Abstract

The numerical performance of a finite-difference modal method for the analysis of one-dimensional lamellar gratings in a classical mounting is studied. The method is simple and relies on first-order finite difference in the grating to solve the Maxwell differential equations. The finite-difference scheme incorporates three features that accelerate the convergence performance of the method: (1) The discrete permittivity is interpolated at the lamellar boundaries, (2) mesh points are located on the permittivity discontinuities, and (3) a nonuniform sampling with increased resolution is performed near the discontinuities. Although the performance achieved with the present method remains inferior to that achieved with up-to-date grating theories such as rigorous coupled-wave analysis with adaptive spatial resolution, it is found that the present method offers rather good performance for metallic gratings operating in the visible and near-infrared regions of the spectrum, especially for TM polarization.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (48)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription