Abstract

We investigate the imaging properties of high-aperture multifocal multiphoton microscopy on the basis of diffraction theory. Particular emphasis is placed on the relationship between the sectioning property and the distance between individual foci. Our results establish a relationship between the degree of parallelization and the axial resolution for both two- and three-photon excitation. In addition, we show quantitatively that if a matrix of temporal delays is inserted between the individual foci, it is, for the first time to our knowledge, possible to solve the classical conflict between the light budget and the sectioning property in three-dimensional microscopy and to provide a virtually unlimited density of foci at best axial resolution.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Bewersdorf, R. Pick, S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett. 23, 655–657 (1998).
    [CrossRef]
  2. A. H. Buist, M. Müller, G. J. Brakenhoff, “Real-time two-photon microscopy,” J. Microsc. (Oxford) 192, 217–226 (1998).
    [CrossRef]
  3. M. Straub, S. W. Hell, “Multifocal multiphoton microscopy: a fast and efficient tool for 3-D fluorescence imaging,” Bioimages 6, 177–185 (1998).
    [CrossRef]
  4. M. Straub, S. W. Hell, “Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope,” Appl. Phys. Lett. 73, 1769–1771 (1998).
    [CrossRef]
  5. K. Fujita, O. Nakamura, T. Kaneko, S. Kawata, M. Oyamada, T. Takamatsu, “Real-time imaging of two-photon-induced fluorescence with a microlens-array scanner and a regenerative amplifier,” J. Microsc. (Oxford) 194, 528–531 (1999).
    [CrossRef]
  6. W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [CrossRef] [PubMed]
  7. M. Petran, M. Hadravsky, M. D. Egger, R. Galambos, “Tandem-scanning reflected-light microscope,” J. Opt. Soc. Am. 58, 661–664 (1968).
    [CrossRef]
  8. G. Q. Xiao, T. R. Corle, G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
    [CrossRef]
  9. A. Ichihara, T. Tanaami, K. Isozaki, Y. Sugiyama, Y. Kosugi, K. Mikuriya, M. Abe, I. Uemura, “High-speed confocal fluorescence microscopy using a Nipkow scanner with microlenses for 3D-imaging of single fluorescent molecule in real time,” Bioimages 4, 52–62 (1996).
  10. C. J. R. Sheppard, T. Wilson, “The theory of the direct-view confocal microscope,” J. Microsc. (Oxford) 124, 107–117 (1981).
    [CrossRef]
  11. E. M. McCabe, D. T. Fewer, A. C. Ottewill, S. J. Hewlett, J. Hegarty, “Direct-view microscopy: optical section-ing strength for finite-sized, multiple-pinhole arrays,” J. Microsc. (Oxford) 184, 95–105 (1996).
    [CrossRef]
  12. Q. S. Hanley, P. J. Verveer, T. M. Jovin, “Optical sectioning fluorescence spectroscopy in a programmable array microscope,” Appl. Spectrosc. 52, 783–789 (1998).
    [CrossRef]
  13. P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. van Vliet, T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (PAM),” J. Microsc. (Oxford) 189, 192–198 (1998).
    [CrossRef]
  14. T. Wilson, R. Juskaitis, M. Neil, M. Kozubek, “Confocal microscopy by aperture correlation,” Opt. Lett. 21, 1879–1881 (1996).
    [CrossRef] [PubMed]
  15. M. A. A. Neil, R. Juskaitis, T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153, 1–4 (1998).
    [CrossRef]
  16. J. Bewersdorf, S. W. Hell, “Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz,” J. Microsc. (Oxford) 191, 28–38 (1998).
    [CrossRef]
  17. S. W. Hell, M. Booth, S. Wilms, J. C. M. Schnetter, A. K. Kirsch, D. J. Arndt-Jovin, T. M. Jovin, “Two-photon near- and far-field fluorescence microscopy with con- tinuous-wave excitation,” Opt. Lett. 23, 1238–1240 (1998).
    [CrossRef]
  18. K. König, T. W. Becker, P. Fischer, I. Reimann, K.-J. Halbhuber, “Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes,” Opt. Lett. 24, 113–115 (1999).
    [CrossRef]
  19. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1993).
  20. J. T. Winthrop, C. R. Worthington, “Theory of Fresnel images. I. Plane periodic objects in monochromatic light,” J. Opt. Soc. Am. 55, 373–381 (1965).
    [CrossRef]
  21. W. D. Montgomery, “Self-imaging objects of infinite aperture,” J. Opt. Soc. Am. 57, 772–778 (1967).
    [CrossRef]
  22. E. Bonet, P. Andrés, J. C. Barreiro, A. Pons, “Self-imaging properties of a periodic microlens array: versatile array illuminator realization,” Opt. Commun. 106, 39–44 (1994).
    [CrossRef]
  23. M. Müller, J. Squier, R. Wolleschensky, U. Simon, G. J. Brakenhoff, “Dispersion-precompensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. (Oxford) 191, 141–158 (1998).
    [CrossRef]

1999 (2)

K. Fujita, O. Nakamura, T. Kaneko, S. Kawata, M. Oyamada, T. Takamatsu, “Real-time imaging of two-photon-induced fluorescence with a microlens-array scanner and a regenerative amplifier,” J. Microsc. (Oxford) 194, 528–531 (1999).
[CrossRef]

K. König, T. W. Becker, P. Fischer, I. Reimann, K.-J. Halbhuber, “Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes,” Opt. Lett. 24, 113–115 (1999).
[CrossRef]

1998 (10)

M. A. A. Neil, R. Juskaitis, T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153, 1–4 (1998).
[CrossRef]

J. Bewersdorf, S. W. Hell, “Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz,” J. Microsc. (Oxford) 191, 28–38 (1998).
[CrossRef]

S. W. Hell, M. Booth, S. Wilms, J. C. M. Schnetter, A. K. Kirsch, D. J. Arndt-Jovin, T. M. Jovin, “Two-photon near- and far-field fluorescence microscopy with con- tinuous-wave excitation,” Opt. Lett. 23, 1238–1240 (1998).
[CrossRef]

Q. S. Hanley, P. J. Verveer, T. M. Jovin, “Optical sectioning fluorescence spectroscopy in a programmable array microscope,” Appl. Spectrosc. 52, 783–789 (1998).
[CrossRef]

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. van Vliet, T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (PAM),” J. Microsc. (Oxford) 189, 192–198 (1998).
[CrossRef]

J. Bewersdorf, R. Pick, S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett. 23, 655–657 (1998).
[CrossRef]

A. H. Buist, M. Müller, G. J. Brakenhoff, “Real-time two-photon microscopy,” J. Microsc. (Oxford) 192, 217–226 (1998).
[CrossRef]

M. Straub, S. W. Hell, “Multifocal multiphoton microscopy: a fast and efficient tool for 3-D fluorescence imaging,” Bioimages 6, 177–185 (1998).
[CrossRef]

M. Straub, S. W. Hell, “Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope,” Appl. Phys. Lett. 73, 1769–1771 (1998).
[CrossRef]

M. Müller, J. Squier, R. Wolleschensky, U. Simon, G. J. Brakenhoff, “Dispersion-precompensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. (Oxford) 191, 141–158 (1998).
[CrossRef]

1996 (3)

A. Ichihara, T. Tanaami, K. Isozaki, Y. Sugiyama, Y. Kosugi, K. Mikuriya, M. Abe, I. Uemura, “High-speed confocal fluorescence microscopy using a Nipkow scanner with microlenses for 3D-imaging of single fluorescent molecule in real time,” Bioimages 4, 52–62 (1996).

T. Wilson, R. Juskaitis, M. Neil, M. Kozubek, “Confocal microscopy by aperture correlation,” Opt. Lett. 21, 1879–1881 (1996).
[CrossRef] [PubMed]

E. M. McCabe, D. T. Fewer, A. C. Ottewill, S. J. Hewlett, J. Hegarty, “Direct-view microscopy: optical section-ing strength for finite-sized, multiple-pinhole arrays,” J. Microsc. (Oxford) 184, 95–105 (1996).
[CrossRef]

1994 (1)

E. Bonet, P. Andrés, J. C. Barreiro, A. Pons, “Self-imaging properties of a periodic microlens array: versatile array illuminator realization,” Opt. Commun. 106, 39–44 (1994).
[CrossRef]

1990 (1)

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

1988 (1)

G. Q. Xiao, T. R. Corle, G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

1981 (1)

C. J. R. Sheppard, T. Wilson, “The theory of the direct-view confocal microscope,” J. Microsc. (Oxford) 124, 107–117 (1981).
[CrossRef]

1968 (1)

1967 (1)

1965 (1)

Abe, M.

A. Ichihara, T. Tanaami, K. Isozaki, Y. Sugiyama, Y. Kosugi, K. Mikuriya, M. Abe, I. Uemura, “High-speed confocal fluorescence microscopy using a Nipkow scanner with microlenses for 3D-imaging of single fluorescent molecule in real time,” Bioimages 4, 52–62 (1996).

Andrés, P.

E. Bonet, P. Andrés, J. C. Barreiro, A. Pons, “Self-imaging properties of a periodic microlens array: versatile array illuminator realization,” Opt. Commun. 106, 39–44 (1994).
[CrossRef]

Arndt-Jovin, D. J.

Barreiro, J. C.

E. Bonet, P. Andrés, J. C. Barreiro, A. Pons, “Self-imaging properties of a periodic microlens array: versatile array illuminator realization,” Opt. Commun. 106, 39–44 (1994).
[CrossRef]

Becker, T. W.

Bewersdorf, J.

J. Bewersdorf, S. W. Hell, “Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz,” J. Microsc. (Oxford) 191, 28–38 (1998).
[CrossRef]

J. Bewersdorf, R. Pick, S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett. 23, 655–657 (1998).
[CrossRef]

Bonet, E.

E. Bonet, P. Andrés, J. C. Barreiro, A. Pons, “Self-imaging properties of a periodic microlens array: versatile array illuminator realization,” Opt. Commun. 106, 39–44 (1994).
[CrossRef]

Booth, M.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1993).

Brakenhoff, G. J.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, G. J. Brakenhoff, “Dispersion-precompensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. (Oxford) 191, 141–158 (1998).
[CrossRef]

A. H. Buist, M. Müller, G. J. Brakenhoff, “Real-time two-photon microscopy,” J. Microsc. (Oxford) 192, 217–226 (1998).
[CrossRef]

Buist, A. H.

A. H. Buist, M. Müller, G. J. Brakenhoff, “Real-time two-photon microscopy,” J. Microsc. (Oxford) 192, 217–226 (1998).
[CrossRef]

Corle, T. R.

G. Q. Xiao, T. R. Corle, G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Egger, M. D.

Fewer, D. T.

E. M. McCabe, D. T. Fewer, A. C. Ottewill, S. J. Hewlett, J. Hegarty, “Direct-view microscopy: optical section-ing strength for finite-sized, multiple-pinhole arrays,” J. Microsc. (Oxford) 184, 95–105 (1996).
[CrossRef]

Fischer, P.

Fujita, K.

K. Fujita, O. Nakamura, T. Kaneko, S. Kawata, M. Oyamada, T. Takamatsu, “Real-time imaging of two-photon-induced fluorescence with a microlens-array scanner and a regenerative amplifier,” J. Microsc. (Oxford) 194, 528–531 (1999).
[CrossRef]

Galambos, R.

Hadravsky, M.

Halbhuber, K.-J.

Hanley, Q. S.

Q. S. Hanley, P. J. Verveer, T. M. Jovin, “Optical sectioning fluorescence spectroscopy in a programmable array microscope,” Appl. Spectrosc. 52, 783–789 (1998).
[CrossRef]

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. van Vliet, T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (PAM),” J. Microsc. (Oxford) 189, 192–198 (1998).
[CrossRef]

Hegarty, J.

E. M. McCabe, D. T. Fewer, A. C. Ottewill, S. J. Hewlett, J. Hegarty, “Direct-view microscopy: optical section-ing strength for finite-sized, multiple-pinhole arrays,” J. Microsc. (Oxford) 184, 95–105 (1996).
[CrossRef]

Hell, S. W.

J. Bewersdorf, S. W. Hell, “Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz,” J. Microsc. (Oxford) 191, 28–38 (1998).
[CrossRef]

S. W. Hell, M. Booth, S. Wilms, J. C. M. Schnetter, A. K. Kirsch, D. J. Arndt-Jovin, T. M. Jovin, “Two-photon near- and far-field fluorescence microscopy with con- tinuous-wave excitation,” Opt. Lett. 23, 1238–1240 (1998).
[CrossRef]

J. Bewersdorf, R. Pick, S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett. 23, 655–657 (1998).
[CrossRef]

M. Straub, S. W. Hell, “Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope,” Appl. Phys. Lett. 73, 1769–1771 (1998).
[CrossRef]

M. Straub, S. W. Hell, “Multifocal multiphoton microscopy: a fast and efficient tool for 3-D fluorescence imaging,” Bioimages 6, 177–185 (1998).
[CrossRef]

Hewlett, S. J.

E. M. McCabe, D. T. Fewer, A. C. Ottewill, S. J. Hewlett, J. Hegarty, “Direct-view microscopy: optical section-ing strength for finite-sized, multiple-pinhole arrays,” J. Microsc. (Oxford) 184, 95–105 (1996).
[CrossRef]

Ichihara, A.

A. Ichihara, T. Tanaami, K. Isozaki, Y. Sugiyama, Y. Kosugi, K. Mikuriya, M. Abe, I. Uemura, “High-speed confocal fluorescence microscopy using a Nipkow scanner with microlenses for 3D-imaging of single fluorescent molecule in real time,” Bioimages 4, 52–62 (1996).

Isozaki, K.

A. Ichihara, T. Tanaami, K. Isozaki, Y. Sugiyama, Y. Kosugi, K. Mikuriya, M. Abe, I. Uemura, “High-speed confocal fluorescence microscopy using a Nipkow scanner with microlenses for 3D-imaging of single fluorescent molecule in real time,” Bioimages 4, 52–62 (1996).

Jovin, T. M.

Juskaitis, R.

M. A. A. Neil, R. Juskaitis, T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153, 1–4 (1998).
[CrossRef]

T. Wilson, R. Juskaitis, M. Neil, M. Kozubek, “Confocal microscopy by aperture correlation,” Opt. Lett. 21, 1879–1881 (1996).
[CrossRef] [PubMed]

Kaneko, T.

K. Fujita, O. Nakamura, T. Kaneko, S. Kawata, M. Oyamada, T. Takamatsu, “Real-time imaging of two-photon-induced fluorescence with a microlens-array scanner and a regenerative amplifier,” J. Microsc. (Oxford) 194, 528–531 (1999).
[CrossRef]

Kawata, S.

K. Fujita, O. Nakamura, T. Kaneko, S. Kawata, M. Oyamada, T. Takamatsu, “Real-time imaging of two-photon-induced fluorescence with a microlens-array scanner and a regenerative amplifier,” J. Microsc. (Oxford) 194, 528–531 (1999).
[CrossRef]

Kino, G. S.

G. Q. Xiao, T. R. Corle, G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

Kirsch, A. K.

König, K.

Kosugi, Y.

A. Ichihara, T. Tanaami, K. Isozaki, Y. Sugiyama, Y. Kosugi, K. Mikuriya, M. Abe, I. Uemura, “High-speed confocal fluorescence microscopy using a Nipkow scanner with microlenses for 3D-imaging of single fluorescent molecule in real time,” Bioimages 4, 52–62 (1996).

Kozubek, M.

McCabe, E. M.

E. M. McCabe, D. T. Fewer, A. C. Ottewill, S. J. Hewlett, J. Hegarty, “Direct-view microscopy: optical section-ing strength for finite-sized, multiple-pinhole arrays,” J. Microsc. (Oxford) 184, 95–105 (1996).
[CrossRef]

Mikuriya, K.

A. Ichihara, T. Tanaami, K. Isozaki, Y. Sugiyama, Y. Kosugi, K. Mikuriya, M. Abe, I. Uemura, “High-speed confocal fluorescence microscopy using a Nipkow scanner with microlenses for 3D-imaging of single fluorescent molecule in real time,” Bioimages 4, 52–62 (1996).

Montgomery, W. D.

Müller, M.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, G. J. Brakenhoff, “Dispersion-precompensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. (Oxford) 191, 141–158 (1998).
[CrossRef]

A. H. Buist, M. Müller, G. J. Brakenhoff, “Real-time two-photon microscopy,” J. Microsc. (Oxford) 192, 217–226 (1998).
[CrossRef]

Nakamura, O.

K. Fujita, O. Nakamura, T. Kaneko, S. Kawata, M. Oyamada, T. Takamatsu, “Real-time imaging of two-photon-induced fluorescence with a microlens-array scanner and a regenerative amplifier,” J. Microsc. (Oxford) 194, 528–531 (1999).
[CrossRef]

Neil, M.

Neil, M. A. A.

M. A. A. Neil, R. Juskaitis, T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153, 1–4 (1998).
[CrossRef]

Ottewill, A. C.

E. M. McCabe, D. T. Fewer, A. C. Ottewill, S. J. Hewlett, J. Hegarty, “Direct-view microscopy: optical section-ing strength for finite-sized, multiple-pinhole arrays,” J. Microsc. (Oxford) 184, 95–105 (1996).
[CrossRef]

Oyamada, M.

K. Fujita, O. Nakamura, T. Kaneko, S. Kawata, M. Oyamada, T. Takamatsu, “Real-time imaging of two-photon-induced fluorescence with a microlens-array scanner and a regenerative amplifier,” J. Microsc. (Oxford) 194, 528–531 (1999).
[CrossRef]

Petran, M.

Pick, R.

Pons, A.

E. Bonet, P. Andrés, J. C. Barreiro, A. Pons, “Self-imaging properties of a periodic microlens array: versatile array illuminator realization,” Opt. Commun. 106, 39–44 (1994).
[CrossRef]

Reimann, I.

Schnetter, J. C. M.

Sheppard, C. J. R.

C. J. R. Sheppard, T. Wilson, “The theory of the direct-view confocal microscope,” J. Microsc. (Oxford) 124, 107–117 (1981).
[CrossRef]

Simon, U.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, G. J. Brakenhoff, “Dispersion-precompensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. (Oxford) 191, 141–158 (1998).
[CrossRef]

Squier, J.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, G. J. Brakenhoff, “Dispersion-precompensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. (Oxford) 191, 141–158 (1998).
[CrossRef]

Straub, M.

M. Straub, S. W. Hell, “Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope,” Appl. Phys. Lett. 73, 1769–1771 (1998).
[CrossRef]

M. Straub, S. W. Hell, “Multifocal multiphoton microscopy: a fast and efficient tool for 3-D fluorescence imaging,” Bioimages 6, 177–185 (1998).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Sugiyama, Y.

A. Ichihara, T. Tanaami, K. Isozaki, Y. Sugiyama, Y. Kosugi, K. Mikuriya, M. Abe, I. Uemura, “High-speed confocal fluorescence microscopy using a Nipkow scanner with microlenses for 3D-imaging of single fluorescent molecule in real time,” Bioimages 4, 52–62 (1996).

Takamatsu, T.

K. Fujita, O. Nakamura, T. Kaneko, S. Kawata, M. Oyamada, T. Takamatsu, “Real-time imaging of two-photon-induced fluorescence with a microlens-array scanner and a regenerative amplifier,” J. Microsc. (Oxford) 194, 528–531 (1999).
[CrossRef]

Tanaami, T.

A. Ichihara, T. Tanaami, K. Isozaki, Y. Sugiyama, Y. Kosugi, K. Mikuriya, M. Abe, I. Uemura, “High-speed confocal fluorescence microscopy using a Nipkow scanner with microlenses for 3D-imaging of single fluorescent molecule in real time,” Bioimages 4, 52–62 (1996).

Uemura, I.

A. Ichihara, T. Tanaami, K. Isozaki, Y. Sugiyama, Y. Kosugi, K. Mikuriya, M. Abe, I. Uemura, “High-speed confocal fluorescence microscopy using a Nipkow scanner with microlenses for 3D-imaging of single fluorescent molecule in real time,” Bioimages 4, 52–62 (1996).

van Vliet, L. J.

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. van Vliet, T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (PAM),” J. Microsc. (Oxford) 189, 192–198 (1998).
[CrossRef]

Verbeek, P. W.

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. van Vliet, T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (PAM),” J. Microsc. (Oxford) 189, 192–198 (1998).
[CrossRef]

Verveer, P. J.

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. van Vliet, T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (PAM),” J. Microsc. (Oxford) 189, 192–198 (1998).
[CrossRef]

Q. S. Hanley, P. J. Verveer, T. M. Jovin, “Optical sectioning fluorescence spectroscopy in a programmable array microscope,” Appl. Spectrosc. 52, 783–789 (1998).
[CrossRef]

Webb, W. W.

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Wilms, S.

Wilson, T.

M. A. A. Neil, R. Juskaitis, T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153, 1–4 (1998).
[CrossRef]

T. Wilson, R. Juskaitis, M. Neil, M. Kozubek, “Confocal microscopy by aperture correlation,” Opt. Lett. 21, 1879–1881 (1996).
[CrossRef] [PubMed]

C. J. R. Sheppard, T. Wilson, “The theory of the direct-view confocal microscope,” J. Microsc. (Oxford) 124, 107–117 (1981).
[CrossRef]

Winthrop, J. T.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1993).

Wolleschensky, R.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, G. J. Brakenhoff, “Dispersion-precompensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. (Oxford) 191, 141–158 (1998).
[CrossRef]

Worthington, C. R.

Xiao, G. Q.

G. Q. Xiao, T. R. Corle, G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

Appl. Phys. Lett. (2)

M. Straub, S. W. Hell, “Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope,” Appl. Phys. Lett. 73, 1769–1771 (1998).
[CrossRef]

G. Q. Xiao, T. R. Corle, G. S. Kino, “Real-time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

Appl. Spectrosc. (1)

Bioimages (2)

M. Straub, S. W. Hell, “Multifocal multiphoton microscopy: a fast and efficient tool for 3-D fluorescence imaging,” Bioimages 6, 177–185 (1998).
[CrossRef]

A. Ichihara, T. Tanaami, K. Isozaki, Y. Sugiyama, Y. Kosugi, K. Mikuriya, M. Abe, I. Uemura, “High-speed confocal fluorescence microscopy using a Nipkow scanner with microlenses for 3D-imaging of single fluorescent molecule in real time,” Bioimages 4, 52–62 (1996).

J. Microsc. (Oxford) (7)

C. J. R. Sheppard, T. Wilson, “The theory of the direct-view confocal microscope,” J. Microsc. (Oxford) 124, 107–117 (1981).
[CrossRef]

E. M. McCabe, D. T. Fewer, A. C. Ottewill, S. J. Hewlett, J. Hegarty, “Direct-view microscopy: optical section-ing strength for finite-sized, multiple-pinhole arrays,” J. Microsc. (Oxford) 184, 95–105 (1996).
[CrossRef]

K. Fujita, O. Nakamura, T. Kaneko, S. Kawata, M. Oyamada, T. Takamatsu, “Real-time imaging of two-photon-induced fluorescence with a microlens-array scanner and a regenerative amplifier,” J. Microsc. (Oxford) 194, 528–531 (1999).
[CrossRef]

A. H. Buist, M. Müller, G. J. Brakenhoff, “Real-time two-photon microscopy,” J. Microsc. (Oxford) 192, 217–226 (1998).
[CrossRef]

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. van Vliet, T. M. Jovin, “Theory of confocal fluorescence imaging in the programmable array microscope (PAM),” J. Microsc. (Oxford) 189, 192–198 (1998).
[CrossRef]

J. Bewersdorf, S. W. Hell, “Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz,” J. Microsc. (Oxford) 191, 28–38 (1998).
[CrossRef]

M. Müller, J. Squier, R. Wolleschensky, U. Simon, G. J. Brakenhoff, “Dispersion-precompensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. (Oxford) 191, 141–158 (1998).
[CrossRef]

J. Opt. Soc. Am. (3)

Opt. Commun. (2)

E. Bonet, P. Andrés, J. C. Barreiro, A. Pons, “Self-imaging properties of a periodic microlens array: versatile array illuminator realization,” Opt. Commun. 106, 39–44 (1994).
[CrossRef]

M. A. A. Neil, R. Juskaitis, T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153, 1–4 (1998).
[CrossRef]

Opt. Lett. (4)

Science (1)

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Other (1)

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Principal optical arrangement of a multifocal multiphoton excitation microscope (unfolded). An array of microlenses produces an array of beamlets, in turn producing an array of high-aperture foci in the focal plane inside the specimen. A temporal delay mask (TMX) placed in front of the microlens array ensures that the pulses associated with different foci pass the focal plane at different time points. We refer to this method as time-multiplexed MMM.

Fig. 2
Fig. 2

Arrangement of the foci: (a) conventional hexagonal configuration, (b) three delay subclasses in a regular arrangement, (c) three delay subclasses randomly arranged in a hexagonal pattern.

Fig. 3
Fig. 3

Properties of the two-photon excitation response to an infinitely thin fluorescence plane, Iz, calculated for a numerical aperture of NA=1.35, oil immersion; normalized to unity. (a) Linear scale plot of Iz for interfocal distances of s=0λ0 (curve 1), s=5λ0 (curve 2), and s=10λ0 (curve 3), (b) 2D plot showing the intensity of Iz in gray values as a function of the interfocal distance s and the axial coordinate z, (c) semilogarithmic plot of the data in (a), (d) semilogarithmic plot of the data in (b).

Fig. 4
Fig. 4

Squared focal intensities I2(x, y) for different axial coordinates z. In each plane the gray values are normalized to unity, so that the image brightness does not reflect the absolute brightness in the particular plane, which, however, can be inferred from the curves in the rectangular plots showing I2(x,0).

Fig. 5
Fig. 5

(a) Normalized two-photon fluorescence sea response Isea for interfocal distances s=0λ0 (curve 1), s=5λ0 (curve 2), and s=10λ0 (curve 3) and (b) contour plot showing Isea as a function of s and the axial coordinate z.

Fig. 6
Fig. 6

Sectioning in two-photon MMM as a function of the interfocal distance s: (a) FWHM of the z response and (b) the δ20%80% threshold value of the sea response, normalized to their single-beam counterparts.

Fig. 7
Fig. 7

Sectioning in three-photon MMM; as in Fig. 5. Plots in (a) are shown for interfocal distances s=0λ0 (curve 1), s=2.5λ0 (curve 2), and s=5λ0 (curve 3).  

Fig. 8
Fig. 8

(a) Sea response Isea and (b) z response Iz for different grating configurations: s=5λ0, regular (curves a); s=5λ0, with an optical delay as in Fig. 2(b) and three regular subclasses (curves b); s=8.6λ0, regular arrangement (curves c).

Fig. 9
Fig. 9

(a) Enlargement of the upper edge of the sea response Isea and (b) the corresponding part of the z response Iz for different focal configurations: s=5λ0, regular (curves a); s=5λ0, three regular subclasses with seffective=8.6λ0 (curves b); s=5λ0, two random subclasses (curves r2); s=5λ0, three random subclasses (curves r3); s=5λ0, four random subclasses (curves r4). Note that the randomness leads to a smoother decline in the z response.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Hexc=[h(x, y, z)g(x, y, z)]2p.
h(x, y, z)=A0αcos(θ) sin(θ)J0(kx2+y2 sin(θ))×exp[ikz cos(θ)]dθ.
g(x, y, z)=n=1Nδ(x-xn)δ(y-yn)δ(z)
Heff(x, y, z)=[h(x, y, z)]2Iz(z),
Iz(z)=dxdy[h(x, y, z)g(x, y, z)]2p
Iz(z)=dxdy{[h(x, y, z)]2pg(x, y, z)}=Ndxdy[h(x, y, z)]2p.
Isea(z)=-zIz(z)dz.
Iz(z)-3s-2λ03s+2λ0-3s-2λ03s+2λ0Hexc(x, y, z)dxdy.
Isea(z)-z40λ0Iz(z)dz.

Metrics