Abstract

A scalar treatment for Gaussian beams offset from the optic axis and then focused by a high-numerical-aperture lens is presented. Such a theory is required for describing certain types of Doppler microscopes, i.e., when the measurement is simultaneously performed by more than a single beam axially offset and then focused by a lens. Analytic expressions for the intensity in the focal region of the high-aperture lens are derived. From these expressions we calculate the intensity in the focal region with parameters of beam size, beam offset, and the numerical aperture of the lens. The relative location and variation of the intensity around the focal region are discussed in detail. We show that for small-diameter Gaussian beams the Strehl ratio increases above unity as the beam is offset from the optic axis. This is explained by the increase in the effective numerical aperture of the offset beam compared with the one collinear with the optic axis. From examining the focal distribution, we conclude that it rotates for small beam size and that increasing beam diameter causes the focused distribution to rotate and shear, i.e., to distort. We also show that the distortion of the distribution increases with increasing numerical aperture.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription