Abstract

Previously we showed that thresholds for abutting Vernier targets are unaffected by motion, as long as the targets are processed by the same spatial-frequency channel at each velocity and remain equally detectable [Invest. Ophthalmol. Visual Sci. (Suppl.) 37, S734 (1996)]. In this study we compared Vernier thresholds for stationary and moving abutting and nonabutting targets (gaps = 0, 18, and 36 arc min) for velocities of 0–16 deg/s. The Vernier targets were spatially filtered vertical lines (peak spatial frequency = 3.3 or 6.6 c/deg), presented at contrast levels of two, four, and eight times the detection threshold of each component line. Unlike the results for abutting targets, Vernier thresholds for nonabutting targets worsen with velocity as well as gap size. The results for abutting Vernier targets are consistent with the hypothesis that thresholds are mediated by oriented spatial filters, whose responses increase proportionally with the stimulus contrast. The velocity-dependent thresholds found for nonabutting Vernier targets can be explained on the basis of local-sign comparisons if the comparison process is assumed to include a small amount of temporal noise.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Westheimer, “Visual acuity and hyperacuity,” Invest. Ophthalmol. 14, 570–572 (1975).
    [PubMed]
  2. G. Westheimer, “The spatial sense of the eye,” Invest. Ophthalmol. Visual Sci. 18, 893–912 (1979).
  3. J. M. Findlay, “Feature detectors and Vernier acuity,” Nature (London) 241, 135–137 (1973).
    [CrossRef]
  4. H. R. Wilson, “Responses of spatial mechanisms can explain hyperacuity,” Vision Res. 26, 453–469 (1986).
    [CrossRef] [PubMed]
  5. S. J. Waugh, D. M. Levi, T. Carney, “Orientation, masking, and Vernier acuity for line targets,” Vision Res. 33, 1619–1638 (1993).
    [CrossRef] [PubMed]
  6. T. Carney, S. A. Klein, “Optimal spatial localization is limited by contrast sensitivity,” Vision Res. 39, 503–511 (1999).
    [CrossRef] [PubMed]
  7. G. D. Sullivan, K. Oatley, N. S. Sutherland, “Vernier acuity as affected by target length and separation,” Percept. Psychophys. 12, 438–444 (1972).
    [CrossRef]
  8. S. A. Klein, D. M. Levi, “Position sense of the peripheral retina,” J. Opt. Soc. Am. A 4, 1543–1553 (1987).
    [CrossRef] [PubMed]
  9. D. M. Levi, S. A. Klein, “The role of separation and eccentricity in encoding position,” Vision Res. 30, 557–585 (1990).
    [CrossRef] [PubMed]
  10. S. J. Waugh, D. M. Levi, “Visibility and Vernier acuity for separated targets,” Vision Res. 33, 539–552 (1993).
    [CrossRef] [PubMed]
  11. R. P. O’Shea, D. E. Mitchell, “Vernier acuity with opposite-contrast stimuli,” Perception 19, 207–221 (1990).
    [CrossRef] [PubMed]
  12. D. M. Levi, S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vision Res. 36, 573–588 (1996).
    [CrossRef] [PubMed]
  13. E. Hering, “Über die Grenzen der Sehscharfe,” Ber. Math. Phys. Classe konig. sachs. Ges. Wiss. (Leipzig)16–24 (1899); cited by Levi and Waugh (Ref. 12).
  14. G. Westheimer, S. P. McKee, “Visual acuity in the presence of retinal image motion,” J. Opt. Soc. Am. 65, 847–850 (1975).
    [CrossRef] [PubMed]
  15. M. J. Morgan, S. Benton, “Motion-deblurring in human vision,” Nature 340, 385–386 (1989).
    [CrossRef] [PubMed]
  16. T. Carney, D. A. Silverstein, S. A. Klein, “Vernier acuity during image rotation and translation: visual performance limits,” Vision Res. 35, 1951–1964 (1995).
    [CrossRef] [PubMed]
  17. S. T. L. Chung, D. M. Levi, H. E. Bedell, “Vernier in motion: What accounts for the threshold elevation?” Vision Res. 36, 2395–2410 (1996).
    [CrossRef] [PubMed]
  18. S. T. L. Chung, H. E. Bedell, “Moving Vernier with band-pass filtered stimuli,” Invest. Ophthalmol. Visual Sci. (Suppl.) 37, S734 (1996).
  19. M. S. Landy, Y. Cohen, G. Sperling, “HIPS: image processing under UNIX. Software and applications,” Behav. Res. Methods Instrum. Comput. 16, 199–216 (1984).
    [CrossRef]
  20. S. A. Klein, E. Casson, T. Carney, “Vernier acuity as line and dipole detection,” Vision Res. 30, 1703–1719 (1990).
    [CrossRef] [PubMed]
  21. M. J. Morgan, T. S. Aiba, “Vernier acuity predicted from changes in the light distribution of the retinal image,” Spatial Vis. 1, 151–161 (1985).
    [CrossRef]
  22. T. Banton, D. M. Levi, “Binocular summation in Vernier acuity,” J. Opt. Soc. Am. A 8, 673–679 (1991).
    [CrossRef] [PubMed]
  23. S. J. Waugh, D. M. Levi, “Visibility, timing, and Vernier acuity,” Vision Res. 33, 505–526 (1993).
    [CrossRef] [PubMed]
  24. J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
    [CrossRef] [PubMed]
  25. A. Bradley, B. C. Skottun, “Effects of contrast and spatial frequency on Vernier acuity,” Vision Res. 27, 1817–1824 (1987).
    [CrossRef] [PubMed]
  26. D. Whitaker, D. MacVeigh, “Interation of spatial frequency and separation in Vernier acuity,” Vision Res. 31, 1205–1212 (1991).
    [CrossRef]
  27. D. Whitaker, “What part of a Vernier stimulus determines performance?” Vision Res. 33, 27–32 (1993).
    [CrossRef] [PubMed]
  28. D. M. Levi, S. A. Klein, H. Wang, “Discrimination of position and contrast in amblyopic and peripheral vision,” Vision Res. 34, 3293–3313 (1994).
    [CrossRef] [PubMed]
  29. F. W. Weymouth, E. E. Andersen, H. L. Averill, “Retinal mean local sign: a new view of the relation of the retinal mosaic to visual perception,” Am. J. Physiol. 63, 410–411 (1923).
  30. G. Westheimer, S. P. McKee, “Spatial configurations for visual hyperacuity,” Vision Res. 17, 941–947 (1977).
    [CrossRef] [PubMed]
  31. D. Whitaker, H. Walker, “Centroid evaluation in the Vernier alignment of random dot clusters,” Vision Res. 28, 777–784 (1988).
    [CrossRef] [PubMed]
  32. R. F. Hess, S. R. Dakin, D. Badcock, “Localization of element clusters by the human visual system,” Vision Res. 34, 2439–2451 (1994).
    [CrossRef] [PubMed]
  33. D. R. Badcock, R. F. Hess, K. Dobbins, “Localization of element clusters: multiple cues,” Vision Res. 36, 1467–1472 (1996).
    [CrossRef] [PubMed]
  34. S. S. Patel, H. E. Bedell, M. T. Ukwade, “Vernier judgments in the absence of regular shape information,” Vision Res. 39, 2349–2360 (1999).
    [CrossRef] [PubMed]
  35. D. M. Levi, G. Westheimer, “Spatial interval discrimination in the human fovea: What delimits the interval?” J. Opt. Soc. Am. A 4, 1304–1313 (1987).
    [CrossRef] [PubMed]
  36. C. A. Burbeck, “Position and spatial frequency in large-scale localization judgments,” Vision Res. 27, 417–427 (1987).
    [CrossRef] [PubMed]
  37. A. Toet, “Visual perception of spatial order,” Ph.D. dissertation (Ryksuniversiteit, Utrecht, The Netherlands, 1987).
  38. D. M. Levi, B. Jiang, S. A. Klein, “Spatial interval discrimination with blurred lines: Black and white are separate but not equal at multiple spatial scales,” Vision Res. 30, 1735–1750 (1990).
    [CrossRef] [PubMed]
  39. A. J. Mussap, D. M. Levi, “Spatial properties of filters underlying Vernier acuity revealed by masking: evidence for collator mechanisms,” Vision Res. 36, 2459–2473 (1996).
    [CrossRef] [PubMed]
  40. A. Toet, H. L. van Eekhout, J. J. Simons, J. J. Koenderink, “Scale invariant features of differential spatial displacement discrimination,” Vision Res. 27, 441–452 (1987).
    [CrossRef] [PubMed]
  41. R. F. Hess, I. E. Holliday, “The coding of spatial position by the human visual system: effects of spatial scale and contrast,” Vision Res. 32, 1085–1097 (1992).
    [CrossRef] [PubMed]
  42. E. Kaplan, R. M. Shapley, “The primate retina contains two types of ganglion cells, with high and low contrast sensitivity,” Proc. Natl. Acad. Sci. USA 83, 2755–2757 (1986).
    [CrossRef] [PubMed]
  43. D. H. Hubel, M. S. Livingstone, “Color and contrast sensitivity in lateral geniculate body and primary visual cortex of the macaque monkey,” J. Neurosci. 10, 2223–2237 (1990).
    [PubMed]
  44. G. Sclar, J. H. R. Maunsell, P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990).
    [CrossRef] [PubMed]

1999 (2)

T. Carney, S. A. Klein, “Optimal spatial localization is limited by contrast sensitivity,” Vision Res. 39, 503–511 (1999).
[CrossRef] [PubMed]

S. S. Patel, H. E. Bedell, M. T. Ukwade, “Vernier judgments in the absence of regular shape information,” Vision Res. 39, 2349–2360 (1999).
[CrossRef] [PubMed]

1996 (5)

S. T. L. Chung, D. M. Levi, H. E. Bedell, “Vernier in motion: What accounts for the threshold elevation?” Vision Res. 36, 2395–2410 (1996).
[CrossRef] [PubMed]

S. T. L. Chung, H. E. Bedell, “Moving Vernier with band-pass filtered stimuli,” Invest. Ophthalmol. Visual Sci. (Suppl.) 37, S734 (1996).

D. M. Levi, S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vision Res. 36, 573–588 (1996).
[CrossRef] [PubMed]

D. R. Badcock, R. F. Hess, K. Dobbins, “Localization of element clusters: multiple cues,” Vision Res. 36, 1467–1472 (1996).
[CrossRef] [PubMed]

A. J. Mussap, D. M. Levi, “Spatial properties of filters underlying Vernier acuity revealed by masking: evidence for collator mechanisms,” Vision Res. 36, 2459–2473 (1996).
[CrossRef] [PubMed]

1995 (1)

T. Carney, D. A. Silverstein, S. A. Klein, “Vernier acuity during image rotation and translation: visual performance limits,” Vision Res. 35, 1951–1964 (1995).
[CrossRef] [PubMed]

1994 (2)

R. F. Hess, S. R. Dakin, D. Badcock, “Localization of element clusters by the human visual system,” Vision Res. 34, 2439–2451 (1994).
[CrossRef] [PubMed]

D. M. Levi, S. A. Klein, H. Wang, “Discrimination of position and contrast in amblyopic and peripheral vision,” Vision Res. 34, 3293–3313 (1994).
[CrossRef] [PubMed]

1993 (4)

D. Whitaker, “What part of a Vernier stimulus determines performance?” Vision Res. 33, 27–32 (1993).
[CrossRef] [PubMed]

S. J. Waugh, D. M. Levi, “Visibility, timing, and Vernier acuity,” Vision Res. 33, 505–526 (1993).
[CrossRef] [PubMed]

S. J. Waugh, D. M. Levi, “Visibility and Vernier acuity for separated targets,” Vision Res. 33, 539–552 (1993).
[CrossRef] [PubMed]

S. J. Waugh, D. M. Levi, T. Carney, “Orientation, masking, and Vernier acuity for line targets,” Vision Res. 33, 1619–1638 (1993).
[CrossRef] [PubMed]

1992 (1)

R. F. Hess, I. E. Holliday, “The coding of spatial position by the human visual system: effects of spatial scale and contrast,” Vision Res. 32, 1085–1097 (1992).
[CrossRef] [PubMed]

1991 (3)

J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
[CrossRef] [PubMed]

T. Banton, D. M. Levi, “Binocular summation in Vernier acuity,” J. Opt. Soc. Am. A 8, 673–679 (1991).
[CrossRef] [PubMed]

D. Whitaker, D. MacVeigh, “Interation of spatial frequency and separation in Vernier acuity,” Vision Res. 31, 1205–1212 (1991).
[CrossRef]

1990 (6)

S. A. Klein, E. Casson, T. Carney, “Vernier acuity as line and dipole detection,” Vision Res. 30, 1703–1719 (1990).
[CrossRef] [PubMed]

R. P. O’Shea, D. E. Mitchell, “Vernier acuity with opposite-contrast stimuli,” Perception 19, 207–221 (1990).
[CrossRef] [PubMed]

D. M. Levi, S. A. Klein, “The role of separation and eccentricity in encoding position,” Vision Res. 30, 557–585 (1990).
[CrossRef] [PubMed]

D. H. Hubel, M. S. Livingstone, “Color and contrast sensitivity in lateral geniculate body and primary visual cortex of the macaque monkey,” J. Neurosci. 10, 2223–2237 (1990).
[PubMed]

G. Sclar, J. H. R. Maunsell, P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990).
[CrossRef] [PubMed]

D. M. Levi, B. Jiang, S. A. Klein, “Spatial interval discrimination with blurred lines: Black and white are separate but not equal at multiple spatial scales,” Vision Res. 30, 1735–1750 (1990).
[CrossRef] [PubMed]

1989 (1)

M. J. Morgan, S. Benton, “Motion-deblurring in human vision,” Nature 340, 385–386 (1989).
[CrossRef] [PubMed]

1988 (1)

D. Whitaker, H. Walker, “Centroid evaluation in the Vernier alignment of random dot clusters,” Vision Res. 28, 777–784 (1988).
[CrossRef] [PubMed]

1987 (5)

D. M. Levi, G. Westheimer, “Spatial interval discrimination in the human fovea: What delimits the interval?” J. Opt. Soc. Am. A 4, 1304–1313 (1987).
[CrossRef] [PubMed]

C. A. Burbeck, “Position and spatial frequency in large-scale localization judgments,” Vision Res. 27, 417–427 (1987).
[CrossRef] [PubMed]

A. Bradley, B. C. Skottun, “Effects of contrast and spatial frequency on Vernier acuity,” Vision Res. 27, 1817–1824 (1987).
[CrossRef] [PubMed]

S. A. Klein, D. M. Levi, “Position sense of the peripheral retina,” J. Opt. Soc. Am. A 4, 1543–1553 (1987).
[CrossRef] [PubMed]

A. Toet, H. L. van Eekhout, J. J. Simons, J. J. Koenderink, “Scale invariant features of differential spatial displacement discrimination,” Vision Res. 27, 441–452 (1987).
[CrossRef] [PubMed]

1986 (2)

E. Kaplan, R. M. Shapley, “The primate retina contains two types of ganglion cells, with high and low contrast sensitivity,” Proc. Natl. Acad. Sci. USA 83, 2755–2757 (1986).
[CrossRef] [PubMed]

H. R. Wilson, “Responses of spatial mechanisms can explain hyperacuity,” Vision Res. 26, 453–469 (1986).
[CrossRef] [PubMed]

1985 (1)

M. J. Morgan, T. S. Aiba, “Vernier acuity predicted from changes in the light distribution of the retinal image,” Spatial Vis. 1, 151–161 (1985).
[CrossRef]

1984 (1)

M. S. Landy, Y. Cohen, G. Sperling, “HIPS: image processing under UNIX. Software and applications,” Behav. Res. Methods Instrum. Comput. 16, 199–216 (1984).
[CrossRef]

1979 (1)

G. Westheimer, “The spatial sense of the eye,” Invest. Ophthalmol. Visual Sci. 18, 893–912 (1979).

1977 (1)

G. Westheimer, S. P. McKee, “Spatial configurations for visual hyperacuity,” Vision Res. 17, 941–947 (1977).
[CrossRef] [PubMed]

1975 (2)

1973 (1)

J. M. Findlay, “Feature detectors and Vernier acuity,” Nature (London) 241, 135–137 (1973).
[CrossRef]

1972 (1)

G. D. Sullivan, K. Oatley, N. S. Sutherland, “Vernier acuity as affected by target length and separation,” Percept. Psychophys. 12, 438–444 (1972).
[CrossRef]

1923 (1)

F. W. Weymouth, E. E. Andersen, H. L. Averill, “Retinal mean local sign: a new view of the relation of the retinal mosaic to visual perception,” Am. J. Physiol. 63, 410–411 (1923).

1899 (1)

E. Hering, “Über die Grenzen der Sehscharfe,” Ber. Math. Phys. Classe konig. sachs. Ges. Wiss. (Leipzig)16–24 (1899); cited by Levi and Waugh (Ref. 12).

Aiba, T. S.

M. J. Morgan, T. S. Aiba, “Vernier acuity predicted from changes in the light distribution of the retinal image,” Spatial Vis. 1, 151–161 (1985).
[CrossRef]

Andersen, E. E.

F. W. Weymouth, E. E. Andersen, H. L. Averill, “Retinal mean local sign: a new view of the relation of the retinal mosaic to visual perception,” Am. J. Physiol. 63, 410–411 (1923).

Averill, H. L.

F. W. Weymouth, E. E. Andersen, H. L. Averill, “Retinal mean local sign: a new view of the relation of the retinal mosaic to visual perception,” Am. J. Physiol. 63, 410–411 (1923).

Badcock, D.

R. F. Hess, S. R. Dakin, D. Badcock, “Localization of element clusters by the human visual system,” Vision Res. 34, 2439–2451 (1994).
[CrossRef] [PubMed]

Badcock, D. R.

D. R. Badcock, R. F. Hess, K. Dobbins, “Localization of element clusters: multiple cues,” Vision Res. 36, 1467–1472 (1996).
[CrossRef] [PubMed]

Banton, T.

Bedell, H. E.

S. S. Patel, H. E. Bedell, M. T. Ukwade, “Vernier judgments in the absence of regular shape information,” Vision Res. 39, 2349–2360 (1999).
[CrossRef] [PubMed]

S. T. L. Chung, H. E. Bedell, “Moving Vernier with band-pass filtered stimuli,” Invest. Ophthalmol. Visual Sci. (Suppl.) 37, S734 (1996).

S. T. L. Chung, D. M. Levi, H. E. Bedell, “Vernier in motion: What accounts for the threshold elevation?” Vision Res. 36, 2395–2410 (1996).
[CrossRef] [PubMed]

Benton, S.

M. J. Morgan, S. Benton, “Motion-deblurring in human vision,” Nature 340, 385–386 (1989).
[CrossRef] [PubMed]

Bradley, A.

A. Bradley, B. C. Skottun, “Effects of contrast and spatial frequency on Vernier acuity,” Vision Res. 27, 1817–1824 (1987).
[CrossRef] [PubMed]

Burbeck, C. A.

C. A. Burbeck, “Position and spatial frequency in large-scale localization judgments,” Vision Res. 27, 417–427 (1987).
[CrossRef] [PubMed]

Carney, T.

T. Carney, S. A. Klein, “Optimal spatial localization is limited by contrast sensitivity,” Vision Res. 39, 503–511 (1999).
[CrossRef] [PubMed]

T. Carney, D. A. Silverstein, S. A. Klein, “Vernier acuity during image rotation and translation: visual performance limits,” Vision Res. 35, 1951–1964 (1995).
[CrossRef] [PubMed]

S. J. Waugh, D. M. Levi, T. Carney, “Orientation, masking, and Vernier acuity for line targets,” Vision Res. 33, 1619–1638 (1993).
[CrossRef] [PubMed]

S. A. Klein, E. Casson, T. Carney, “Vernier acuity as line and dipole detection,” Vision Res. 30, 1703–1719 (1990).
[CrossRef] [PubMed]

Casson, E.

S. A. Klein, E. Casson, T. Carney, “Vernier acuity as line and dipole detection,” Vision Res. 30, 1703–1719 (1990).
[CrossRef] [PubMed]

Chung, S. T. L.

S. T. L. Chung, H. E. Bedell, “Moving Vernier with band-pass filtered stimuli,” Invest. Ophthalmol. Visual Sci. (Suppl.) 37, S734 (1996).

S. T. L. Chung, D. M. Levi, H. E. Bedell, “Vernier in motion: What accounts for the threshold elevation?” Vision Res. 36, 2395–2410 (1996).
[CrossRef] [PubMed]

Cohen, Y.

M. S. Landy, Y. Cohen, G. Sperling, “HIPS: image processing under UNIX. Software and applications,” Behav. Res. Methods Instrum. Comput. 16, 199–216 (1984).
[CrossRef]

Dakin, S. R.

R. F. Hess, S. R. Dakin, D. Badcock, “Localization of element clusters by the human visual system,” Vision Res. 34, 2439–2451 (1994).
[CrossRef] [PubMed]

Dobbins, K.

D. R. Badcock, R. F. Hess, K. Dobbins, “Localization of element clusters: multiple cues,” Vision Res. 36, 1467–1472 (1996).
[CrossRef] [PubMed]

Farell, B.

J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
[CrossRef] [PubMed]

Findlay, J. M.

J. M. Findlay, “Feature detectors and Vernier acuity,” Nature (London) 241, 135–137 (1973).
[CrossRef]

Hering, E.

E. Hering, “Über die Grenzen der Sehscharfe,” Ber. Math. Phys. Classe konig. sachs. Ges. Wiss. (Leipzig)16–24 (1899); cited by Levi and Waugh (Ref. 12).

Hess, R. F.

D. R. Badcock, R. F. Hess, K. Dobbins, “Localization of element clusters: multiple cues,” Vision Res. 36, 1467–1472 (1996).
[CrossRef] [PubMed]

R. F. Hess, S. R. Dakin, D. Badcock, “Localization of element clusters by the human visual system,” Vision Res. 34, 2439–2451 (1994).
[CrossRef] [PubMed]

R. F. Hess, I. E. Holliday, “The coding of spatial position by the human visual system: effects of spatial scale and contrast,” Vision Res. 32, 1085–1097 (1992).
[CrossRef] [PubMed]

Holliday, I. E.

R. F. Hess, I. E. Holliday, “The coding of spatial position by the human visual system: effects of spatial scale and contrast,” Vision Res. 32, 1085–1097 (1992).
[CrossRef] [PubMed]

Hubel, D. H.

D. H. Hubel, M. S. Livingstone, “Color and contrast sensitivity in lateral geniculate body and primary visual cortex of the macaque monkey,” J. Neurosci. 10, 2223–2237 (1990).
[PubMed]

Jiang, B.

D. M. Levi, B. Jiang, S. A. Klein, “Spatial interval discrimination with blurred lines: Black and white are separate but not equal at multiple spatial scales,” Vision Res. 30, 1735–1750 (1990).
[CrossRef] [PubMed]

Kaplan, E.

E. Kaplan, R. M. Shapley, “The primate retina contains two types of ganglion cells, with high and low contrast sensitivity,” Proc. Natl. Acad. Sci. USA 83, 2755–2757 (1986).
[CrossRef] [PubMed]

Klein, S. A.

T. Carney, S. A. Klein, “Optimal spatial localization is limited by contrast sensitivity,” Vision Res. 39, 503–511 (1999).
[CrossRef] [PubMed]

T. Carney, D. A. Silverstein, S. A. Klein, “Vernier acuity during image rotation and translation: visual performance limits,” Vision Res. 35, 1951–1964 (1995).
[CrossRef] [PubMed]

D. M. Levi, S. A. Klein, H. Wang, “Discrimination of position and contrast in amblyopic and peripheral vision,” Vision Res. 34, 3293–3313 (1994).
[CrossRef] [PubMed]

S. A. Klein, E. Casson, T. Carney, “Vernier acuity as line and dipole detection,” Vision Res. 30, 1703–1719 (1990).
[CrossRef] [PubMed]

D. M. Levi, S. A. Klein, “The role of separation and eccentricity in encoding position,” Vision Res. 30, 557–585 (1990).
[CrossRef] [PubMed]

D. M. Levi, B. Jiang, S. A. Klein, “Spatial interval discrimination with blurred lines: Black and white are separate but not equal at multiple spatial scales,” Vision Res. 30, 1735–1750 (1990).
[CrossRef] [PubMed]

S. A. Klein, D. M. Levi, “Position sense of the peripheral retina,” J. Opt. Soc. Am. A 4, 1543–1553 (1987).
[CrossRef] [PubMed]

Koenderink, J. J.

A. Toet, H. L. van Eekhout, J. J. Simons, J. J. Koenderink, “Scale invariant features of differential spatial displacement discrimination,” Vision Res. 27, 441–452 (1987).
[CrossRef] [PubMed]

Krauskopf, J.

J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
[CrossRef] [PubMed]

Landy, M. S.

M. S. Landy, Y. Cohen, G. Sperling, “HIPS: image processing under UNIX. Software and applications,” Behav. Res. Methods Instrum. Comput. 16, 199–216 (1984).
[CrossRef]

Lennie, P.

G. Sclar, J. H. R. Maunsell, P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990).
[CrossRef] [PubMed]

Levi, D. M.

A. J. Mussap, D. M. Levi, “Spatial properties of filters underlying Vernier acuity revealed by masking: evidence for collator mechanisms,” Vision Res. 36, 2459–2473 (1996).
[CrossRef] [PubMed]

S. T. L. Chung, D. M. Levi, H. E. Bedell, “Vernier in motion: What accounts for the threshold elevation?” Vision Res. 36, 2395–2410 (1996).
[CrossRef] [PubMed]

D. M. Levi, S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vision Res. 36, 573–588 (1996).
[CrossRef] [PubMed]

D. M. Levi, S. A. Klein, H. Wang, “Discrimination of position and contrast in amblyopic and peripheral vision,” Vision Res. 34, 3293–3313 (1994).
[CrossRef] [PubMed]

S. J. Waugh, D. M. Levi, “Visibility, timing, and Vernier acuity,” Vision Res. 33, 505–526 (1993).
[CrossRef] [PubMed]

S. J. Waugh, D. M. Levi, “Visibility and Vernier acuity for separated targets,” Vision Res. 33, 539–552 (1993).
[CrossRef] [PubMed]

S. J. Waugh, D. M. Levi, T. Carney, “Orientation, masking, and Vernier acuity for line targets,” Vision Res. 33, 1619–1638 (1993).
[CrossRef] [PubMed]

T. Banton, D. M. Levi, “Binocular summation in Vernier acuity,” J. Opt. Soc. Am. A 8, 673–679 (1991).
[CrossRef] [PubMed]

D. M. Levi, S. A. Klein, “The role of separation and eccentricity in encoding position,” Vision Res. 30, 557–585 (1990).
[CrossRef] [PubMed]

D. M. Levi, B. Jiang, S. A. Klein, “Spatial interval discrimination with blurred lines: Black and white are separate but not equal at multiple spatial scales,” Vision Res. 30, 1735–1750 (1990).
[CrossRef] [PubMed]

D. M. Levi, G. Westheimer, “Spatial interval discrimination in the human fovea: What delimits the interval?” J. Opt. Soc. Am. A 4, 1304–1313 (1987).
[CrossRef] [PubMed]

S. A. Klein, D. M. Levi, “Position sense of the peripheral retina,” J. Opt. Soc. Am. A 4, 1543–1553 (1987).
[CrossRef] [PubMed]

Livingstone, M. S.

D. H. Hubel, M. S. Livingstone, “Color and contrast sensitivity in lateral geniculate body and primary visual cortex of the macaque monkey,” J. Neurosci. 10, 2223–2237 (1990).
[PubMed]

MacVeigh, D.

D. Whitaker, D. MacVeigh, “Interation of spatial frequency and separation in Vernier acuity,” Vision Res. 31, 1205–1212 (1991).
[CrossRef]

Maunsell, J. H. R.

G. Sclar, J. H. R. Maunsell, P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990).
[CrossRef] [PubMed]

McKee, S. P.

G. Westheimer, S. P. McKee, “Spatial configurations for visual hyperacuity,” Vision Res. 17, 941–947 (1977).
[CrossRef] [PubMed]

G. Westheimer, S. P. McKee, “Visual acuity in the presence of retinal image motion,” J. Opt. Soc. Am. 65, 847–850 (1975).
[CrossRef] [PubMed]

Mitchell, D. E.

R. P. O’Shea, D. E. Mitchell, “Vernier acuity with opposite-contrast stimuli,” Perception 19, 207–221 (1990).
[CrossRef] [PubMed]

Morgan, M. J.

M. J. Morgan, S. Benton, “Motion-deblurring in human vision,” Nature 340, 385–386 (1989).
[CrossRef] [PubMed]

M. J. Morgan, T. S. Aiba, “Vernier acuity predicted from changes in the light distribution of the retinal image,” Spatial Vis. 1, 151–161 (1985).
[CrossRef]

Mussap, A. J.

A. J. Mussap, D. M. Levi, “Spatial properties of filters underlying Vernier acuity revealed by masking: evidence for collator mechanisms,” Vision Res. 36, 2459–2473 (1996).
[CrossRef] [PubMed]

O’Shea, R. P.

R. P. O’Shea, D. E. Mitchell, “Vernier acuity with opposite-contrast stimuli,” Perception 19, 207–221 (1990).
[CrossRef] [PubMed]

Oatley, K.

G. D. Sullivan, K. Oatley, N. S. Sutherland, “Vernier acuity as affected by target length and separation,” Percept. Psychophys. 12, 438–444 (1972).
[CrossRef]

Patel, S. S.

S. S. Patel, H. E. Bedell, M. T. Ukwade, “Vernier judgments in the absence of regular shape information,” Vision Res. 39, 2349–2360 (1999).
[CrossRef] [PubMed]

Sclar, G.

G. Sclar, J. H. R. Maunsell, P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990).
[CrossRef] [PubMed]

Shapley, R. M.

E. Kaplan, R. M. Shapley, “The primate retina contains two types of ganglion cells, with high and low contrast sensitivity,” Proc. Natl. Acad. Sci. USA 83, 2755–2757 (1986).
[CrossRef] [PubMed]

Silverstein, D. A.

T. Carney, D. A. Silverstein, S. A. Klein, “Vernier acuity during image rotation and translation: visual performance limits,” Vision Res. 35, 1951–1964 (1995).
[CrossRef] [PubMed]

Simons, J. J.

A. Toet, H. L. van Eekhout, J. J. Simons, J. J. Koenderink, “Scale invariant features of differential spatial displacement discrimination,” Vision Res. 27, 441–452 (1987).
[CrossRef] [PubMed]

Skottun, B. C.

A. Bradley, B. C. Skottun, “Effects of contrast and spatial frequency on Vernier acuity,” Vision Res. 27, 1817–1824 (1987).
[CrossRef] [PubMed]

Sperling, G.

M. S. Landy, Y. Cohen, G. Sperling, “HIPS: image processing under UNIX. Software and applications,” Behav. Res. Methods Instrum. Comput. 16, 199–216 (1984).
[CrossRef]

Sullivan, G. D.

G. D. Sullivan, K. Oatley, N. S. Sutherland, “Vernier acuity as affected by target length and separation,” Percept. Psychophys. 12, 438–444 (1972).
[CrossRef]

Sutherland, N. S.

G. D. Sullivan, K. Oatley, N. S. Sutherland, “Vernier acuity as affected by target length and separation,” Percept. Psychophys. 12, 438–444 (1972).
[CrossRef]

Toet, A.

A. Toet, H. L. van Eekhout, J. J. Simons, J. J. Koenderink, “Scale invariant features of differential spatial displacement discrimination,” Vision Res. 27, 441–452 (1987).
[CrossRef] [PubMed]

A. Toet, “Visual perception of spatial order,” Ph.D. dissertation (Ryksuniversiteit, Utrecht, The Netherlands, 1987).

Ukwade, M. T.

S. S. Patel, H. E. Bedell, M. T. Ukwade, “Vernier judgments in the absence of regular shape information,” Vision Res. 39, 2349–2360 (1999).
[CrossRef] [PubMed]

van Eekhout, H. L.

A. Toet, H. L. van Eekhout, J. J. Simons, J. J. Koenderink, “Scale invariant features of differential spatial displacement discrimination,” Vision Res. 27, 441–452 (1987).
[CrossRef] [PubMed]

Walker, H.

D. Whitaker, H. Walker, “Centroid evaluation in the Vernier alignment of random dot clusters,” Vision Res. 28, 777–784 (1988).
[CrossRef] [PubMed]

Wang, H.

D. M. Levi, S. A. Klein, H. Wang, “Discrimination of position and contrast in amblyopic and peripheral vision,” Vision Res. 34, 3293–3313 (1994).
[CrossRef] [PubMed]

Waugh, S. J.

D. M. Levi, S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vision Res. 36, 573–588 (1996).
[CrossRef] [PubMed]

S. J. Waugh, D. M. Levi, “Visibility and Vernier acuity for separated targets,” Vision Res. 33, 539–552 (1993).
[CrossRef] [PubMed]

S. J. Waugh, D. M. Levi, T. Carney, “Orientation, masking, and Vernier acuity for line targets,” Vision Res. 33, 1619–1638 (1993).
[CrossRef] [PubMed]

S. J. Waugh, D. M. Levi, “Visibility, timing, and Vernier acuity,” Vision Res. 33, 505–526 (1993).
[CrossRef] [PubMed]

Westheimer, G.

D. M. Levi, G. Westheimer, “Spatial interval discrimination in the human fovea: What delimits the interval?” J. Opt. Soc. Am. A 4, 1304–1313 (1987).
[CrossRef] [PubMed]

G. Westheimer, “The spatial sense of the eye,” Invest. Ophthalmol. Visual Sci. 18, 893–912 (1979).

G. Westheimer, S. P. McKee, “Spatial configurations for visual hyperacuity,” Vision Res. 17, 941–947 (1977).
[CrossRef] [PubMed]

G. Westheimer, “Visual acuity and hyperacuity,” Invest. Ophthalmol. 14, 570–572 (1975).
[PubMed]

G. Westheimer, S. P. McKee, “Visual acuity in the presence of retinal image motion,” J. Opt. Soc. Am. 65, 847–850 (1975).
[CrossRef] [PubMed]

Weymouth, F. W.

F. W. Weymouth, E. E. Andersen, H. L. Averill, “Retinal mean local sign: a new view of the relation of the retinal mosaic to visual perception,” Am. J. Physiol. 63, 410–411 (1923).

Whitaker, D.

D. Whitaker, “What part of a Vernier stimulus determines performance?” Vision Res. 33, 27–32 (1993).
[CrossRef] [PubMed]

D. Whitaker, D. MacVeigh, “Interation of spatial frequency and separation in Vernier acuity,” Vision Res. 31, 1205–1212 (1991).
[CrossRef]

D. Whitaker, H. Walker, “Centroid evaluation in the Vernier alignment of random dot clusters,” Vision Res. 28, 777–784 (1988).
[CrossRef] [PubMed]

Wilson, H. R.

H. R. Wilson, “Responses of spatial mechanisms can explain hyperacuity,” Vision Res. 26, 453–469 (1986).
[CrossRef] [PubMed]

Am. J. Physiol. (1)

F. W. Weymouth, E. E. Andersen, H. L. Averill, “Retinal mean local sign: a new view of the relation of the retinal mosaic to visual perception,” Am. J. Physiol. 63, 410–411 (1923).

Behav. Res. Methods Instrum. Comput. (1)

M. S. Landy, Y. Cohen, G. Sperling, “HIPS: image processing under UNIX. Software and applications,” Behav. Res. Methods Instrum. Comput. 16, 199–216 (1984).
[CrossRef]

Ber. Math. Phys. Classe konig. sachs. Ges. Wiss. (Leipzig) (1)

E. Hering, “Über die Grenzen der Sehscharfe,” Ber. Math. Phys. Classe konig. sachs. Ges. Wiss. (Leipzig)16–24 (1899); cited by Levi and Waugh (Ref. 12).

Invest. Ophthalmol. (1)

G. Westheimer, “Visual acuity and hyperacuity,” Invest. Ophthalmol. 14, 570–572 (1975).
[PubMed]

Invest. Ophthalmol. Visual Sci. (1)

G. Westheimer, “The spatial sense of the eye,” Invest. Ophthalmol. Visual Sci. 18, 893–912 (1979).

Invest. Ophthalmol. Visual Sci. (Suppl.) (1)

S. T. L. Chung, H. E. Bedell, “Moving Vernier with band-pass filtered stimuli,” Invest. Ophthalmol. Visual Sci. (Suppl.) 37, S734 (1996).

J. Neurosci. (1)

D. H. Hubel, M. S. Livingstone, “Color and contrast sensitivity in lateral geniculate body and primary visual cortex of the macaque monkey,” J. Neurosci. 10, 2223–2237 (1990).
[PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Nature (1)

M. J. Morgan, S. Benton, “Motion-deblurring in human vision,” Nature 340, 385–386 (1989).
[CrossRef] [PubMed]

Nature (London) (1)

J. M. Findlay, “Feature detectors and Vernier acuity,” Nature (London) 241, 135–137 (1973).
[CrossRef]

Percept. Psychophys. (1)

G. D. Sullivan, K. Oatley, N. S. Sutherland, “Vernier acuity as affected by target length and separation,” Percept. Psychophys. 12, 438–444 (1972).
[CrossRef]

Perception (1)

R. P. O’Shea, D. E. Mitchell, “Vernier acuity with opposite-contrast stimuli,” Perception 19, 207–221 (1990).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

E. Kaplan, R. M. Shapley, “The primate retina contains two types of ganglion cells, with high and low contrast sensitivity,” Proc. Natl. Acad. Sci. USA 83, 2755–2757 (1986).
[CrossRef] [PubMed]

Spatial Vis. (1)

M. J. Morgan, T. S. Aiba, “Vernier acuity predicted from changes in the light distribution of the retinal image,” Spatial Vis. 1, 151–161 (1985).
[CrossRef]

Vision Res. (26)

C. A. Burbeck, “Position and spatial frequency in large-scale localization judgments,” Vision Res. 27, 417–427 (1987).
[CrossRef] [PubMed]

D. M. Levi, B. Jiang, S. A. Klein, “Spatial interval discrimination with blurred lines: Black and white are separate but not equal at multiple spatial scales,” Vision Res. 30, 1735–1750 (1990).
[CrossRef] [PubMed]

A. J. Mussap, D. M. Levi, “Spatial properties of filters underlying Vernier acuity revealed by masking: evidence for collator mechanisms,” Vision Res. 36, 2459–2473 (1996).
[CrossRef] [PubMed]

A. Toet, H. L. van Eekhout, J. J. Simons, J. J. Koenderink, “Scale invariant features of differential spatial displacement discrimination,” Vision Res. 27, 441–452 (1987).
[CrossRef] [PubMed]

R. F. Hess, I. E. Holliday, “The coding of spatial position by the human visual system: effects of spatial scale and contrast,” Vision Res. 32, 1085–1097 (1992).
[CrossRef] [PubMed]

S. J. Waugh, D. M. Levi, “Visibility, timing, and Vernier acuity,” Vision Res. 33, 505–526 (1993).
[CrossRef] [PubMed]

J. Krauskopf, B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vision Res. 31, 735–749 (1991).
[CrossRef] [PubMed]

A. Bradley, B. C. Skottun, “Effects of contrast and spatial frequency on Vernier acuity,” Vision Res. 27, 1817–1824 (1987).
[CrossRef] [PubMed]

D. Whitaker, D. MacVeigh, “Interation of spatial frequency and separation in Vernier acuity,” Vision Res. 31, 1205–1212 (1991).
[CrossRef]

D. Whitaker, “What part of a Vernier stimulus determines performance?” Vision Res. 33, 27–32 (1993).
[CrossRef] [PubMed]

D. M. Levi, S. A. Klein, H. Wang, “Discrimination of position and contrast in amblyopic and peripheral vision,” Vision Res. 34, 3293–3313 (1994).
[CrossRef] [PubMed]

G. Westheimer, S. P. McKee, “Spatial configurations for visual hyperacuity,” Vision Res. 17, 941–947 (1977).
[CrossRef] [PubMed]

D. Whitaker, H. Walker, “Centroid evaluation in the Vernier alignment of random dot clusters,” Vision Res. 28, 777–784 (1988).
[CrossRef] [PubMed]

R. F. Hess, S. R. Dakin, D. Badcock, “Localization of element clusters by the human visual system,” Vision Res. 34, 2439–2451 (1994).
[CrossRef] [PubMed]

D. R. Badcock, R. F. Hess, K. Dobbins, “Localization of element clusters: multiple cues,” Vision Res. 36, 1467–1472 (1996).
[CrossRef] [PubMed]

S. S. Patel, H. E. Bedell, M. T. Ukwade, “Vernier judgments in the absence of regular shape information,” Vision Res. 39, 2349–2360 (1999).
[CrossRef] [PubMed]

D. M. Levi, S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vision Res. 36, 573–588 (1996).
[CrossRef] [PubMed]

D. M. Levi, S. A. Klein, “The role of separation and eccentricity in encoding position,” Vision Res. 30, 557–585 (1990).
[CrossRef] [PubMed]

S. J. Waugh, D. M. Levi, “Visibility and Vernier acuity for separated targets,” Vision Res. 33, 539–552 (1993).
[CrossRef] [PubMed]

H. R. Wilson, “Responses of spatial mechanisms can explain hyperacuity,” Vision Res. 26, 453–469 (1986).
[CrossRef] [PubMed]

S. J. Waugh, D. M. Levi, T. Carney, “Orientation, masking, and Vernier acuity for line targets,” Vision Res. 33, 1619–1638 (1993).
[CrossRef] [PubMed]

T. Carney, S. A. Klein, “Optimal spatial localization is limited by contrast sensitivity,” Vision Res. 39, 503–511 (1999).
[CrossRef] [PubMed]

S. A. Klein, E. Casson, T. Carney, “Vernier acuity as line and dipole detection,” Vision Res. 30, 1703–1719 (1990).
[CrossRef] [PubMed]

T. Carney, D. A. Silverstein, S. A. Klein, “Vernier acuity during image rotation and translation: visual performance limits,” Vision Res. 35, 1951–1964 (1995).
[CrossRef] [PubMed]

S. T. L. Chung, D. M. Levi, H. E. Bedell, “Vernier in motion: What accounts for the threshold elevation?” Vision Res. 36, 2395–2410 (1996).
[CrossRef] [PubMed]

G. Sclar, J. H. R. Maunsell, P. Lennie, “Coding of image contrast in central visual pathways of the macaque monkey,” Vision Res. 30, 1–10 (1990).
[CrossRef] [PubMed]

Other (1)

A. Toet, “Visual perception of spatial order,” Ph.D. dissertation (Ryksuniversiteit, Utrecht, The Netherlands, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Modulation transfer functions of the bandpass filters used in this study. The output amplitude of a sine-wave grating after filtering is normalized to the input amplitude and plotted as a function of object spatial frequency (c/screen). The object center frequency of these filters are 4 and 8 c/screen. At a viewing distance of 8 m, the center frequencies of these filters correspond to 3.3 and 6.6 c/deg, respectively.

Fig. 2
Fig. 2

Vernier thresholds (arc sec) are plotted as a function of target contrast (contrast threshold unit, CTU) for 3.3-c/deg targets, with target velocity as parameter. The target velocities are, from bottom to top, 0, 4, 8, and 16 deg/s. Targets were abutting lines (left) or lines that were separated by a gap of 18 (middle) or 36 arc min (right). Data were obtained from two observers (squares for KN and circles for TN). The single (for abutting targets) or double power functions (two-line fit, for separated targets) were fitted to the aggregate data of both observers. The two filled circles added to the plots for an interline gap of 36 arc min, at 0 and 8 deg/s, are data from a control experiment (see Section 4), in which horizontal lines were drawn on the monitor but were viewed as vertical lines through a Dove prism. Error bars represent ±1 standard error of the mean (s.e.m.).

Fig. 3
Fig. 3

Vernier thresholds (arc sec) are plotted as a function of target contrast (contrast threshold unit, CTU) for 6.6-c/deg targets that were either stationary (bottom), or moved at 4 deg/s (top). Details of the figure are as in Fig. 2, with the exception that each set of data was fitted with a single power function. For observer TN, some additional data were obtained for an interline separation of 36 arc min. Although plotted in the figure, these additional data were not used in any of the statistical analyses.

Fig. 4
Fig. 4

Vernier threshold (±1 s.e.m.) for targets presented at 8× CTU is plotted as a function of target velocity, for 3.3- and 6.6-c/deg nonabutting targets. The solid curves represent the predictions of an additive-variance model fit to the results for 3.3-c/deg targets with a contrast of 8× CTU. Similar fits were applied to the Vernier thresholds obtained for targets of lower contrast (see text and Table 1 for details).

Tables (1)

Tables Icon

Table 1 Best-Fit Parameters (±1 s.e.m.) for Additive-Variance Model

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

gapVernierthreshold
=(Th0)2+(k3G)2+[(k1V)2+(k2GV)2]k4V,
Th0=optimalthreshold,indegrees,forastationaryVerniertargetwith0.3-deg(18-arc-min)gap;
G=gap,indeg,specifiedas(actualgapsize-0.3deg);
V=targetvelocity,indegreespersecond;
k3G=elevationinoptimalthresholdassociatedwithincreasingVerniergap;
k1V=effectonthresholdoftemporalsynchroniesinthecomparisonprocess;
k2GV=effectonthresholdofadditionalcomparisonnoiseassociatedwithincreasingtargetgap;
k4V=numberofseparatelocal-signcomparisonsforatargetinmotion.

Metrics