese, G.

M. Schrader, K. Bahlmann, G. Giese, S. W. Hell, “4Pi-confocal imaging in fixed biological specimens,” Biophys. J. 75, 1659–1668 (1998).
[CrossRef] [PubMed]

Gu, M.

M. Gu, C. J. R. Sheppard, “Three-dimensional transfer functions in 4Pi confocal microscopes,” J. Opt. Soc. Am. A 11, 1619–1627 (1994).
[CrossRef]

M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996), p. 142.

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. (Oxford) 198, 82–87 (2000).
[CrossRef]

M. G. L. Gustafsson, “Extended resolution fluorescence microscopy,” Curr. Opin. Struct. Biol. 9, 627–634 (1999).
[CrossRef] [PubMed]

M. G. L. Gustafsson, D. A. Agard, J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100 nm axial resolution,” J. Microsc. (Oxford) 195, 10–16 (1999).
[CrossRef]

M. G. L. Gustafsson, D. A. Agard, J. W. Sedat, “Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses,” in Three-Dimensional Microscopy: Image Acquisition and Processing II, T. Wilson, C. J. Cogswell, eds., Proc. SPIE2412, 147–156 (1995).

Hänninen, P. E.

S. W. Hell, M. Schrader, P. E. Hänninen, E. Soini, “Resolving fluorescence beads at 100–200 distance with a two-photon 4Pi-microscope working in the near infrared,” Opt. Commun. 117, 20–24 (1995).
[CrossRef]

Heintzmann, R.

R. Heintzmann, C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, P. M. Viallet, eds., Proc. SPIE3568, 185–195 (1998).

Hell, S.

M. Nagorni, S. Hell, “4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100- to 150-nm resolution,” J. Struct. Bio. 123, 236–247 (1998).
[CrossRef]

S. Hell, E. H. K. Stelzer, “Properties of a 4Pi-confocal fluorescence microscope,” J. Opt. Soc. Am. A 9, 2159–2166 (1992).
[CrossRef]

Hell, S. W.

K. Bahlmann, S. W. Hell, “Polarization effects in 4Pi confocal microscopy studied with water-immersion lenses,” Appl. Opt. 39, 1653–1658 (2000).
[CrossRef]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution limit broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97, 8206–8210 (2000).
[CrossRef]

M. Schrader, K. Bahlmann, G. Giese, S. W. Hell, “4Pi-confocal imaging in fixed biological specimens,” Biophys. J. 75, 1659–1668 (1998).
[CrossRef] [PubMed]

S. W. Hell, M. Nagorni, “4Pi confocal microscopy with alternate interference,” Opt. Lett. 23, 1567–1569 (1998).
[CrossRef]

S. W. Hell, M. Schrader, H. T. M. van der Voort, “Far-field fluorescence microscopy with three-dimensional resolution in the 100 nm range,” J. Microsc. (Oxford) 185, 1–5 (1997).
[CrossRef]

M. Schrader, S. W. Hell, “4Pi-confocal images with axial superresolution,” J. Microsc. (Oxford) 183, 189–193 (1996).

S. W. Hell, M. Schrader, P. E. Hänninen, E. Soini, “Resolving fluorescence beads at 100–200 distance with a two-photon 4Pi-microscope working in the near infrared,” Opt. Commun. 117, 20–24 (1995).
[CrossRef]

S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated emission depletion microscopy,” Opt. Lett. 19, 780–782 (1994).
[CrossRef] [PubMed]

S. W. Hell, E. H. K. Stelzer, “Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation,” Opt. Commun. 93, 277–282 (1992).
[CrossRef]

K. Bahlmann, S. Jakobs, S. W. Hell, “4Pi-confocal microscopy of live cells,” Ultramicroscopy (to be published).

S. W. Hell, “Increasing the resolution of far-field fluorescence light microscopy by point-spread-function engineering,” in Topics in Fluorescence Spectroscopy, J. R. Lakowicz, ed. (Plenum, New York, 1997), Vol. 5, pp. 361–422.

Hörler, H.

R. Freimann, S. Pentz, H. Hörler, “Development of a standing-wave fluorescence microscope with high nodal plane flatness,” J. Microsc. 187, 193–200 (1997).
[CrossRef] [PubMed]

Jakobs, S.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution limit broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97, 8206–8210 (2000).
[CrossRef]

K. Bahlmann, S. Jakobs, S. W. Hell, “4Pi-confocal microscopy of live cells,” Ultramicroscopy (to be published).

Klar, T. A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution limit broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97, 8206–8210 (2000).
[CrossRef]

Krishnamurthi, V.

V. Krishnamurthi, B. Bailey, F. Lanni, “Image processing in 3-D standing wave fluorescence microscopy,” in Three-Dimensional Microscopy: Image Acquisition and Processing III, C. J. Cogswell, G. S. Kino, T. Wilson, eds., Proc. SPIE2655, 18–25 (1996).

Lanni, F.

F. Lanni, B. Bailey, D. L. Farkas, D. L. Taylor, “Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscopy,” Bioimaging 1, 187–192 (1994).
[CrossRef]

B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature (London) 366, 44–48 (1993).
[CrossRef]

F. Lanni, Applications of Fluorescence in the Biomedical Sciences, 1st ed. (Liss, New York, 1986).

V. Krishnamurthi, B. Bailey, F. Lanni, “Image processing in 3-D standing wave fluorescence microscopy,” in Three-Dimensional Microscopy: Image Acquisition and Processing III, C. J. Cogswell, G. S. Kino, T. Wilson, eds., Proc. SPIE2655, 18–25 (1996).

Malfanti, F.

M. Bertero, P. Boccacci, G. J. Brakenhoff, F. Malfanti, H. T. M. Van der Voort, “Three-dimensional image restoration and super-resolution in fluorescence confocal microscopy,” J. Microsc. (Oxford) 157, 3–20 (1990).
[CrossRef]

Nagorni, M.

M. Nagorni, S. Hell, “4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100- to 150-nm resolution,” J. Struct. Bio. 123, 236–247 (1998).
[CrossRef]

S. W. Hell, M. Nagorni, “4Pi confocal microscopy with alternate interference,” Opt. Lett. 23, 1567–1569 (1998).
[CrossRef]

Pawley, J.

J. Pawley, Handbook of Biological Confocal Microscopy (Plenum, New York, 1995).

Pentz, S.

R. Freimann, S. Pentz, H. Hörler, “Development of a standing-wave fluorescence microscope with high nodal plane flatness,” J. Microsc. 187, 193–200 (1997).
[CrossRef] [PubMed]

Richards, B.

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959).
[CrossRef]

Schrader, M.

M. Schrader, K. Bahlmann, G. Giese, S. W. Hell, “4Pi-confocal imaging in fixed biological specimens,” Biophys. J. 75, 1659–1668 (1998).
[CrossRef] [PubMed]

S. W. Hell, M. Schrader, H. T. M. van der Voort, “Far-field fluorescence microscopy with three-dimensional resolution in the 100 nm range,” J. Microsc. (Oxford) 185, 1–5 (1997).
[CrossRef]

M. Schrader, S. W. Hell, “4Pi-confocal images with axial superresolution,” J. Microsc. (Oxford) 183, 189–193 (1996).

S. W. Hell, M. Schrader, P. E. Hänninen, E. Soini, “Resolving fluorescence beads at 100–200 distance with a two-photon 4Pi-microscope working in the near infrared,” Opt. Commun. 117, 20–24 (1995).
[CrossRef]

Sedat, J. W.

M. G. L. Gustafsson, D. A. Agard, J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100 nm axial resolution,” J. Microsc. (Oxford) 195, 10–16 (1999).
[CrossRef]

M. G. L. Gustafsson, D. A. Agard, J. W. Sedat, “Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses,” in Three-Dimensional Microscopy: Image Acquisition and Processing II, T. Wilson, C. J. Cogswell, eds., Proc. SPIE2412, 147–156 (1995).

Sheppard, C. J. R.

M. Gu, C. J. R. Sheppard, “Three-dimensional transfer functions in 4Pi confocal microscopes,” J. Opt. Soc. Am. A 11, 1619–1627 (1994).
[CrossRef]

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).

Soini, E.

S. W. Hell, M. Schrader, P. E. Hänninen, E. Soini, “Resolving fluorescence beads at 100–200 distance with a two-photon 4Pi-microscope working in the near infrared,” Opt. Commun. 117, 20–24 (1995).
[CrossRef]

Stelzer, E. H. K.

S. W. Hell, E. H. K. Stelzer, “Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation,” Opt. Commun. 93, 277–282 (1992).
[CrossRef]

S. Hell, E. H. K. Stelzer, “Properties of a 4Pi-confocal fluorescence microscope,” J. Opt. Soc. Am. A 9, 2159–2166 (1992).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Taylor, D. L.

F. Lanni, B. Bailey, D. L. Farkas, D. L. Taylor, “Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscopy,” Bioimaging 1, 187–192 (1994).
[CrossRef]

B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature (London) 366, 44–48 (1993).
[CrossRef]

van der Voort, H. T. M.

S. W. Hell, M. Schrader, H. T. M. van der Voort, “Far-field fluorescence microscopy with three-dimensional resolution in the 100 nm range,” J. Microsc. (Oxford) 185, 1–5 (1997).
[CrossRef]

M. Bertero, P. Boccacci, G. J. Brakenhoff, F. Malfanti, H. T. M. Van der Voort, “Three-dimensional image restoration and super-resolution in fluorescence confocal microscopy,” J. Microsc. (Oxford) 157, 3–20 (1990).
[CrossRef]

Webb, W. W.

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Wichmann, J.

Wilson, T.

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).

Wolf, E.

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959).
[CrossRef]

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1993).

Appl. Opt. (1)

K. Bahlmann, S. W. Hell, “Polarization effects in 4Pi confocal microscopy studied with water-immersion lenses,” Appl. Opt. 39, 1653–1658 (2000).
[CrossRef]

Bioimaging (1)

F. Lanni, B. Bailey, D. L. Farkas, D. L. Taylor, “Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscopy,” Bioimaging 1, 187–192 (1994).
[CrossRef]

Biophys. J. (1)

M. Schrader, K. Bahlmann, G. Giese, S. W. Hell, “4Pi-confocal imaging in fixed biological specimens,” Biophys. J. 75, 1659–1668 (1998).
[CrossRef] [PubMed]

Curr. Opin. Struct. Biol. (1)

M. G. L. Gustafsson, “Extended resolution fluorescence microscopy,” Curr. Opin. Struct. Biol. 9, 627–634 (1999).
[CrossRef] [PubMed]

J. Microsc. (1)

R. Freimann, S. Pentz, H. Hörler, “Development of a standing-wave fluorescence microscope with high nodal plane flatness,” J. Microsc. 187, 193–200 (1997).
[CrossRef] [PubMed]

J. Microsc. (Oxford) (5)

M. Schrader, S. W. Hell, “4Pi-confocal images with axial superresolution,” J. Microsc. (Oxford) 183, 189–193 (1996).

S. W. Hell, M. Schrader, H. T. M. van der Voort, “Far-field fluorescence microscopy with three-dimensional resolution in the 100 nm range,” J. Microsc. (Oxford) 185, 1–5 (1997).
[CrossRef]

M. G. L. Gustafsson, D. A. Agard, J. W. Sedat, “I5M: 3D widefield light microscopy with better than 100 nm axial resolution,” J. Microsc. (Oxford) 195, 10–16 (1999).
[CrossRef]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. (Oxford) 198, 82–87 (2000).
[CrossRef]

M. Bertero, P. Boccacci, G. J. Brakenhoff, F. Malfanti, H. T. M. Van der Voort, “Three-dimensional image restoration and super-resolution in fluorescence confocal microscopy,” J. Microsc. (Oxford) 157, 3–20 (1990).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Struct. Bio. (1)

M. Nagorni, S. Hell, “4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100- to 150-nm resolution,” J. Struct. Bio. 123, 236–247 (1998).
[CrossRef]

Nature (London) (1)

B. Bailey, D. L. Farkas, D. L. Taylor, F. Lanni, “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature (London) 366, 44–48 (1993).
[CrossRef]

Opt. Commun. (2)

S. W. Hell, E. H. K. Stelzer, “Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation,” Opt. Commun. 93, 277–282 (1992).
[CrossRef]

S. W. Hell, M. Schrader, P. E. Hänninen, E. Soini, “Resolving fluorescence beads at 100–200 distance with a two-photon 4Pi-microscope working in the near infrared,” Opt. Commun. 117, 20–24 (1995).
[CrossRef]

Opt. Lett. (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S. W. Hell, “Fluorescence microscopy with diffraction resolution limit broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97, 8206–8210 (2000).
[CrossRef]

Proc. R. Soc. London, Ser. A (1)

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358–379 (1959).
[CrossRef]

Science (1)

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Other (10)

V. Krishnamurthi, B. Bailey, F. Lanni, “Image processing in 3-D standing wave fluorescence microscopy,” in Three-Dimensional Microscopy: Image Acquisition and Processing III, C. J. Cogswell, G. S. Kino, T. Wilson, eds., Proc. SPIE2655, 18–25 (1996).

K. Bahlmann, S. Jakobs, S. W. Hell, “4Pi-confocal microscopy of live cells,” Ultramicroscopy (to be published).

S. W. Hell, “Increasing the resolution of far-field fluorescence light microscopy by point-spread-function engineering,” in Topics in Fluorescence Spectroscopy, J. R. Lakowicz, ed. (Plenum, New York, 1997), Vol. 5, pp. 361–422.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1993).

J. Pawley, Handbook of Biological Confocal Microscopy (Plenum, New York, 1995).

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, New York, 1984).

F. Lanni, Applications of Fluorescence in the Biomedical Sciences, 1st ed. (Liss, New York, 1986).

M. G. L. Gustafsson, D. A. Agard, J. W. Sedat, “Sevenfold improvement of axial resolution in 3D widefield microscopy using two objective lenses,” in Three-Dimensional Microscopy: Image Acquisition and Processing II, T. Wilson, C. J. Cogswell, eds., Proc. SPIE2412, 147–156 (1995).

M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore, 1996), p. 142.

R. Heintzmann, C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” in Optical Biopsies and Microscopic Techniques III, I. J. Bigio, H. Schneckenburger, J. Slavik, K. Svanberg, P. M. Viallet, eds., Proc. SPIE3568, 185–195 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics