Abstract

The geometrical optics model of Mie resonances is presented. The ray path geometry is given and the resonance condition is discussed with special emphasis on the phase shift that the rays undergo at the surface of the dielectric sphere. On the basis of this model, approximate expressions for the positions of first-order resonances are given. Formulas for the cavity mode spacing are rederived in a simple manner. It is shown that the resonance linewidth can be calculated regarding the cavity losses. Formulas for the mode density of Mie resonances are given that account for the different width of resonances and thus may be adapted to specific experimental situations.

© 2000 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ray interpretation of multipole fields in spherical dielectric cavities

Günther Roll, Thomas Kaiser, Stefan Lange, and Gustav Schweiger
J. Opt. Soc. Am. A 15(11) 2879-2891 (1998)

Eigenmodes of spherical dielectric cavities: coupling of internal and external rays

G. Roll, T. Kaiser, and G. Schweiger
J. Opt. Soc. Am. A 16(4) 882-895 (1999)

Role of the tunneling ray in near-critical-angle scattering by a dielectric sphere

James A. Lock
J. Opt. Soc. Am. A 20(3) 499-507 (2003)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (57)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription