Abstract

The differential equation derived previously [J. Opt. Soc. Am. A 17, 95 (2000)] that describes the evolution of the polarization state of radiation propagating in a nonuniform, anisotropic, and dichroic medium is extended to include the effect of ray refraction.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Segre, “Evolution of the polarization state for radiation propagating in a nonuniform, birefringent, optically active, and dichroic medium: the case of a magentized plasma,” J. Opt. Soc. Am. A 17, 95–100 (2000). In this paper there are four minor errors: (1) On the line after Eq. (5), it should read s1=-s2; (2) Eq. (11) should read ϕ= ϕ1-ϕ2=(ω/c)(μ1-μ2)z+ϕ0; (3) Eq. (12) should read I1/I2=(I1/I2)0exp[-(κ1-κ2)z], and (4) the left-hand side of Eq. (13) should be u.
    [CrossRef]
  2. S. E. Segre, “A review of plasma polarimetry,” Plasma Phys. Controlled Fusion 41, R57–R100 (1999).
    [CrossRef]
  3. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1980).
  4. B. M. Budak, S. V. Fomin, Multiple Integrals, Field Theory and Series (MIR Publishers, Moscow, 1973).

2000

1999

S. E. Segre, “A review of plasma polarimetry,” Plasma Phys. Controlled Fusion 41, R57–R100 (1999).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1980).

Budak, B. M.

B. M. Budak, S. V. Fomin, Multiple Integrals, Field Theory and Series (MIR Publishers, Moscow, 1973).

Fomin, S. V.

B. M. Budak, S. V. Fomin, Multiple Integrals, Field Theory and Series (MIR Publishers, Moscow, 1973).

Segre, S. E.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d(μt)dh=μ,
t=d(r)dh.
dsdz=(W+U)×s
n=1κdtdh,b=t×n,
dbdh=-τn,
τ=-ndbdh.
dsb=2(s3×s)dψ=-2τ(s3×s)dh,
dsa=(W+U)×sdh,
dsdh=(W+U-2τs3)×s,

Metrics