W. Cai, B. B. Das, F. Liu, F. A. Feng, M. Lax, R. R. Alfano, “Three-dimensional image reconstruction in
highly scattering turbid media,” in Optical
Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model and Human
Studies II, B. Chance, R. R. Alfano, eds. Proc. SPIE2979, 241–249
(1997).

R. L. Barbour, R. Andronics, Q. Sha, H. L. Graber, I. Soller, “Development and evaluation of the IRIS-OPI
scanner, a general-purpose optical tomography imaging
system,” in Advances in Optical Imaging and Photon
Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and
Photonics Series (Optical Society of
America, Washington, D.C.,
1998), pp.
251–255.

L. Armijo, “Minimization of functions having Lipschitz
continuous first partial derivatives,” Pacific J.
Math. 16, 1–3
(1966).

[CrossRef]

R. L. Barbour, H. Graber, Y. Wang, J. Chang, R. Aronson, “Perturbation approach for optical diffusion
tomography using continuous-wave and time-resolved data,”
in Medical Optical Tomography: Functional Imaging and Monitoring,
G. Muller, B. Chance, R. Alfano, J. Beuthan, E. Gratton, M. Kashke, B. Masters, S. Svanberg, P. van der Zee, eds. (SPIE Press,
Bellingham, Wash., 1993), pp.
87–120.

J. C. Hebden, S. Arridge, D. T. Delpy, “Optical imagingeb in medicine: I.
Experimental techniques,” Phys. Med.
Biol. 42, 825–840
(1997).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, “Comparison of two- and three-dimensional
reconstruction methods in optical tomography,”
Appl. Opt. 37, 7419–7428
(1998).

[CrossRef]

S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modeling
and reconstruction,” Phys. Med. Biol. 42, 841–853
(1997).

[CrossRef]
[PubMed]

S. R. Arridge, M. R. Schweiger, “Image reconstruction in optical
tomography,” Philos. Trans. R. Soc. London, Ser.
B 352, 717–726
(1997).

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweiger, “A gradient-based optimization scheme for
optical tomography,” Opt. Express 2, 213–226
(1997).

[CrossRef]

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near-infrared
absorption images,” in Inverse Problems in
Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 372–383
(1992).

[CrossRef]

A. Tikhonov, V. Arsenin, Solution of Ill-Posed Problems
(Wiley, New York,
1977).

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency domain multichannel optical
detector for noninvasive tissue spectroscopy and
oximetry,” Opt. Eng. (Bellingham) 34, 32–42
(1995).

[CrossRef]

J. Chang, H. L. Graberm, R. L. Barbour, “Luminescence optical tomography of dense
scattering media,” J. Opt. Soc. Am. A 14, 288–299
(1997).

[CrossRef]

Y. Yao, Y. Wang, Y. Pei, W. Zhu, R. L. Barbour, “Frequency-domain optical imaging of
absorption and scattering by a Born iterative method,”
J. Opt. Soc. Am. A 14, 325–342
(1997).

[CrossRef]

Y. Yao, Y. Pei, Y. Wang, R. L. Barbour, “Born-iterative methods for imaging of
heterogeneous scattering media and its application to simulated breast
tissue,” in Optical Tomography and Spectroscopy of
Tissue: Theory, Instrumentation, Model and Human Studies II,
B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 231–239
(1997).

R. L. Barbour, R. Andronics, Q. Sha, H. L. Graber, I. Soller, “Development and evaluation of the IRIS-OPI
scanner, a general-purpose optical tomography imaging
system,” in Advances in Optical Imaging and Photon
Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and
Photonics Series (Optical Society of
America, Washington, D.C.,
1998), pp.
251–255.

R. L. Barbour, H. Graber, Y. Wang, J. Chang, R. Aronson, “Perturbation approach for optical diffusion
tomography using continuous-wave and time-resolved data,”
in Medical Optical Tomography: Functional Imaging and Monitoring,
G. Muller, B. Chance, R. Alfano, J. Beuthan, E. Gratton, M. Kashke, B. Masters, S. Svanberg, P. van der Zee, eds. (SPIE Press,
Bellingham, Wash., 1993), pp.
87–120.

J. R. Lakowicz, K. W. Berndt, “Lifetime-selective fluorescence imaging
using an rf phase-sensitive camera,” Rev. Sci.
Instrum. 62, 1727–1734
(1991).

[CrossRef]

D. P. Bertsekas, “Projected Newton method for optimization
problems with simple contraints,” SIAM J. Control
Optim. 20, 221–246
(1982).

[CrossRef]

A. M. Siegel, J. J. A. Marota, D. A. Boas, “Design and evaluation of a continuous-wave
diffuse optical tomography system,” Opt.
Express 4, 287–298
(1999).

[CrossRef]
[PubMed]

M. A. O’Leary, D. A. Boas, D. X. L. B. Chance, A. G. Yodh, “Fluorescence lifetime imaging in turbid
media,” Opt. Lett. 21, 158–160
(1996).

[CrossRef]
[PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid
media by frequency-domain diffusion photon tomography,”
Opt. Lett. 20, 426–428
(1995).

[CrossRef]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves
by spherical heterogeneities within turbid media: analytic solutions and
applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891
(1994).

[CrossRef]

W. Cai, B. B. Das, F. Liu, F. A. Feng, M. Lax, R. R. Alfano, “Three-dimensional image reconstruction in
highly scattering turbid media,” in Optical
Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model and Human
Studies II, B. Chance, R. R. Alfano, eds. Proc. SPIE2979, 241–249
(1997).

R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, G. Valentini, “Fluorescence lifetime imaging of
experimental tumors in the matoporhyrin derivate–sensitized
mice,” Photochem. Photobiol. 66, 229–236
(1997).

[CrossRef]
[PubMed]

T. M. Durduran, J. P. Culver, M. J. Holboke, X. D. Li, L. Zubkov, B. Chance, D. Pattanayak, A. G. Yodh, “Algorithms for 3D localization and imaging
using near-field diffraction tomography with diffuse
light,” Opt. Express 4, 247–262
(1999).

[CrossRef]
[PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid
media by frequency-domain diffusion photon tomography,”
Opt. Lett. 20, 426–428
(1995).

[CrossRef]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves
by spherical heterogeneities within turbid media: analytic solutions and
applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891
(1994).

[CrossRef]

B. C. Wilson, E. M. Sevick, M. S. Patterson, B. Chance, “Time-dependent optical spectroscopy and
imaging for biomedical applications,” Proc.
IEEE 80, 918–930
(1992).

[CrossRef]

J. Chang, H. L. Graberm, R. L. Barbour, “Luminescence optical tomography of dense
scattering media,” J. Opt. Soc. Am. A 14, 288–299
(1997).

[CrossRef]

R. L. Barbour, H. Graber, Y. Wang, J. Chang, R. Aronson, “Perturbation approach for optical diffusion
tomography using continuous-wave and time-resolved data,”
in Medical Optical Tomography: Functional Imaging and Monitoring,
G. Muller, B. Chance, R. Alfano, J. Beuthan, E. Gratton, M. Kashke, B. Masters, S. Svanberg, P. van der Zee, eds. (SPIE Press,
Bellingham, Wash., 1993), pp.
87–120.

W. C. Chew, Y. M. Wang, “Reconstruction of two-dimensional
permittivity distribution using the distorted Born iterative
method,” IEEE Trans. Med. Imaging 9, 218–225
(1995).

[CrossRef]

B. Christianson, A. J. Davies, L. C. W. Dixon, R. Roy, P. van der Zee, “Giving reverse differentiation a helping
hand,” Opt. Meth. Software 8, 53–67
(1997).

[CrossRef]

A. J. Davies, B. Christianson, L. C. W. Dixon, R. Roy, P. van der Zee, “Reverse differentiation and the inverse
diffusion problem,” Adv. Eng. Softw. 28, 217–221
(1997).

[CrossRef]

S. B. Colak, G. W. Hooft, D. G. Papaioannou, M. B. van der Mark, “3D backprojection tomography for medical
optical imaging,” in Advances in Optical Imaging
and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and
Photonics Series (Optical Society of
America, Washington, D.C.,
1992), pp.
294–298.

A. R. Conn, I. M. Gould, Ph. L. Toint, “Testing a class of methods for solving
minimization problems with simply bounds on the
variables,” Math. Comput. 50, 399–430
(1988).

[CrossRef]

A. R. Conn, I. M. Gould, Ph. L. Toint, LANCELOT: a Fortran Package for Large-Scale Nonlinear
Optimization (release A), Vol. 17 of
Computational Mathematics Series
(Springer-Verlag, New
York, 1992).

[CrossRef]

R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, G. Valentini, “Fluorescence lifetime imaging of
experimental tumors in the matoporhyrin derivate–sensitized
mice,” Photochem. Photobiol. 66, 229–236
(1997).

[CrossRef]
[PubMed]

T. M. Durduran, J. P. Culver, M. J. Holboke, X. D. Li, L. Zubkov, B. Chance, D. Pattanayak, A. G. Yodh, “Algorithms for 3D localization and imaging
using near-field diffraction tomography with diffuse
light,” Opt. Express 4, 247–262
(1999).

[CrossRef]
[PubMed]

W. Cai, B. B. Das, F. Liu, F. A. Feng, M. Lax, R. R. Alfano, “Three-dimensional image reconstruction in
highly scattering turbid media,” in Optical
Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model and Human
Studies II, B. Chance, R. R. Alfano, eds. Proc. SPIE2979, 241–249
(1997).

B. Christianson, A. J. Davies, L. C. W. Dixon, R. Roy, P. van der Zee, “Giving reverse differentiation a helping
hand,” Opt. Meth. Software 8, 53–67
(1997).

[CrossRef]

A. J. Davies, B. Christianson, L. C. W. Dixon, R. Roy, P. van der Zee, “Reverse differentiation and the inverse
diffusion problem,” Adv. Eng. Softw. 28, 217–221
(1997).

[CrossRef]

J. C. Hebden, S. Arridge, D. T. Delpy, “Optical imagingeb in medicine: I.
Experimental techniques,” Phys. Med.
Biol. 42, 825–840
(1997).

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near-infrared
absorption images,” in Inverse Problems in
Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 372–383
(1992).

[CrossRef]

K. Wells, J. C. Hebden, F. E. W. Schmidt, D. T. Delpy, “The UCL multichannel time-resolved system
for optical tomography,” in Optical Tomography and
Spectroscopy of Tissue, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 590–607
(1997).

R. S. Dembo, T. Steihaug, “Truncated Newton algorithms for large-scale
unconstrained optimization,” Math.
Program. 26, 190–212
(1983).

[CrossRef]

B. Christianson, A. J. Davies, L. C. W. Dixon, R. Roy, P. van der Zee, “Giving reverse differentiation a helping
hand,” Opt. Meth. Software 8, 53–67
(1997).

[CrossRef]

A. J. Davies, B. Christianson, L. C. W. Dixon, R. Roy, P. van der Zee, “Reverse differentiation and the inverse
diffusion problem,” Adv. Eng. Softw. 28, 217–221
(1997).

[CrossRef]

L. C. W. Dixon, R. C. Price, “Numerical experience with the truncated
Newton method for unconstrained optimization,” J.
Optim. Theory Appl. 56, 245–255
(1988).

[CrossRef]

M. J. Eppstein, D. E. Dougherty, T. L. Troy, E. M. Sevick-Muraca, “Biomedical optical tomography using dynamic
parameterization and Bayesian conditioning on photon migration
measurements,” Appl. Opt. 38, 2138–2150
(1999).

[CrossRef]

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, E. M. Sevick-Muraca, “Three-dimensional optical
tomography,” in Optical Tomography and
Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 97–105
(1999).

[CrossRef]

T. M. Durduran, J. P. Culver, M. J. Holboke, X. D. Li, L. Zubkov, B. Chance, D. Pattanayak, A. G. Yodh, “Algorithms for 3D localization and imaging
using near-field diffraction tomography with diffuse
light,” Opt. Express 4, 247–262
(1999).

[CrossRef]
[PubMed]

M. J. Eppstein, D. E. Dougherty, T. L. Troy, E. M. Sevick-Muraca, “Biomedical optical tomography using dynamic
parameterization and Bayesian conditioning on photon migration
measurements,” Appl. Opt. 38, 2138–2150
(1999).

[CrossRef]

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, E. M. Sevick-Muraca, “Three-dimensional optical
tomography,” in Optical Tomography and
Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 97–105
(1999).

[CrossRef]

F. Facchine, J. Judice, J. Soares, “An active set Newton algorithm for
large-scale nonlinear programs with box constraints,”
SIAM J. Optim. 8, 158–186
(1998).

[CrossRef]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency domain multichannel optical
detector for noninvasive tissue spectroscopy and
oximetry,” Opt. Eng. (Bellingham) 34, 32–42
(1995).

[CrossRef]

S. A. Walker, S. Fantini, E. Gratton, “Back-projection reconstructions in
cylindrical inhomogeneities from frequency-domain optical measurements in turbid
media,” in Advances in Optical Imaging and Photon
Migration, R. R. Alfano, J. G. Fujimoto eds., Vol. 2 of OSA Trends in Optics and
Photonics Series (Optical Society of
America, Washington, D.C.),
1992, pp.
137–141.

W. Cai, B. B. Das, F. Liu, F. A. Feng, M. Lax, R. R. Alfano, “Three-dimensional image reconstruction in
highly scattering turbid media,” in Optical
Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model and Human
Studies II, B. Chance, R. R. Alfano, eds. Proc. SPIE2979, 241–249
(1997).

R. Fletcher, M. P. Jackson, “Minimization of a quadratic function on many
variables subject only to upper and lower bounds,”
J. Inst. Math. Appl. 14, 159–174
(1974).

[CrossRef]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency domain multichannel optical
detector for noninvasive tissue spectroscopy and
oximetry,” Opt. Eng. (Bellingham) 34, 32–42
(1995).

[CrossRef]

P. E. Gill, W. Murray, M. H. Wright, Practical Optimization
(Academic, London,
1981).

A. R. Conn, I. M. Gould, Ph. L. Toint, “Testing a class of methods for solving
minimization problems with simply bounds on the
variables,” Math. Comput. 50, 399–430
(1988).

[CrossRef]

A. R. Conn, I. M. Gould, Ph. L. Toint, LANCELOT: a Fortran Package for Large-Scale Nonlinear
Optimization (release A), Vol. 17 of
Computational Mathematics Series
(Springer-Verlag, New
York, 1992).

[CrossRef]

R. L. Barbour, H. Graber, Y. Wang, J. Chang, R. Aronson, “Perturbation approach for optical diffusion
tomography using continuous-wave and time-resolved data,”
in Medical Optical Tomography: Functional Imaging and Monitoring,
G. Muller, B. Chance, R. Alfano, J. Beuthan, E. Gratton, M. Kashke, B. Masters, S. Svanberg, P. van der Zee, eds. (SPIE Press,
Bellingham, Wash., 1993), pp.
87–120.

R. L. Barbour, R. Andronics, Q. Sha, H. L. Graber, I. Soller, “Development and evaluation of the IRIS-OPI
scanner, a general-purpose optical tomography imaging
system,” in Advances in Optical Imaging and Photon
Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and
Photonics Series (Optical Society of
America, Washington, D.C.,
1998), pp.
251–255.

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency domain multichannel optical
detector for noninvasive tissue spectroscopy and
oximetry,” Opt. Eng. (Bellingham) 34, 32–42
(1995).

[CrossRef]

S. A. Walker, S. Fantini, E. Gratton, “Back-projection reconstructions in
cylindrical inhomogeneities from frequency-domain optical measurements in turbid
media,” in Advances in Optical Imaging and Photon
Migration, R. R. Alfano, J. G. Fujimoto eds., Vol. 2 of OSA Trends in Optics and
Photonics Series (Optical Society of
America, Washington, D.C.),
1992, pp.
137–141.

A. Griewank, “On automatic
differentiation,” in Mathematical Programming: Recent
Developments and Applications, M. Iri, K. Tanaka, eds. (Kluwer Academic,
Dordrecht, The Netherlands, 1989), pp.
83–108.

P. C. Hansen, “Analysis of discrete ill-posed problem by
means of the L-curve,” SIAM Rev. 34, 561–580
(1992).

[CrossRef]

A. H. Hielscher, A. D. Klose, K. M. Hanson, “Gradient-based iterative image
reconstruction scheme for time-resolved optical
tomography,” IEEE Trans. Med. Imaging 18, 262–271
(1999).

[CrossRef]
[PubMed]

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, E. M. Sevick-Muraca, “Three-dimensional optical
tomography,” in Optical Tomography and
Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 97–105
(1999).

[CrossRef]

S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modeling
and reconstruction,” Phys. Med. Biol. 42, 841–853
(1997).

[CrossRef]
[PubMed]

J. C. Hebden, S. Arridge, D. T. Delpy, “Optical imagingeb in medicine: I.
Experimental techniques,” Phys. Med.
Biol. 42, 825–840
(1997).

[CrossRef]
[PubMed]

K. Wells, J. C. Hebden, F. E. W. Schmidt, D. T. Delpy, “The UCL multichannel time-resolved system
for optical tomography,” in Optical Tomography and
Spectroscopy of Tissue, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 590–607
(1997).

A. D. Klose, A. H. Hielscher, “Iterative reconstructions scheme for optical
tomography based on the equation of radiative transfer,”
Med. Phys. 26, 1698–1707
(1999).

[CrossRef]
[PubMed]

A. H. Hielscher, A. D. Klose, K. M. Hanson, “Gradient-based iterative image
reconstruction scheme for time-resolved optical
tomography,” IEEE Trans. Med. Imaging 18, 262–271
(1999).

[CrossRef]
[PubMed]

A. H. Hielscher, A. D. Klose, “Use of a priori information
and penalty terms in gradient-based iterative reconstruction
schemes,” in Optical Tomography and Spectroscopy
of Tissue III, B. Chance, R. R. Alfano, B. Tromberg, ed., Proc. SPIE3597, 36–44
(1999).

T. M. Durduran, J. P. Culver, M. J. Holboke, X. D. Li, L. Zubkov, B. Chance, D. Pattanayak, A. G. Yodh, “Algorithms for 3D localization and imaging
using near-field diffraction tomography with diffuse
light,” Opt. Express 4, 247–262
(1999).

[CrossRef]
[PubMed]

S. B. Colak, G. W. Hooft, D. G. Papaioannou, M. B. van der Mark, “3D backprojection tomography for medical
optical imaging,” in Advances in Optical Imaging
and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and
Photonics Series (Optical Society of
America, Washington, D.C.,
1992), pp.
294–298.

E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds, C. L. Hutchinson, “Fluorescence and absorption contrast
mechanisms for biomedical optical imaging using frequency-domain
techniques,” Photochem. Photobiol. 66, 55–64
(1997).

[CrossRef]
[PubMed]

E. M. Sevick-Muraca, C. L. Hutchinson, D. Y. Paithankar, “Optical tissue biodiagnostics using
fluorescence lifetime,” Opt. Photonics
News, July1996, pp.
25–28.

A. Ishimaru, Wave Propagation and Scattering in Random Media
(Academic, New
York, 1978).

R. Fletcher, M. P. Jackson, “Minimization of a quadratic function on many
variables subject only to upper and lower bounds,”
J. Inst. Math. Appl. 14, 159–174
(1974).

[CrossRef]

H. Jiang, “Frequency-domain fluorescent diffusion
tomography: a finite-element-based algorithm and
simulations,” Appl. Opt. 37, 5337–5343
(1998).

[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using
frequency-domain data simulations and experiments,”
J. Opt. Soc. Am. A 13, 253–266
(1996).

[CrossRef]

K. D. Paulsen, H. Jiang, “Spatially varying optical property
reconstruction using a finite element diffusion equation
approximation,” Med. Phys. 22, 691–710
(1995).

[CrossRef]
[PubMed]

E. M. Sevick, J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, M. L. Johnson, “Frequency domain imaging of absorbers
obscured by scattering,” J. Photochem. Photobiol.,
B 16, 169–185
(1992).

[CrossRef]

F. Facchine, J. Judice, J. Soares, “An active set Newton algorithm for
large-scale nonlinear programs with box constraints,”
SIAM J. Optim. 8, 158–186
(1998).

[CrossRef]

A. H. Hielscher, A. D. Klose, K. M. Hanson, “Gradient-based iterative image
reconstruction scheme for time-resolved optical
tomography,” IEEE Trans. Med. Imaging 18, 262–271
(1999).

[CrossRef]
[PubMed]

A. D. Klose, A. H. Hielscher, “Iterative reconstructions scheme for optical
tomography based on the equation of radiative transfer,”
Med. Phys. 26, 1698–1707
(1999).

[CrossRef]
[PubMed]

A. H. Hielscher, A. D. Klose, “Use of a priori information
and penalty terms in gradient-based iterative reconstruction
schemes,” in Optical Tomography and Spectroscopy
of Tissue III, B. Chance, R. R. Alfano, B. Tromberg, ed., Proc. SPIE3597, 36–44
(1999).

E. M. Sevick, J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, M. L. Johnson, “Frequency domain imaging of absorbers
obscured by scattering,” J. Photochem. Photobiol.,
B 16, 169–185
(1992).

[CrossRef]

J. R. Lakowicz, K. W. Berndt, “Lifetime-selective fluorescence imaging
using an rf phase-sensitive camera,” Rev. Sci.
Instrum. 62, 1727–1734
(1991).

[CrossRef]

W. Cai, B. B. Das, F. Liu, F. A. Feng, M. Lax, R. R. Alfano, “Three-dimensional image reconstruction in
highly scattering turbid media,” in Optical
Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model and Human
Studies II, B. Chance, R. R. Alfano, eds. Proc. SPIE2979, 241–249
(1997).

J. Lee, E. M. Sevick-Muraca, “Lifetime and absorption imaging with
fluorescence FDPM,” in Time-Resolved Fluorescence
Spectroscopy and Imaging in Tissues, E. M. Sevick-Muraca, ed. Proc. SPIE3600, 246–254
(1999).

T. M. Durduran, J. P. Culver, M. J. Holboke, X. D. Li, L. Zubkov, B. Chance, D. Pattanayak, A. G. Yodh, “Algorithms for 3D localization and imaging
using near-field diffraction tomography with diffuse
light,” Opt. Express 4, 247–262
(1999).

[CrossRef]
[PubMed]

W. Cai, B. B. Das, F. Liu, F. A. Feng, M. Lax, R. R. Alfano, “Three-dimensional image reconstruction in
highly scattering turbid media,” in Optical
Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model and Human
Studies II, B. Chance, R. R. Alfano, eds. Proc. SPIE2979, 241–249
(1997).

E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds, C. L. Hutchinson, “Fluorescence and absorption contrast
mechanisms for biomedical optical imaging using frequency-domain
techniques,” Photochem. Photobiol. 66, 55–64
(1997).

[CrossRef]
[PubMed]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency domain multichannel optical
detector for noninvasive tissue spectroscopy and
oximetry,” Opt. Eng. (Bellingham) 34, 32–42
(1995).

[CrossRef]

A. M. Siegel, J. J. A. Marota, D. A. Boas, “Design and evaluation of a continuous-wave
diffuse optical tomography system,” Opt.
Express 4, 287–298
(1999).

[CrossRef]
[PubMed]

M. Miwa, Y. Ueda, “Development of time-resolved spectroscopy
system for quantitative noninvasive tissue measurement,”
in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model
Media, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 142–149
(1995).

V. A. Morozov, “On the solution of functional equations by
the method of regularization,” Sov. Math.
Dokl. 7, 414–417
(1966).

P. E. Gill, W. Murray, M. H. Wright, Practical Optimization
(Academic, London,
1981).

B. A. Murtagh, M. A. Saunders, “A projected Lagrangian algorithm and its
implementation for sparse nonlinear constraints,”
Math. Program. 16, 4–117
(1982).

B. A. Murtagh, M. A. Saunders“Large-scale linearly constrained
optimization,” Math. Program. 14, 41–72
(1978).

[CrossRef]

Q. Ni, Y. Yuan, “A subspace limited memory quasi-Newton
algorithm for large-scale nonlinear bound constrained
optimization,” Math. Comput. 66, 1509–1520
(1997).

[CrossRef]

E. M. Sevick, J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, M. L. Johnson, “Frequency domain imaging of absorbers
obscured by scattering,” J. Photochem. Photobiol.,
B 16, 169–185
(1992).

[CrossRef]

V. Ntziachristos, “Time-correlated single photon counting
imager for simultaneous magnetic resonance and near-infrared
mammography,” Rev. Sci. Instrum. 69, 4221–4233
(1998).

[CrossRef]

M. A. O’Leary, D. A. Boas, D. X. L. B. Chance, A. G. Yodh, “Fluorescence lifetime imaging in turbid
media,” Opt. Lett. 21, 158–160
(1996).

[CrossRef]
[PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid
media by frequency-domain diffusion photon tomography,”
Opt. Lett. 20, 426–428
(1995).

[CrossRef]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves
by spherical heterogeneities within turbid media: analytic solutions and
applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891
(1994).

[CrossRef]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves
diffuse optical tomography,” Appl. Opt. 38, 2950–2961
(1999).

[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using
frequency-domain data simulations and experiments,”
J. Opt. Soc. Am. A 13, 253–266
(1996).

[CrossRef]

D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime
from multiply scattered light re-emitted from tissues and other random
media,” Appl. Opt. 36, 2260–2272
(1997).

[CrossRef]
[PubMed]

E. M. Sevick-Muraca, C. L. Hutchinson, D. Y. Paithankar, “Optical tissue biodiagnostics using
fluorescence lifetime,” Opt. Photonics
News, July1996, pp.
25–28.

S. B. Colak, G. W. Hooft, D. G. Papaioannou, M. B. van der Mark, “3D backprojection tomography for medical
optical imaging,” in Advances in Optical Imaging
and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and
Photonics Series (Optical Society of
America, Washington, D.C.,
1992), pp.
294–298.

T. M. Durduran, J. P. Culver, M. J. Holboke, X. D. Li, L. Zubkov, B. Chance, D. Pattanayak, A. G. Yodh, “Algorithms for 3D localization and imaging
using near-field diffraction tomography with diffuse
light,” Opt. Express 4, 247–262
(1999).

[CrossRef]
[PubMed]

D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime
from multiply scattered light re-emitted from tissues and other random
media,” Appl. Opt. 36, 2260–2272
(1997).

[CrossRef]
[PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using
frequency-domain data simulations and experiments,”
J. Opt. Soc. Am. A 13, 253–266
(1996).

[CrossRef]

B. C. Wilson, E. M. Sevick, M. S. Patterson, B. Chance, “Time-dependent optical spectroscopy and
imaging for biomedical applications,” Proc.
IEEE 80, 918–930
(1992).

[CrossRef]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves
diffuse optical tomography,” Appl. Opt. 38, 2950–2961
(1999).

[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using
frequency-domain data simulations and experiments,”
J. Opt. Soc. Am. A 13, 253–266
(1996).

[CrossRef]

K. D. Paulsen, H. Jiang, “Spatially varying optical property
reconstruction using a finite element diffusion equation
approximation,” Med. Phys. 22, 691–710
(1995).

[CrossRef]
[PubMed]

Y. Yao, Y. Wang, Y. Pei, W. Zhu, R. L. Barbour, “Frequency-domain optical imaging of
absorption and scattering by a Born iterative method,”
J. Opt. Soc. Am. A 14, 325–342
(1997).

[CrossRef]

Y. Yao, Y. Pei, Y. Wang, R. L. Barbour, “Born-iterative methods for imaging of
heterogeneous scattering media and its application to simulated breast
tissue,” in Optical Tomography and Spectroscopy of
Tissue: Theory, Instrumentation, Model and Human Studies II,
B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 231–239
(1997).

R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, G. Valentini, “Fluorescence lifetime imaging of
experimental tumors in the matoporhyrin derivate–sensitized
mice,” Photochem. Photobiol. 66, 229–236
(1997).

[CrossRef]
[PubMed]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves
diffuse optical tomography,” Appl. Opt. 38, 2950–2961
(1999).

[CrossRef]

D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime
from multiply scattered light re-emitted from tissues and other random
media,” Appl. Opt. 36, 2260–2272
(1997).

[CrossRef]
[PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using
frequency-domain data simulations and experiments,”
J. Opt. Soc. Am. A 13, 253–266
(1996).

[CrossRef]

L. C. W. Dixon, R. C. Price, “Numerical experience with the truncated
Newton method for unconstrained optimization,” J.
Optim. Theory Appl. 56, 245–255
(1988).

[CrossRef]

R. Pytlak, “An efficient algorithm for large-scale
nonlinear programming problems with simple bounds on the
variables,” SIAM J. Optim. 8, 532–560
(1998).

[CrossRef]

E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds, C. L. Hutchinson, “Fluorescence and absorption contrast
mechanisms for biomedical optical imaging using frequency-domain
techniques,” Photochem. Photobiol. 66, 55–64
(1997).

[CrossRef]
[PubMed]

J. S. Reynolds, T. L. Troy, E. M. Sevick-Muraca, “Multi-pixel techniques for frequency-domain
photon migration imaging,” Biotechnol.
Prog. 13, 669–680
(1997).

[CrossRef]
[PubMed]

R. Roy, E. M. Sevick-Muraca, “Truncated Newton’s optimization
scheme for absorption and fluorescence optical tomography: Part II: Reconstruction
from synthetic measurements,” Opt.
Express 4, 372–382
(1999).

[CrossRef]
[PubMed]

R. Roy, E. M. Sevick-Muraca, “Truncated Newton’s optimization
scheme for absorption and fluorescence opticaltomography: Part I: Theory and
formulation,” Opt. Express 4, 353–371
(1999).

[CrossRef]
[PubMed]

A. J. Davies, B. Christianson, L. C. W. Dixon, R. Roy, P. van der Zee, “Reverse differentiation and the inverse
diffusion problem,” Adv. Eng. Softw. 28, 217–221
(1997).

[CrossRef]

B. Christianson, A. J. Davies, L. C. W. Dixon, R. Roy, P. van der Zee, “Giving reverse differentiation a helping
hand,” Opt. Meth. Software 8, 53–67
(1997).

[CrossRef]

R. Roy, “Image reconstruction from light measurements on
biological tissue,” Ph.D. thesis (in Mathematics)
(University of Hertfordshire,
Hatfield, England,
1996).

B. A. Murtagh, M. A. Saunders, “A projected Lagrangian algorithm and its
implementation for sparse nonlinear constraints,”
Math. Program. 16, 4–117
(1982).

B. A. Murtagh, M. A. Saunders“Large-scale linearly constrained
optimization,” Math. Program. 14, 41–72
(1978).

[CrossRef]

K. Wells, J. C. Hebden, F. E. W. Schmidt, D. T. Delpy, “The UCL multichannel time-resolved system
for optical tomography,” in Optical Tomography and
Spectroscopy of Tissue, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 590–607
(1997).

M. Schweiger, S. R. Arridge, “Comparison of two- and three-dimensional
reconstruction methods in optical tomography,”
Appl. Opt. 37, 7419–7428
(1998).

[CrossRef]

S. R. Arridge, M. Schweiger, “A gradient-based optimization scheme for
optical tomography,” Opt. Express 2, 213–226
(1997).

[CrossRef]

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near-infrared
absorption images,” in Inverse Problems in
Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 372–383
(1992).

[CrossRef]

S. R. Arridge, M. R. Schweiger, “Image reconstruction in optical
tomography,” Philos. Trans. R. Soc. London, Ser.
B 352, 717–726
(1997).

[CrossRef]
[PubMed]

E. M. Sevick, J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, M. L. Johnson, “Frequency domain imaging of absorbers
obscured by scattering,” J. Photochem. Photobiol.,
B 16, 169–185
(1992).

[CrossRef]

B. C. Wilson, E. M. Sevick, M. S. Patterson, B. Chance, “Time-dependent optical spectroscopy and
imaging for biomedical applications,” Proc.
IEEE 80, 918–930
(1992).

[CrossRef]

R. Roy, E. M. Sevick-Muraca, “Truncated Newton’s optimization
scheme for absorption and fluorescence opticaltomography: Part I: Theory and
formulation,” Opt. Express 4, 353–371
(1999).

[CrossRef]
[PubMed]

R. Roy, E. M. Sevick-Muraca, “Truncated Newton’s optimization
scheme for absorption and fluorescence optical tomography: Part II: Reconstruction
from synthetic measurements,” Opt.
Express 4, 372–382
(1999).

[CrossRef]
[PubMed]

M. J. Eppstein, D. E. Dougherty, T. L. Troy, E. M. Sevick-Muraca, “Biomedical optical tomography using dynamic
parameterization and Bayesian conditioning on photon migration
measurements,” Appl. Opt. 38, 2138–2150
(1999).

[CrossRef]

E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds, C. L. Hutchinson, “Fluorescence and absorption contrast
mechanisms for biomedical optical imaging using frequency-domain
techniques,” Photochem. Photobiol. 66, 55–64
(1997).

[CrossRef]
[PubMed]

D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime
from multiply scattered light re-emitted from tissues and other random
media,” Appl. Opt. 36, 2260–2272
(1997).

[CrossRef]
[PubMed]

J. S. Reynolds, T. L. Troy, E. M. Sevick-Muraca, “Multi-pixel techniques for frequency-domain
photon migration imaging,” Biotechnol.
Prog. 13, 669–680
(1997).

[CrossRef]
[PubMed]

E. M. Sevick-Muraca, C. L. Hutchinson, D. Y. Paithankar, “Optical tissue biodiagnostics using
fluorescence lifetime,” Opt. Photonics
News, July1996, pp.
25–28.

J. Lee, E. M. Sevick-Muraca, “Lifetime and absorption imaging with
fluorescence FDPM,” in Time-Resolved Fluorescence
Spectroscopy and Imaging in Tissues, E. M. Sevick-Muraca, ed. Proc. SPIE3600, 246–254
(1999).

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, E. M. Sevick-Muraca, “Three-dimensional optical
tomography,” in Optical Tomography and
Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 97–105
(1999).

[CrossRef]

R. L. Barbour, R. Andronics, Q. Sha, H. L. Graber, I. Soller, “Development and evaluation of the IRIS-OPI
scanner, a general-purpose optical tomography imaging
system,” in Advances in Optical Imaging and Photon
Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and
Photonics Series (Optical Society of
America, Washington, D.C.,
1998), pp.
251–255.

A. M. Siegel, J. J. A. Marota, D. A. Boas, “Design and evaluation of a continuous-wave
diffuse optical tomography system,” Opt.
Express 4, 287–298
(1999).

[CrossRef]
[PubMed]

F. Facchine, J. Judice, J. Soares, “An active set Newton algorithm for
large-scale nonlinear programs with box constraints,”
SIAM J. Optim. 8, 158–186
(1998).

[CrossRef]

R. L. Barbour, R. Andronics, Q. Sha, H. L. Graber, I. Soller, “Development and evaluation of the IRIS-OPI
scanner, a general-purpose optical tomography imaging
system,” in Advances in Optical Imaging and Photon
Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and
Photonics Series (Optical Society of
America, Washington, D.C.,
1998), pp.
251–255.

R. S. Dembo, T. Steihaug, “Truncated Newton algorithms for large-scale
unconstrained optimization,” Math.
Program. 26, 190–212
(1983).

[CrossRef]

E. M. Sevick, J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, M. L. Johnson, “Frequency domain imaging of absorbers
obscured by scattering,” J. Photochem. Photobiol.,
B 16, 169–185
(1992).

[CrossRef]

R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, G. Valentini, “Fluorescence lifetime imaging of
experimental tumors in the matoporhyrin derivate–sensitized
mice,” Photochem. Photobiol. 66, 229–236
(1997).

[CrossRef]
[PubMed]

O. C. Zienkiewcz, R. L. Taylor, The Finite Element Methods in Engineering Science
(McGraw-Hill, New
York, 1989).

A. Tikhonov, V. Arsenin, Solution of Ill-Posed Problems
(Wiley, New York,
1977).

A. R. Conn, I. M. Gould, Ph. L. Toint, “Testing a class of methods for solving
minimization problems with simply bounds on the
variables,” Math. Comput. 50, 399–430
(1988).

[CrossRef]

A. R. Conn, I. M. Gould, Ph. L. Toint, LANCELOT: a Fortran Package for Large-Scale Nonlinear
Optimization (release A), Vol. 17 of
Computational Mathematics Series
(Springer-Verlag, New
York, 1992).

[CrossRef]

M. J. Eppstein, D. E. Dougherty, T. L. Troy, E. M. Sevick-Muraca, “Biomedical optical tomography using dynamic
parameterization and Bayesian conditioning on photon migration
measurements,” Appl. Opt. 38, 2138–2150
(1999).

[CrossRef]

E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds, C. L. Hutchinson, “Fluorescence and absorption contrast
mechanisms for biomedical optical imaging using frequency-domain
techniques,” Photochem. Photobiol. 66, 55–64
(1997).

[CrossRef]
[PubMed]

J. S. Reynolds, T. L. Troy, E. M. Sevick-Muraca, “Multi-pixel techniques for frequency-domain
photon migration imaging,” Biotechnol.
Prog. 13, 669–680
(1997).

[CrossRef]
[PubMed]

M. Miwa, Y. Ueda, “Development of time-resolved spectroscopy
system for quantitative noninvasive tissue measurement,”
in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model
Media, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 142–149
(1995).

R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, G. Valentini, “Fluorescence lifetime imaging of
experimental tumors in the matoporhyrin derivate–sensitized
mice,” Photochem. Photobiol. 66, 229–236
(1997).

[CrossRef]
[PubMed]

S. B. Colak, G. W. Hooft, D. G. Papaioannou, M. B. van der Mark, “3D backprojection tomography for medical
optical imaging,” in Advances in Optical Imaging
and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and
Photonics Series (Optical Society of
America, Washington, D.C.,
1992), pp.
294–298.

A. J. Davies, B. Christianson, L. C. W. Dixon, R. Roy, P. van der Zee, “Reverse differentiation and the inverse
diffusion problem,” Adv. Eng. Softw. 28, 217–221
(1997).

[CrossRef]

B. Christianson, A. J. Davies, L. C. W. Dixon, R. Roy, P. van der Zee, “Giving reverse differentiation a helping
hand,” Opt. Meth. Software 8, 53–67
(1997).

[CrossRef]

G. Wahba, Spline Models of Observational Data
(Society for Industrial and Applied Mathematics,
Philadelphia, Pa.,
1990).

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency domain multichannel optical
detector for noninvasive tissue spectroscopy and
oximetry,” Opt. Eng. (Bellingham) 34, 32–42
(1995).

[CrossRef]

S. A. Walker, S. Fantini, E. Gratton, “Back-projection reconstructions in
cylindrical inhomogeneities from frequency-domain optical measurements in turbid
media,” in Advances in Optical Imaging and Photon
Migration, R. R. Alfano, J. G. Fujimoto eds., Vol. 2 of OSA Trends in Optics and
Photonics Series (Optical Society of
America, Washington, D.C.),
1992, pp.
137–141.

Y. Yao, Y. Wang, Y. Pei, W. Zhu, R. L. Barbour, “Frequency-domain optical imaging of
absorption and scattering by a Born iterative method,”
J. Opt. Soc. Am. A 14, 325–342
(1997).

[CrossRef]

Y. Yao, Y. Pei, Y. Wang, R. L. Barbour, “Born-iterative methods for imaging of
heterogeneous scattering media and its application to simulated breast
tissue,” in Optical Tomography and Spectroscopy of
Tissue: Theory, Instrumentation, Model and Human Studies II,
B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 231–239
(1997).

R. L. Barbour, H. Graber, Y. Wang, J. Chang, R. Aronson, “Perturbation approach for optical diffusion
tomography using continuous-wave and time-resolved data,”
in Medical Optical Tomography: Functional Imaging and Monitoring,
G. Muller, B. Chance, R. Alfano, J. Beuthan, E. Gratton, M. Kashke, B. Masters, S. Svanberg, P. van der Zee, eds. (SPIE Press,
Bellingham, Wash., 1993), pp.
87–120.

W. C. Chew, Y. M. Wang, “Reconstruction of two-dimensional
permittivity distribution using the distorted Born iterative
method,” IEEE Trans. Med. Imaging 9, 218–225
(1995).

[CrossRef]

K. Wells, J. C. Hebden, F. E. W. Schmidt, D. T. Delpy, “The UCL multichannel time-resolved system
for optical tomography,” in Optical Tomography and
Spectroscopy of Tissue, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 590–607
(1997).

B. C. Wilson, E. M. Sevick, M. S. Patterson, B. Chance, “Time-dependent optical spectroscopy and
imaging for biomedical applications,” Proc.
IEEE 80, 918–930
(1992).

[CrossRef]

P. Wolfe, “Convergence condition for ascent
method,” SIAM Rev. 11, 226–253
(1969).

[CrossRef]

P. E. Gill, W. Murray, M. H. Wright, Practical Optimization
(Academic, London,
1981).

Y. Yao, Y. Wang, Y. Pei, W. Zhu, R. L. Barbour, “Frequency-domain optical imaging of
absorption and scattering by a Born iterative method,”
J. Opt. Soc. Am. A 14, 325–342
(1997).

[CrossRef]

Y. Yao, Y. Pei, Y. Wang, R. L. Barbour, “Born-iterative methods for imaging of
heterogeneous scattering media and its application to simulated breast
tissue,” in Optical Tomography and Spectroscopy of
Tissue: Theory, Instrumentation, Model and Human Studies II,
B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 231–239
(1997).

T. M. Durduran, J. P. Culver, M. J. Holboke, X. D. Li, L. Zubkov, B. Chance, D. Pattanayak, A. G. Yodh, “Algorithms for 3D localization and imaging
using near-field diffraction tomography with diffuse
light,” Opt. Express 4, 247–262
(1999).

[CrossRef]
[PubMed]

M. A. O’Leary, D. A. Boas, D. X. L. B. Chance, A. G. Yodh, “Fluorescence lifetime imaging in turbid
media,” Opt. Lett. 21, 158–160
(1996).

[CrossRef]
[PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid
media by frequency-domain diffusion photon tomography,”
Opt. Lett. 20, 426–428
(1995).

[CrossRef]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves
by spherical heterogeneities within turbid media: analytic solutions and
applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891
(1994).

[CrossRef]

Q. Ni, Y. Yuan, “A subspace limited memory quasi-Newton
algorithm for large-scale nonlinear bound constrained
optimization,” Math. Comput. 66, 1509–1520
(1997).

[CrossRef]

O. C. Zienkiewcz, R. L. Taylor, The Finite Element Methods in Engineering Science
(McGraw-Hill, New
York, 1989).

T. M. Durduran, J. P. Culver, M. J. Holboke, X. D. Li, L. Zubkov, B. Chance, D. Pattanayak, A. G. Yodh, “Algorithms for 3D localization and imaging
using near-field diffraction tomography with diffuse
light,” Opt. Express 4, 247–262
(1999).

[CrossRef]
[PubMed]

A. J. Davies, B. Christianson, L. C. W. Dixon, R. Roy, P. van der Zee, “Reverse differentiation and the inverse
diffusion problem,” Adv. Eng. Softw. 28, 217–221
(1997).

[CrossRef]

H. Jiang, “Frequency-domain fluorescent diffusion
tomography: a finite-element-based algorithm and
simulations,” Appl. Opt. 37, 5337–5343
(1998).

[CrossRef]

M. Schweiger, S. R. Arridge, “Comparison of two- and three-dimensional
reconstruction methods in optical tomography,”
Appl. Opt. 37, 7419–7428
(1998).

[CrossRef]

M. J. Eppstein, D. E. Dougherty, T. L. Troy, E. M. Sevick-Muraca, “Biomedical optical tomography using dynamic
parameterization and Bayesian conditioning on photon migration
measurements,” Appl. Opt. 38, 2138–2150
(1999).

[CrossRef]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves
diffuse optical tomography,” Appl. Opt. 38, 2950–2961
(1999).

[CrossRef]

D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, E. M. Sevick-Muraca, “Imaging of fluorescent yield and lifetime
from multiply scattered light re-emitted from tissues and other random
media,” Appl. Opt. 36, 2260–2272
(1997).

[CrossRef]
[PubMed]

J. S. Reynolds, T. L. Troy, E. M. Sevick-Muraca, “Multi-pixel techniques for frequency-domain
photon migration imaging,” Biotechnol.
Prog. 13, 669–680
(1997).

[CrossRef]
[PubMed]

W. C. Chew, Y. M. Wang, “Reconstruction of two-dimensional
permittivity distribution using the distorted Born iterative
method,” IEEE Trans. Med. Imaging 9, 218–225
(1995).

[CrossRef]

A. H. Hielscher, A. D. Klose, K. M. Hanson, “Gradient-based iterative image
reconstruction scheme for time-resolved optical
tomography,” IEEE Trans. Med. Imaging 18, 262–271
(1999).

[CrossRef]
[PubMed]

L. C. W. Dixon, R. C. Price, “Numerical experience with the truncated
Newton method for unconstrained optimization,” J.
Optim. Theory Appl. 56, 245–255
(1988).

[CrossRef]

R. Fletcher, M. P. Jackson, “Minimization of a quadratic function on many
variables subject only to upper and lower bounds,”
J. Inst. Math. Appl. 14, 159–174
(1974).

[CrossRef]

J. C. Ye, K. J. Webb, R. P. Millane, T. J. Downar, “Modified distorted Born iterative method
with an approximate Frechet derivative for optical diffusion
tomography,” J. Opt. Soc. Am. A 16, 1814–1830
(1999).

[CrossRef]

J. Chang, H. L. Graberm, R. L. Barbour, “Luminescence optical tomography of dense
scattering media,” J. Opt. Soc. Am. A 14, 288–299
(1997).

[CrossRef]

Y. Yao, Y. Wang, Y. Pei, W. Zhu, R. L. Barbour, “Frequency-domain optical imaging of
absorption and scattering by a Born iterative method,”
J. Opt. Soc. Am. A 14, 325–342
(1997).

[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using
frequency-domain data simulations and experiments,”
J. Opt. Soc. Am. A 13, 253–266
(1996).

[CrossRef]

E. M. Sevick, J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, M. L. Johnson, “Frequency domain imaging of absorbers
obscured by scattering,” J. Photochem. Photobiol.,
B 16, 169–185
(1992).

[CrossRef]

R. S. Dembo, T. Steihaug, “Truncated Newton algorithms for large-scale
unconstrained optimization,” Math.
Program. 26, 190–212
(1983).

[CrossRef]

Q. Ni, Y. Yuan, “A subspace limited memory quasi-Newton
algorithm for large-scale nonlinear bound constrained
optimization,” Math. Comput. 66, 1509–1520
(1997).

[CrossRef]

A. R. Conn, I. M. Gould, Ph. L. Toint, “Testing a class of methods for solving
minimization problems with simply bounds on the
variables,” Math. Comput. 50, 399–430
(1988).

[CrossRef]

B. A. Murtagh, M. A. Saunders“Large-scale linearly constrained
optimization,” Math. Program. 14, 41–72
(1978).

[CrossRef]

B. A. Murtagh, M. A. Saunders, “A projected Lagrangian algorithm and its
implementation for sparse nonlinear constraints,”
Math. Program. 16, 4–117
(1982).

A. D. Klose, A. H. Hielscher, “Iterative reconstructions scheme for optical
tomography based on the equation of radiative transfer,”
Med. Phys. 26, 1698–1707
(1999).

[CrossRef]
[PubMed]

K. D. Paulsen, H. Jiang, “Spatially varying optical property
reconstruction using a finite element diffusion equation
approximation,” Med. Phys. 22, 691–710
(1995).

[CrossRef]
[PubMed]

R. Roy, E. M. Sevick-Muraca, “Truncated Newton’s optimization
scheme for absorption and fluorescence optical tomography: Part II: Reconstruction
from synthetic measurements,” Opt.
Express 4, 372–382
(1999).

[CrossRef]
[PubMed]

A. M. Siegel, J. J. A. Marota, D. A. Boas, “Design and evaluation of a continuous-wave
diffuse optical tomography system,” Opt.
Express 4, 287–298
(1999).

[CrossRef]
[PubMed]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, E. Gratton, “Frequency domain multichannel optical
detector for noninvasive tissue spectroscopy and
oximetry,” Opt. Eng. (Bellingham) 34, 32–42
(1995).

[CrossRef]

S. R. Arridge, M. Schweiger, “A gradient-based optimization scheme for
optical tomography,” Opt. Express 2, 213–226
(1997).

[CrossRef]

T. M. Durduran, J. P. Culver, M. J. Holboke, X. D. Li, L. Zubkov, B. Chance, D. Pattanayak, A. G. Yodh, “Algorithms for 3D localization and imaging
using near-field diffraction tomography with diffuse
light,” Opt. Express 4, 247–262
(1999).

[CrossRef]
[PubMed]

R. Roy, E. M. Sevick-Muraca, “Truncated Newton’s optimization
scheme for absorption and fluorescence opticaltomography: Part I: Theory and
formulation,” Opt. Express 4, 353–371
(1999).

[CrossRef]
[PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid
media by frequency-domain diffusion photon tomography,”
Opt. Lett. 20, 426–428
(1995).

[CrossRef]

M. A. O’Leary, D. A. Boas, D. X. L. B. Chance, A. G. Yodh, “Fluorescence lifetime imaging in turbid
media,” Opt. Lett. 21, 158–160
(1996).

[CrossRef]
[PubMed]

S. J. Madsen, E. R. Anderson, R. C. Haskell, B. J. Tromberg, “Portable, high-bandwidth frequency-domain
photon migration instrument for tissue spectroscopy,”
Opt. Lett. 19, 1934–1936
(1994).

[CrossRef]
[PubMed]

B. Christianson, A. J. Davies, L. C. W. Dixon, R. Roy, P. van der Zee, “Giving reverse differentiation a helping
hand,” Opt. Meth. Software 8, 53–67
(1997).

[CrossRef]

E. M. Sevick-Muraca, C. L. Hutchinson, D. Y. Paithankar, “Optical tissue biodiagnostics using
fluorescence lifetime,” Opt. Photonics
News, July1996, pp.
25–28.

L. Armijo, “Minimization of functions having Lipschitz
continuous first partial derivatives,” Pacific J.
Math. 16, 1–3
(1966).

[CrossRef]

S. R. Arridge, M. R. Schweiger, “Image reconstruction in optical
tomography,” Philos. Trans. R. Soc. London, Ser.
B 352, 717–726
(1997).

[CrossRef]
[PubMed]

R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, G. Valentini, “Fluorescence lifetime imaging of
experimental tumors in the matoporhyrin derivate–sensitized
mice,” Photochem. Photobiol. 66, 229–236
(1997).

[CrossRef]
[PubMed]

E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds, C. L. Hutchinson, “Fluorescence and absorption contrast
mechanisms for biomedical optical imaging using frequency-domain
techniques,” Photochem. Photobiol. 66, 55–64
(1997).

[CrossRef]
[PubMed]

J. C. Hebden, S. Arridge, D. T. Delpy, “Optical imagingeb in medicine: I.
Experimental techniques,” Phys. Med.
Biol. 42, 825–840
(1997).

[CrossRef]
[PubMed]

S. R. Arridge, J. C. Hebden, “Optical imaging in medicine: II. Modeling
and reconstruction,” Phys. Med. Biol. 42, 841–853
(1997).

[CrossRef]
[PubMed]

B. C. Wilson, E. M. Sevick, M. S. Patterson, B. Chance, “Time-dependent optical spectroscopy and
imaging for biomedical applications,” Proc.
IEEE 80, 918–930
(1992).

[CrossRef]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves
by spherical heterogeneities within turbid media: analytic solutions and
applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891
(1994).

[CrossRef]

J. R. Lakowicz, K. W. Berndt, “Lifetime-selective fluorescence imaging
using an rf phase-sensitive camera,” Rev. Sci.
Instrum. 62, 1727–1734
(1991).

[CrossRef]

V. Ntziachristos, “Time-correlated single photon counting
imager for simultaneous magnetic resonance and near-infrared
mammography,” Rev. Sci. Instrum. 69, 4221–4233
(1998).

[CrossRef]

D. P. Bertsekas, “Projected Newton method for optimization
problems with simple contraints,” SIAM J. Control
Optim. 20, 221–246
(1982).

[CrossRef]

F. Facchine, J. Judice, J. Soares, “An active set Newton algorithm for
large-scale nonlinear programs with box constraints,”
SIAM J. Optim. 8, 158–186
(1998).

[CrossRef]

R. Pytlak, “An efficient algorithm for large-scale
nonlinear programming problems with simple bounds on the
variables,” SIAM J. Optim. 8, 532–560
(1998).

[CrossRef]

P. C. Hansen, “Analysis of discrete ill-posed problem by
means of the L-curve,” SIAM Rev. 34, 561–580
(1992).

[CrossRef]

P. Wolfe, “Convergence condition for ascent
method,” SIAM Rev. 11, 226–253
(1969).

[CrossRef]

V. A. Morozov, “On the solution of functional equations by
the method of regularization,” Sov. Math.
Dokl. 7, 414–417
(1966).

G. Wahba, Spline Models of Observational Data
(Society for Industrial and Applied Mathematics,
Philadelphia, Pa.,
1990).

A. H. Hielscher, A. D. Klose, “Use of a priori information
and penalty terms in gradient-based iterative reconstruction
schemes,” in Optical Tomography and Spectroscopy
of Tissue III, B. Chance, R. R. Alfano, B. Tromberg, ed., Proc. SPIE3597, 36–44
(1999).

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, E. M. Sevick-Muraca, “Three-dimensional optical
tomography,” in Optical Tomography and
Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 97–105
(1999).

[CrossRef]

P. E. Gill, W. Murray, M. H. Wright, Practical Optimization
(Academic, London,
1981).

A. R. Conn, I. M. Gould, Ph. L. Toint, LANCELOT: a Fortran Package for Large-Scale Nonlinear
Optimization (release A), Vol. 17 of
Computational Mathematics Series
(Springer-Verlag, New
York, 1992).

[CrossRef]

R. L. Barbour, R. Andronics, Q. Sha, H. L. Graber, I. Soller, “Development and evaluation of the IRIS-OPI
scanner, a general-purpose optical tomography imaging
system,” in Advances in Optical Imaging and Photon
Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and
Photonics Series (Optical Society of
America, Washington, D.C.,
1998), pp.
251–255.

K. Wells, J. C. Hebden, F. E. W. Schmidt, D. T. Delpy, “The UCL multichannel time-resolved system
for optical tomography,” in Optical Tomography and
Spectroscopy of Tissue, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 590–607
(1997).

M. Miwa, Y. Ueda, “Development of time-resolved spectroscopy
system for quantitative noninvasive tissue measurement,”
in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model
Media, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 142–149
(1995).

S. A. Walker, S. Fantini, E. Gratton, “Back-projection reconstructions in
cylindrical inhomogeneities from frequency-domain optical measurements in turbid
media,” in Advances in Optical Imaging and Photon
Migration, R. R. Alfano, J. G. Fujimoto eds., Vol. 2 of OSA Trends in Optics and
Photonics Series (Optical Society of
America, Washington, D.C.),
1992, pp.
137–141.

S. B. Colak, G. W. Hooft, D. G. Papaioannou, M. B. van der Mark, “3D backprojection tomography for medical
optical imaging,” in Advances in Optical Imaging
and Photon Migration, R. R. Alfano, J. G. Fujimoto, eds., Vol. 2 of OSA Trends in Optics and
Photonics Series (Optical Society of
America, Washington, D.C.,
1992), pp.
294–298.

R. L. Barbour, H. Graber, Y. Wang, J. Chang, R. Aronson, “Perturbation approach for optical diffusion
tomography using continuous-wave and time-resolved data,”
in Medical Optical Tomography: Functional Imaging and Monitoring,
G. Muller, B. Chance, R. Alfano, J. Beuthan, E. Gratton, M. Kashke, B. Masters, S. Svanberg, P. van der Zee, eds. (SPIE Press,
Bellingham, Wash., 1993), pp.
87–120.

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near-infrared
absorption images,” in Inverse Problems in
Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 372–383
(1992).

[CrossRef]

A. Tikhonov, V. Arsenin, Solution of Ill-Posed Problems
(Wiley, New York,
1977).

R. Roy, “Image reconstruction from light measurements on
biological tissue,” Ph.D. thesis (in Mathematics)
(University of Hertfordshire,
Hatfield, England,
1996).

A. Griewank, “On automatic
differentiation,” in Mathematical Programming: Recent
Developments and Applications, M. Iri, K. Tanaka, eds. (Kluwer Academic,
Dordrecht, The Netherlands, 1989), pp.
83–108.

J. Lee, E. M. Sevick-Muraca, “Lifetime and absorption imaging with
fluorescence FDPM,” in Time-Resolved Fluorescence
Spectroscopy and Imaging in Tissues, E. M. Sevick-Muraca, ed. Proc. SPIE3600, 246–254
(1999).

A. Ishimaru, Wave Propagation and Scattering in Random Media
(Academic, New
York, 1978).

O. C. Zienkiewcz, R. L. Taylor, The Finite Element Methods in Engineering Science
(McGraw-Hill, New
York, 1989).

Y. Yao, Y. Pei, Y. Wang, R. L. Barbour, “Born-iterative methods for imaging of
heterogeneous scattering media and its application to simulated breast
tissue,” in Optical Tomography and Spectroscopy of
Tissue: Theory, Instrumentation, Model and Human Studies II,
B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 231–239
(1997).

W. Cai, B. B. Das, F. Liu, F. A. Feng, M. Lax, R. R. Alfano, “Three-dimensional image reconstruction in
highly scattering turbid media,” in Optical
Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model and Human
Studies II, B. Chance, R. R. Alfano, eds. Proc. SPIE2979, 241–249
(1997).