Abstract

We demonstrate high-pass optical filters with cutoffs in the 0.3–10-μm spectral region. These filters consist of uniform arrays of hollow metallic waveguides, obtained by coating wafers of the previously developed channel-glass (CG) materials with a thin metal film. In these filters the channel diameter controls the cutoff frequency, the channel length controls the sharpness of the cutoff, and the channel density determines the transmission efficiency at cutoff. All of these parameters can be controlled in the CG starting material. The properties of the metal coatings that influence the filter properties are also discussed. Cutoff wavelengths near 300 nm have been achieved to date by using CG materials with submicrometer channel diameters. At all channel diameters, the transmission spectra include a peak just above the cutoff wavelength, where the transmission value can exceed that expected on the basis of the geometrical open area of the CG structure.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Keilmann, “Infrared high-pass filter with high contrast,” Int. J. Infrared Millim. Waves 2, 259–272 (1981).
    [CrossRef]
  2. T. Timusk, P. L. Richards, “Near-millimeter wave bandpass filters,” Appl. Opt. 20, 1355–1360 (1981).
    [CrossRef] [PubMed]
  3. K. Sakai, L. Genzel, “Far infrared metal mesh filters and Fabry–Perot interferometry,” Rev. Infrared Millim. Waves 1, 155–247 (1983).
    [CrossRef]
  4. R. Ulrich, “Interference filters for the far infrared,” Appl. Opt. 7, 1987–1996 (1968).
    [CrossRef] [PubMed]
  5. P. G. Huggard, M. Meyringer, A. Schilz, K. Goller, W. Prettl, “Far-infrared bandpass filters from perforated metal screens,” Appl. Opt. 33, 39–41 (1994).
    [CrossRef] [PubMed]
  6. R. J. Tonucci, B. L. Justus, A. J. Campillo, C. E. Ford, “Nanochannel array glass,” Science 258, 783–785 (1992).
    [CrossRef] [PubMed]
  7. E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
    [CrossRef]
  8. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), Chap. 8, pp. 334–390.
  9. V. M. Papadopoulos, “Propagation of electromagnetic waves in cylindrical waveguides with imperfectly conducting walls,” Q. J. Mech. Appl. Math. VII Pt. 3, 326–334 (1954).
    [CrossRef]
  10. F. Wooten, Optical Properties of Solids (Academic, San Diego, Calif., 1972), Chap. 4, pp. 85–107.
  11. N. W. Ashcroft, N. D. Mermin, Solid State Physics (Saunders, Philadelphia, Pa., 1976), Chap. 1, pp. 1–27.
  12. Tae Jin Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24, 256 (1999).
    [CrossRef]

1999

1994

1992

R. J. Tonucci, B. L. Justus, A. J. Campillo, C. E. Ford, “Nanochannel array glass,” Science 258, 783–785 (1992).
[CrossRef] [PubMed]

1983

K. Sakai, L. Genzel, “Far infrared metal mesh filters and Fabry–Perot interferometry,” Rev. Infrared Millim. Waves 1, 155–247 (1983).
[CrossRef]

1981

F. Keilmann, “Infrared high-pass filter with high contrast,” Int. J. Infrared Millim. Waves 2, 259–272 (1981).
[CrossRef]

T. Timusk, P. L. Richards, “Near-millimeter wave bandpass filters,” Appl. Opt. 20, 1355–1360 (1981).
[CrossRef] [PubMed]

1968

1964

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[CrossRef]

1954

V. M. Papadopoulos, “Propagation of electromagnetic waves in cylindrical waveguides with imperfectly conducting walls,” Q. J. Mech. Appl. Math. VII Pt. 3, 326–334 (1954).
[CrossRef]

Ashcroft, N. W.

N. W. Ashcroft, N. D. Mermin, Solid State Physics (Saunders, Philadelphia, Pa., 1976), Chap. 1, pp. 1–27.

Campillo, A. J.

R. J. Tonucci, B. L. Justus, A. J. Campillo, C. E. Ford, “Nanochannel array glass,” Science 258, 783–785 (1992).
[CrossRef] [PubMed]

Ebbesen, T. W.

Ford, C. E.

R. J. Tonucci, B. L. Justus, A. J. Campillo, C. E. Ford, “Nanochannel array glass,” Science 258, 783–785 (1992).
[CrossRef] [PubMed]

Genzel, L.

K. Sakai, L. Genzel, “Far infrared metal mesh filters and Fabry–Perot interferometry,” Rev. Infrared Millim. Waves 1, 155–247 (1983).
[CrossRef]

Goller, K.

Grupp, D. E.

Huggard, P. G.

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), Chap. 8, pp. 334–390.

Justus, B. L.

R. J. Tonucci, B. L. Justus, A. J. Campillo, C. E. Ford, “Nanochannel array glass,” Science 258, 783–785 (1992).
[CrossRef] [PubMed]

Keilmann, F.

F. Keilmann, “Infrared high-pass filter with high contrast,” Int. J. Infrared Millim. Waves 2, 259–272 (1981).
[CrossRef]

Kim, Tae Jin

Lezec, H. J.

Marcatili, E. A. J.

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[CrossRef]

Mermin, N. D.

N. W. Ashcroft, N. D. Mermin, Solid State Physics (Saunders, Philadelphia, Pa., 1976), Chap. 1, pp. 1–27.

Meyringer, M.

Papadopoulos, V. M.

V. M. Papadopoulos, “Propagation of electromagnetic waves in cylindrical waveguides with imperfectly conducting walls,” Q. J. Mech. Appl. Math. VII Pt. 3, 326–334 (1954).
[CrossRef]

Prettl, W.

Richards, P. L.

Sakai, K.

K. Sakai, L. Genzel, “Far infrared metal mesh filters and Fabry–Perot interferometry,” Rev. Infrared Millim. Waves 1, 155–247 (1983).
[CrossRef]

Schilz, A.

Schmeltzer, R. A.

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[CrossRef]

Thio, T.

Timusk, T.

Tonucci, R. J.

R. J. Tonucci, B. L. Justus, A. J. Campillo, C. E. Ford, “Nanochannel array glass,” Science 258, 783–785 (1992).
[CrossRef] [PubMed]

Ulrich, R.

Wooten, F.

F. Wooten, Optical Properties of Solids (Academic, San Diego, Calif., 1972), Chap. 4, pp. 85–107.

Appl. Opt.

Bell Syst. Tech. J.

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
[CrossRef]

Int. J. Infrared Millim. Waves

F. Keilmann, “Infrared high-pass filter with high contrast,” Int. J. Infrared Millim. Waves 2, 259–272 (1981).
[CrossRef]

Opt. Lett.

Q. J. Mech. Appl. Math.

V. M. Papadopoulos, “Propagation of electromagnetic waves in cylindrical waveguides with imperfectly conducting walls,” Q. J. Mech. Appl. Math. VII Pt. 3, 326–334 (1954).
[CrossRef]

Rev. Infrared Millim. Waves

K. Sakai, L. Genzel, “Far infrared metal mesh filters and Fabry–Perot interferometry,” Rev. Infrared Millim. Waves 1, 155–247 (1983).
[CrossRef]

Science

R. J. Tonucci, B. L. Justus, A. J. Campillo, C. E. Ford, “Nanochannel array glass,” Science 258, 783–785 (1992).
[CrossRef] [PubMed]

Other

F. Wooten, Optical Properties of Solids (Academic, San Diego, Calif., 1972), Chap. 4, pp. 85–107.

N. W. Ashcroft, N. D. Mermin, Solid State Physics (Saunders, Philadelphia, Pa., 1976), Chap. 1, pp. 1–27.

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), Chap. 8, pp. 334–390.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Calculated transmission for (a) an ideal single hollow metallic waveguide with circular cross section and (b) for a similar waveguide having finite-conductivity walls, for several values of the aspect ratio t/d. The frequency axis has been normalized to the cutoff frequency νc. In (b) Drude model parameters appropriate for Al at d=1 μm were used. See the text for additional details.

Fig. 2
Fig. 2

SEM pictures of a typical Au-coated CG wafer. The scale bar represents 15 μm in (a) and 0.6 μm in (b).

Fig. 3
Fig. 3

SEM pictures of a Au-coated CG wafer after removal of the Au film on each planar surface and etching in KOH to separate the Au film on the inner walls from the glass. The scale bar represents 5 μm in (a) and 0.5 μm in (b).

Fig. 4
Fig. 4

Transmission spectra for a series of metal-coated CG wafers with various channel diameters d. As indicated, each spectrum was scaled by an appropriate factor to bring it approximately onto the vertical scale. For d=8.0 to 0.6 μm, the glass was coated with Au; Ag was used for d=0.35 μm; and Al was used for d=0.23 μm.

Fig. 5
Fig. 5

Cutoff wavelength λc versus channel diameter d for several metal-coated CG wafers (filters). The metals are Au (○), Ag (+), and Al (△). Some of the data points correspond to the spectra shown in Fig. 4. The line is the prediction λc=d/0.586 for the case of infinite wall conductivity.

Fig. 6
Fig. 6

Transmission spectra of a Au-coated CG wafer with various thicknesses of Au deposited on each planar surface, ranging from 0 to 570 nm as indicated. The 0-nm spectrum corresponds to the uncoated CG wafer and is included for comparison.

Fig. 7
Fig. 7

Peak transmission of a Au-coated CG wafer versus Au film thickness, corresponding to the spectra in Fig. 6. For reference, the line indicates the fractional open area of the CG wafer (40%), and the arrow indicates the penetration depth (∼140 nm) for Au in this spectral region (∼13.5 μm).

Metrics