Abstract

It has been known for some time that both foveal and peripheral visual acuity are higher for single letters than for letters in a row. Early work showed that this was due to the destructive interaction of adjacent contours (termed contour interaction). It has been assumed to have a neural basis, and a number of competing explanations have been advanced that implicate either high-level or low-level stages of visual processing. Our previous results for foveal vision suggested a much simpler explanation, one determined primarily by the physics of the stimulus rather than the physiology of the visual system. We show that, under conditions of contour interaction or crowding, the most relevant physical spatial-frequency band of the letter is displaced to higher spatial frequencies and that foveal vision tracks this change in spatial scale. In the periphery, however, beyond 5°, the physical explanation is not sufficient. Here we show that there are genuine physiological lateral spatial interactions, which are due to changes in the spatial scale of analysis.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription