Abstract

We were interested in the question of how cones contribute to the detection of brightness, red–green, and blue–yellow. The linear combination of cone signals contributing to flicker detection was determined by fitting a plane to 64 points (colors) of equal heterochromatic flicker brightness. A small S-cone contribution to flicker brightness of similar amplitude in all five subjects was identified. The ratio of L- to M-cone contribution was found to vary considerably among subjects (1.7–4.1). Chromatic detection thresholds were determined for small patches in the isoluminant plane defined by flicker brightness. These stimuli were presented at an eccentricity of 40 arc min. By using color naming at the detection threshold, one can attribute different segments of the resulting detection ellipses to different chromatic mechanisms. Linear approximation of these segments provided an estimate for the contribution of the different cone types to the detection of red–green and blue–yellow. The results are consistent with the hypothesis that S cones contribute to the red–green mechanism with the same sign as that of the contribution from L cones. The blue–yellow mechanism very probably subtracts S-cone contrast from luminance contrast. The detection ellipse can be mapped into a circle in cone difference space. The base of this canonical transformation is a set of three cone fundamentals that differs from previously published estimates. Projecting the circle onto the three cone difference axes produces sinusoidal changes within the respective excitations. We propose that simultaneous sinusoidal changes of equal increment in the three cone difference excitations generate stimuli differing by equal saliency.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Helmholtz, “Theorie der zusammengesetzten Farben,” in Habilitation (Gebr. Unger, Berlin, 1852).
  2. E. Hering, Wissenschaftliche Abhandlungen (Thieme, Leipzig, Germany, 1931), Vol. VI, p. 42.
  3. J. Lee, C. F. Stromeyer, “Contribution of human short-wave cones to luminance and motion detection,” J. Physiol. (London) 413, 563–593 (1989).
  4. A. Stockman, D. I. A. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
    [CrossRef] [PubMed]
  5. A. Stockman, D. I. A. MacLeod, N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
    [CrossRef]
  6. D. Jameson, L. M. Hurvich, “Opponent-response functions related to measured cone photopigments,” J. Opt. Soc. Am. 58, 429–430 (1968).
    [CrossRef]
  7. C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vision Res. 17, 1083–1089 (1977).
    [CrossRef] [PubMed]
  8. S. Takahashi, Y. Ejima, M. Akita, “Effect of light adaptation on the perceptual red–green and yellow–blue opponent-color responses,” J. Opt. Soc. Am. A 2, 705–712 (1985).
    [CrossRef] [PubMed]
  9. A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).
  10. D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [CrossRef] [PubMed]
  11. A. Eisner, D. I. A. MacLeod, “Blue-sensitive cones do not contribute to luminance,” J. Opt. Soc. Am. 70, 121–123 (1980).
    [CrossRef] [PubMed]
  12. A. Stockman, D. I. A. MacLeod, S. J. Lebrun, “Faster than the eye can see: blue cones respond to rapid flicker,” J. Opt. Soc. Am. A 10, 1396–1402 (1993).
    [CrossRef] [PubMed]
  13. B. R. Wooten, J. S. Werner, “Short-wave cone input to the red–green opponent channel,” Vision Res. 19, 1053–1054 (1979).
    [CrossRef]
  14. C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chenn, E. Hu, R. E. Kronauer, “Short-wave cone signal in the red–green detection mechanism,” Vision Res. 38, 813–826 (1998).
    [CrossRef] [PubMed]
  15. R. T. Eskew, P. M. Kortick, “Hue equilibria compared with chromatic detection in 3D cone contrast space,” Invest. Ophthalmol. Visual Sci. 35, 1555 (1994).
  16. A. Chaparro, C. F. Stromeyer, E. P. Huang, R. E. Kronauer, R. T. Eskew, “Colour is what the eye sees best,” Nature (London) 361, 348–350 (1993).
    [CrossRef]
  17. A. Chaparro, C. F. Stromeyer, R. E. Kronauer, R. T. Eskew, “Separable red–green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1994).
    [CrossRef] [PubMed]
  18. J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
    [CrossRef] [PubMed]
  19. K. Knoblauch, “Dual bases in dichromatic color space,” in Colour Vision Deficiencies XII, B. Drum, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1995), pp. 165–176.
  20. A. B. Poirson, B. A. Wandell, D. C. Varner, D. H. Brainard, “Surface characterizations of color thresholds,” J. Opt. Soc. Am. A 7, 783–789 (1990).
    [CrossRef] [PubMed]
  21. B. B. Lee, P. R. Martin, A. Valberg, J. Kremers, “Physiological mechanisms underlying psychophysical sensitivity to combined luminance and chromatic modulation,” J. Opt. Soc. Am. A 10, 1403–1412 (1993).
    [CrossRef] [PubMed]
  22. G. R. Cole, T. Hine, W. McIlhagga, “Detection mechanisms in L-, M-, and S-cone contrast space,” J. Opt. Soc. Am. A 10, 38–51 (1993).
    [CrossRef] [PubMed]
  23. T. Wachtler, C. Wehrhahn, “Perception of luminance and color: comparing functional properties of detection and induction in human vision,” in Neurobiology, V. Torre, F. Conti, eds. (Plenum, New York, 1996).
  24. T. Wachtler, C. Wehrhahn, “The Craik–Cornsweet illusion in color: quantitative characterization and comparison with luminance,” Perception 26, 1423–1430 (1997).
    [CrossRef]
  25. D. H. Kelly, D. van Norren, “Two-band model of heterochromatic flicker,” J. Opt. Soc. Am. 67, 1081–1091 (1977).
    [CrossRef] [PubMed]
  26. P. K. Kaiser, “Flicker as a function of wavelength and heterochromatic flicker photometry,” in Vision and Visual Dysfunction, Vol. 5, of Limits of Vision, J. J. Kulikowsky, V. Walsh, I. J. Murray, eds. (MacMillan, London, 1991), pp. 171–190.
  27. R. M. Boynton, “History and current status of a physiologically based system of photometry and colorimetry,” J. Opt. Soc. Am. A 13, 1609–1621 (1996).
    [CrossRef]
  28. G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).
  29. H. L. De Vries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica (The Hague) 24, 199–212 (1948).
  30. J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1970).
    [CrossRef]
  31. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [CrossRef] [PubMed]
  32. W. A. H. Rushton, H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–85 (1964).
    [CrossRef] [PubMed]
  33. S. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision, Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 155–166.
  34. E. Switkes, A. Bradley, K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162 (1988).
    [CrossRef] [PubMed]
  35. M. Gur, V. Akri, “Isoluminant stimuli may not expose the full contribution of color to visual functioning: spatial contrast sensitivity measurements indicate interaction between color and luminance processing,” Vision Res. 32, 1253–1262 (1992).
    [CrossRef] [PubMed]
  36. T. E. Reisbeck, K. R. Gegenfurtner, “Effects of contrast and temporal frequency on orientation discrimination for luminance and isoluminant stimuli,” Vision Res. 38, 1105–1117 (1998).
    [CrossRef] [PubMed]
  37. H. G. Sperling, R. S. Harwerth, “Red–green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
    [CrossRef] [PubMed]
  38. D. R. Williams, D. I. A. MacLeod, M. M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
    [CrossRef] [PubMed]
  39. R. L. De Valois, K. K. De Valois, E. Switkes, L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vision Res. 37, 885–897 (1997).
    [CrossRef] [PubMed]
  40. B. B. Lee, “Receptors, channels and color in primate retina,” in Color Vision, Perspectives from Different Disciplines, W. G. K. Backhaus, R. Kliegl, J. S. Werner, eds. (Walter de Gruyter, Berlin, 1998), pp. 79–88.
  41. P. E. King-Smith, D. Carden, “Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration,” J. Opt. Soc. Am. 66, 709–717 (1976).
    [CrossRef] [PubMed]
  42. D. L. MacAdam, “Visual sensitivities to color differences in daylight,” J. Opt. Soc. Am. 32, 247–274 (1942).
    [CrossRef]
  43. L. Silberstein, D. L. MacAdam, “The distribution of color matchings around a color center,” J. Opt. Soc. Am. 35, 32–39 (1945).
    [CrossRef]
  44. M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
    [CrossRef] [PubMed]
  45. A manuscript on this topic is in preparation. Information is available from the authors, who may be contacted at the address on the title page or by e-mail: christian.wehrhahn@tuebingen.mpg.de.
  46. J. M. Sankeralli, K. T. Mullen, “Estimation of the L-, M-, and S-cone weights of the postreceptoral detection mechanisms,” J. Opt. Soc. Am. A 13, 906–915 (1996).
    [CrossRef]

1998 (2)

C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chenn, E. Hu, R. E. Kronauer, “Short-wave cone signal in the red–green detection mechanism,” Vision Res. 38, 813–826 (1998).
[CrossRef] [PubMed]

T. E. Reisbeck, K. R. Gegenfurtner, “Effects of contrast and temporal frequency on orientation discrimination for luminance and isoluminant stimuli,” Vision Res. 38, 1105–1117 (1998).
[CrossRef] [PubMed]

1997 (2)

R. L. De Valois, K. K. De Valois, E. Switkes, L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vision Res. 37, 885–897 (1997).
[CrossRef] [PubMed]

T. Wachtler, C. Wehrhahn, “The Craik–Cornsweet illusion in color: quantitative characterization and comparison with luminance,” Perception 26, 1423–1430 (1997).
[CrossRef]

1996 (2)

1994 (3)

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
[CrossRef] [PubMed]

R. T. Eskew, P. M. Kortick, “Hue equilibria compared with chromatic detection in 3D cone contrast space,” Invest. Ophthalmol. Visual Sci. 35, 1555 (1994).

A. Chaparro, C. F. Stromeyer, R. E. Kronauer, R. T. Eskew, “Separable red–green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1994).
[CrossRef] [PubMed]

1993 (5)

1992 (1)

M. Gur, V. Akri, “Isoluminant stimuli may not expose the full contribution of color to visual functioning: spatial contrast sensitivity measurements indicate interaction between color and luminance processing,” Vision Res. 32, 1253–1262 (1992).
[CrossRef] [PubMed]

1991 (1)

A. Stockman, D. I. A. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

1990 (1)

1989 (1)

J. Lee, C. F. Stromeyer, “Contribution of human short-wave cones to luminance and motion detection,” J. Physiol. (London) 413, 563–593 (1989).

1988 (1)

1985 (1)

1984 (1)

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

1982 (1)

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

1981 (1)

D. R. Williams, D. I. A. MacLeod, M. M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
[CrossRef] [PubMed]

1980 (1)

1979 (2)

D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
[CrossRef] [PubMed]

B. R. Wooten, J. S. Werner, “Short-wave cone input to the red–green opponent channel,” Vision Res. 19, 1053–1054 (1979).
[CrossRef]

1977 (2)

C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vision Res. 17, 1083–1089 (1977).
[CrossRef] [PubMed]

D. H. Kelly, D. van Norren, “Two-band model of heterochromatic flicker,” J. Opt. Soc. Am. 67, 1081–1091 (1977).
[CrossRef] [PubMed]

1976 (1)

1975 (1)

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

1971 (1)

H. G. Sperling, R. S. Harwerth, “Red–green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

1970 (1)

J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1970).
[CrossRef]

1968 (1)

1964 (1)

W. A. H. Rushton, H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–85 (1964).
[CrossRef] [PubMed]

1948 (1)

H. L. De Vries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica (The Hague) 24, 199–212 (1948).

1945 (1)

1942 (1)

Akita, M.

Akri, V.

M. Gur, V. Akri, “Isoluminant stimuli may not expose the full contribution of color to visual functioning: spatial contrast sensitivity measurements indicate interaction between color and luminance processing,” Vision Res. 32, 1253–1262 (1992).
[CrossRef] [PubMed]

Anstis, S.

S. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision, Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 155–166.

Baker, H. D.

W. A. H. Rushton, H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–85 (1964).
[CrossRef] [PubMed]

Boynton, R. M.

Bradley, A.

Brainard, D. H.

Carden, D.

Cavanagh, P.

S. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision, Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 155–166.

Chaparro, A.

C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chenn, E. Hu, R. E. Kronauer, “Short-wave cone signal in the red–green detection mechanism,” Vision Res. 38, 813–826 (1998).
[CrossRef] [PubMed]

A. Chaparro, C. F. Stromeyer, R. E. Kronauer, R. T. Eskew, “Separable red–green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1994).
[CrossRef] [PubMed]

A. Chaparro, C. F. Stromeyer, E. P. Huang, R. E. Kronauer, R. T. Eskew, “Colour is what the eye sees best,” Nature (London) 361, 348–350 (1993).
[CrossRef]

Chenn, D.

C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chenn, E. Hu, R. E. Kronauer, “Short-wave cone signal in the red–green detection mechanism,” Vision Res. 38, 813–826 (1998).
[CrossRef] [PubMed]

Cole, G. R.

De Valois, K. K.

De Valois, R. L.

R. L. De Valois, K. K. De Valois, E. Switkes, L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vision Res. 37, 885–897 (1997).
[CrossRef] [PubMed]

De Vries, H. L.

H. L. De Vries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica (The Hague) 24, 199–212 (1948).

DePriest, D. D.

A. Stockman, D. I. A. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

Derrington, A. M.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

Eisner, A.

Ejima, Y.

Eskew, R. T.

R. T. Eskew, P. M. Kortick, “Hue equilibria compared with chromatic detection in 3D cone contrast space,” Invest. Ophthalmol. Visual Sci. 35, 1555 (1994).

A. Chaparro, C. F. Stromeyer, R. E. Kronauer, R. T. Eskew, “Separable red–green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1994).
[CrossRef] [PubMed]

A. Chaparro, C. F. Stromeyer, E. P. Huang, R. E. Kronauer, R. T. Eskew, “Colour is what the eye sees best,” Nature (London) 361, 348–350 (1993).
[CrossRef]

Gegenfurtner, K. R.

T. E. Reisbeck, K. R. Gegenfurtner, “Effects of contrast and temporal frequency on orientation discrimination for luminance and isoluminant stimuli,” Vision Res. 38, 1105–1117 (1998).
[CrossRef] [PubMed]

Gur, M.

M. Gur, V. Akri, “Isoluminant stimuli may not expose the full contribution of color to visual functioning: spatial contrast sensitivity measurements indicate interaction between color and luminance processing,” Vision Res. 32, 1253–1262 (1992).
[CrossRef] [PubMed]

Harwerth, R. S.

H. G. Sperling, R. S. Harwerth, “Red–green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

Hayhoe, M. M.

D. R. Williams, D. I. A. MacLeod, M. M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
[CrossRef] [PubMed]

Heeley, D. W.

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

Helmholtz, H.

H. Helmholtz, “Theorie der zusammengesetzten Farben,” in Habilitation (Gebr. Unger, Berlin, 1852).

Hering, E.

E. Hering, Wissenschaftliche Abhandlungen (Thieme, Leipzig, Germany, 1931), Vol. VI, p. 42.

Hine, T.

Hu, E.

C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chenn, E. Hu, R. E. Kronauer, “Short-wave cone signal in the red–green detection mechanism,” Vision Res. 38, 813–826 (1998).
[CrossRef] [PubMed]

Huang, E. P.

A. Chaparro, C. F. Stromeyer, E. P. Huang, R. E. Kronauer, R. T. Eskew, “Colour is what the eye sees best,” Nature (London) 361, 348–350 (1993).
[CrossRef]

Hurvich, L. M.

Ingling, C. R.

C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vision Res. 17, 1083–1089 (1977).
[CrossRef] [PubMed]

Jameson, D.

Johnson, N. E.

Kaiser, P. K.

P. K. Kaiser, “Flicker as a function of wavelength and heterochromatic flicker photometry,” in Vision and Visual Dysfunction, Vol. 5, of Limits of Vision, J. J. Kulikowsky, V. Walsh, I. J. Murray, eds. (MacMillan, London, 1991), pp. 171–190.

Kelly, D. H.

King-Smith, P. E.

Knoblauch, K.

K. Knoblauch, “Dual bases in dichromatic color space,” in Colour Vision Deficiencies XII, B. Drum, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1995), pp. 165–176.

Kortick, P. M.

R. T. Eskew, P. M. Kortick, “Hue equilibria compared with chromatic detection in 3D cone contrast space,” Invest. Ophthalmol. Visual Sci. 35, 1555 (1994).

Krauskopf, J.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

Kremers, J.

Kronauer, R. E.

C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chenn, E. Hu, R. E. Kronauer, “Short-wave cone signal in the red–green detection mechanism,” Vision Res. 38, 813–826 (1998).
[CrossRef] [PubMed]

A. Chaparro, C. F. Stromeyer, R. E. Kronauer, R. T. Eskew, “Separable red–green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1994).
[CrossRef] [PubMed]

A. Chaparro, C. F. Stromeyer, E. P. Huang, R. E. Kronauer, R. T. Eskew, “Colour is what the eye sees best,” Nature (London) 361, 348–350 (1993).
[CrossRef]

Lebrun, S. J.

Lee, B. B.

B. B. Lee, P. R. Martin, A. Valberg, J. Kremers, “Physiological mechanisms underlying psychophysical sensitivity to combined luminance and chromatic modulation,” J. Opt. Soc. Am. A 10, 1403–1412 (1993).
[CrossRef] [PubMed]

B. B. Lee, “Receptors, channels and color in primate retina,” in Color Vision, Perspectives from Different Disciplines, W. G. K. Backhaus, R. Kliegl, J. S. Werner, eds. (Walter de Gruyter, Berlin, 1998), pp. 79–88.

Lee, J.

J. Lee, C. F. Stromeyer, “Contribution of human short-wave cones to luminance and motion detection,” J. Physiol. (London) 413, 563–593 (1989).

Lennie, P.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

MacAdam, D. L.

MacLeod, D. I. A.

Mahon, L.

R. L. De Valois, K. K. De Valois, E. Switkes, L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vision Res. 37, 885–897 (1997).
[CrossRef] [PubMed]

Martin, P. R.

McIlhagga, W.

Mollon, J. D.

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
[CrossRef] [PubMed]

Mullen, K. T.

Poirson, A. B.

Pokorny, J.

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Reisbeck, T. E.

T. E. Reisbeck, K. R. Gegenfurtner, “Effects of contrast and temporal frequency on orientation discrimination for luminance and isoluminant stimuli,” Vision Res. 38, 1105–1117 (1998).
[CrossRef] [PubMed]

Rodriguez, C.

C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chenn, E. Hu, R. E. Kronauer, “Short-wave cone signal in the red–green detection mechanism,” Vision Res. 38, 813–826 (1998).
[CrossRef] [PubMed]

Rushton, W. A. H.

W. A. H. Rushton, H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–85 (1964).
[CrossRef] [PubMed]

Sankeralli, J. M.

Silberstein, L.

Smith, V. C.

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Sperling, H. G.

H. G. Sperling, R. S. Harwerth, “Red–green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

Stiles, W. S.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

Stockman, A.

Stromeyer, C. F.

C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chenn, E. Hu, R. E. Kronauer, “Short-wave cone signal in the red–green detection mechanism,” Vision Res. 38, 813–826 (1998).
[CrossRef] [PubMed]

A. Chaparro, C. F. Stromeyer, R. E. Kronauer, R. T. Eskew, “Separable red–green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1994).
[CrossRef] [PubMed]

A. Chaparro, C. F. Stromeyer, E. P. Huang, R. E. Kronauer, R. T. Eskew, “Colour is what the eye sees best,” Nature (London) 361, 348–350 (1993).
[CrossRef]

J. Lee, C. F. Stromeyer, “Contribution of human short-wave cones to luminance and motion detection,” J. Physiol. (London) 413, 563–593 (1989).

Switkes, E.

Takahashi, S.

Valberg, A.

van Norren, D.

Varner, D. C.

Vos, J. J.

J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1970).
[CrossRef]

Wachtler, T.

T. Wachtler, C. Wehrhahn, “The Craik–Cornsweet illusion in color: quantitative characterization and comparison with luminance,” Perception 26, 1423–1430 (1997).
[CrossRef]

T. Wachtler, C. Wehrhahn, “Perception of luminance and color: comparing functional properties of detection and induction in human vision,” in Neurobiology, V. Torre, F. Conti, eds. (Plenum, New York, 1996).

Walraven, P. L.

J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1970).
[CrossRef]

Wandell, B. A.

Webster, M. A.

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
[CrossRef] [PubMed]

Wehrhahn, C.

T. Wachtler, C. Wehrhahn, “The Craik–Cornsweet illusion in color: quantitative characterization and comparison with luminance,” Perception 26, 1423–1430 (1997).
[CrossRef]

T. Wachtler, C. Wehrhahn, “Perception of luminance and color: comparing functional properties of detection and induction in human vision,” in Neurobiology, V. Torre, F. Conti, eds. (Plenum, New York, 1996).

Werner, J. S.

B. R. Wooten, J. S. Werner, “Short-wave cone input to the red–green opponent channel,” Vision Res. 19, 1053–1054 (1979).
[CrossRef]

Williams, D. R.

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

D. R. Williams, D. I. A. MacLeod, M. M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
[CrossRef] [PubMed]

Wooten, B. R.

B. R. Wooten, J. S. Werner, “Short-wave cone input to the red–green opponent channel,” Vision Res. 19, 1053–1054 (1979).
[CrossRef]

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

Genetica (The Hague) (1)

H. L. De Vries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica (The Hague) 24, 199–212 (1948).

Invest. Ophthalmol. Visual Sci. (1)

R. T. Eskew, P. M. Kortick, “Hue equilibria compared with chromatic detection in 3D cone contrast space,” Invest. Ophthalmol. Visual Sci. 35, 1555 (1994).

J. Opt. Soc. Am. (7)

J. Opt. Soc. Am. A (9)

J. M. Sankeralli, K. T. Mullen, “Estimation of the L-, M-, and S-cone weights of the postreceptoral detection mechanisms,” J. Opt. Soc. Am. A 13, 906–915 (1996).
[CrossRef]

A. Stockman, D. I. A. MacLeod, N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
[CrossRef]

A. B. Poirson, B. A. Wandell, D. C. Varner, D. H. Brainard, “Surface characterizations of color thresholds,” J. Opt. Soc. Am. A 7, 783–789 (1990).
[CrossRef] [PubMed]

B. B. Lee, P. R. Martin, A. Valberg, J. Kremers, “Physiological mechanisms underlying psychophysical sensitivity to combined luminance and chromatic modulation,” J. Opt. Soc. Am. A 10, 1403–1412 (1993).
[CrossRef] [PubMed]

G. R. Cole, T. Hine, W. McIlhagga, “Detection mechanisms in L-, M-, and S-cone contrast space,” J. Opt. Soc. Am. A 10, 38–51 (1993).
[CrossRef] [PubMed]

R. M. Boynton, “History and current status of a physiologically based system of photometry and colorimetry,” J. Opt. Soc. Am. A 13, 1609–1621 (1996).
[CrossRef]

E. Switkes, A. Bradley, K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162 (1988).
[CrossRef] [PubMed]

S. Takahashi, Y. Ejima, M. Akita, “Effect of light adaptation on the perceptual red–green and yellow–blue opponent-color responses,” J. Opt. Soc. Am. A 2, 705–712 (1985).
[CrossRef] [PubMed]

A. Stockman, D. I. A. MacLeod, S. J. Lebrun, “Faster than the eye can see: blue cones respond to rapid flicker,” J. Opt. Soc. Am. A 10, 1396–1402 (1993).
[CrossRef] [PubMed]

J. Physiol. (London) (2)

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

J. Lee, C. F. Stromeyer, “Contribution of human short-wave cones to luminance and motion detection,” J. Physiol. (London) 413, 563–593 (1989).

Nature (London) (1)

A. Chaparro, C. F. Stromeyer, E. P. Huang, R. E. Kronauer, R. T. Eskew, “Colour is what the eye sees best,” Nature (London) 361, 348–350 (1993).
[CrossRef]

Perception (1)

T. Wachtler, C. Wehrhahn, “The Craik–Cornsweet illusion in color: quantitative characterization and comparison with luminance,” Perception 26, 1423–1430 (1997).
[CrossRef]

Science (1)

H. G. Sperling, R. S. Harwerth, “Red–green cone interactions in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

Vision Res. (14)

D. R. Williams, D. I. A. MacLeod, M. M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
[CrossRef] [PubMed]

R. L. De Valois, K. K. De Valois, E. Switkes, L. Mahon, “Hue scaling of isoluminant and cone-specific lights,” Vision Res. 37, 885–897 (1997).
[CrossRef] [PubMed]

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
[CrossRef] [PubMed]

M. Gur, V. Akri, “Isoluminant stimuli may not expose the full contribution of color to visual functioning: spatial contrast sensitivity measurements indicate interaction between color and luminance processing,” Vision Res. 32, 1253–1262 (1992).
[CrossRef] [PubMed]

T. E. Reisbeck, K. R. Gegenfurtner, “Effects of contrast and temporal frequency on orientation discrimination for luminance and isoluminant stimuli,” Vision Res. 38, 1105–1117 (1998).
[CrossRef] [PubMed]

J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1970).
[CrossRef]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

W. A. H. Rushton, H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–85 (1964).
[CrossRef] [PubMed]

A. Chaparro, C. F. Stromeyer, R. E. Kronauer, R. T. Eskew, “Separable red–green and luminance detectors for small flashes,” Vision Res. 34, 751–762 (1994).
[CrossRef] [PubMed]

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

B. R. Wooten, J. S. Werner, “Short-wave cone input to the red–green opponent channel,” Vision Res. 19, 1053–1054 (1979).
[CrossRef]

C. F. Stromeyer, A. Chaparro, C. Rodriguez, D. Chenn, E. Hu, R. E. Kronauer, “Short-wave cone signal in the red–green detection mechanism,” Vision Res. 38, 813–826 (1998).
[CrossRef] [PubMed]

A. Stockman, D. I. A. MacLeod, D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

C. R. Ingling, “The spectral sensitivity of the opponent-color channels,” Vision Res. 17, 1083–1089 (1977).
[CrossRef] [PubMed]

Other (9)

H. Helmholtz, “Theorie der zusammengesetzten Farben,” in Habilitation (Gebr. Unger, Berlin, 1852).

E. Hering, Wissenschaftliche Abhandlungen (Thieme, Leipzig, Germany, 1931), Vol. VI, p. 42.

K. Knoblauch, “Dual bases in dichromatic color space,” in Colour Vision Deficiencies XII, B. Drum, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1995), pp. 165–176.

S. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision, Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 155–166.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, New York, 1982).

P. K. Kaiser, “Flicker as a function of wavelength and heterochromatic flicker photometry,” in Vision and Visual Dysfunction, Vol. 5, of Limits of Vision, J. J. Kulikowsky, V. Walsh, I. J. Murray, eds. (MacMillan, London, 1991), pp. 171–190.

T. Wachtler, C. Wehrhahn, “Perception of luminance and color: comparing functional properties of detection and induction in human vision,” in Neurobiology, V. Torre, F. Conti, eds. (Plenum, New York, 1996).

A manuscript on this topic is in preparation. Information is available from the authors, who may be contacted at the address on the title page or by e-mail: christian.wehrhahn@tuebingen.mpg.de.

B. B. Lee, “Receptors, channels and color in primate retina,” in Color Vision, Perspectives from Different Disciplines, W. G. K. Backhaus, R. Kliegl, J. S. Werner, eds. (Walter de Gruyter, Berlin, 1998), pp. 79–88.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Detection experiments performed within a plane of constant S-cone excitation. Each point represents a threshold based on at least 420 presentations. Bars denote 95% confidence intervals. The red–green detection contours were approximated by line segments. These chromatic contours were identified by color naming at detection threshold (see the text for details).

Fig. 2
Fig. 2

Detection thresholds within the subjective isoluminant plane of each observer as determined in Section 3. Line segments that approximate the threshold criterion for the chromatic mechanisms were fitted to the data points. The dotted lines represent lines exhibiting constant values of S-cone contrast compared with the gray background. (a)–(c), (d), (f) Detection experiments at an eccentricity of 40 arc min; (e), (g) detection experiments at an eccentricity of 10 arc min. Other details are as in Fig. 1.

Fig. 3
Fig. 3

Graphical representation of the isoluminant plane and angular specification in cone difference space. The isoluminant plane intersects the S-cone difference axis at an angle α. Isoluminant stimuli are specified by the distance to the white point at the origin of cone difference space and the angle ϕ relative to the M-constant axis with positive S-cone difference excitation.

Fig. 4
Fig. 4

Detection thresholds of all observers in cone contrast space (ordinates). The angular specification of the abscissa was calculated with respect to the rescaled cone difference space (Table 2). Because detection thresholds exhibit a circular shape within the scaled cone difference space, they can be approximated well by sinusoidal functions.

Tables (3)

Tables Icon

Table 1 Flicker Brightness As Composed by the Cone Excitations in Implicit Form (aL*L + aM*M + aS*S = 1)

Tables Icon

Table 2 Scaling of the Cone Fundamentals to Map Detection Thresholds into a Circle in Cone Difference Space

Tables Icon

Table 3 Averaged Isoluminant Stimuli Situated at the Fivefold Detection Threshold Expressed in Cone Contrasts and 1931 CIE Space

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

aSS+aMM+aLL=1.
cS=S-SWSW,
S=cSSW+SW.
(aSSW)cS+(aMMW)cM+(aLLW)cL
=1-asSW-aMMW-aLLW.
|cL-cM+acS| threshold.
A=a0b0c0+sa1b1c1+ta2b2c2.
aS+bM+cL=d,
aS0+bM0+cL0=d.
a(S-S0)+b(M-M0)+c(L-L0)=0.
aΔS+bΔM+cΔL=0,
(a2+b2+c2)1/2=1,
ΔSiΔMiΔLi+kabc=ΔSTΔMTΔLT.
a(ΔSi+ka)+b(ΔMi+kb)+c(ΔLi+kc)=0.
aΔSi+bΔMi+cΔLi+k(a2+b2+c2)=0.
k=-(aΔSi+bΔMi+cΔLi).
iki2=i(aΔSi+bΔMi+cΔLi)2.
a=(1-b2-c2)1/2.
iki2=i[(1-b2-c2)1/2ΔSi+bMi+cΔLi]2.
b iki2=i2[(1-b2-c2)1/2ΔSi+bΔMi+cΔLi]×-b(1-b2-c2)1/2 ΔSi+ΔMi=0,
c iki2=i2[(1-b2-c2)1/2ΔSi+bΔMi+cΔLi]×-c(1-b2-c2)1/2 ΔSi+ΔLi=0.

Metrics