Abstract

We describe methods of investigating the behavior of photonic crystals. Our approach establishes a link between the dispersion relation of the Bloch modes for an infinite crystal (which describes the intrinsic properties of the photonic crystal in the absence of an incident field) and the diffraction problem of a grating (finite photonic crystal) illuminated by an incident field. We point out the relationship between the translation operator of the first problem and the transfer matrix of the second. The eigenvalues of the transfer matrix contain information about the dispersion relation. This approach enables us to answer questions such as When does ultrarefraction occur? Can the photonic crystal simulate a homogeneous and isotropic material with low effective index? This approach also enables us to determine suitable parameters to obtain ultrarefractive or negative refraction properties and to design optical devices such as highly dispersive microprisms and ultrarefractive microlenses. Rigorous computations add a quantitative aspect and demonstrate the relevance of our approach.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription