Abstract

We describe a technique to estimate the intrinsic phase shift between long-wavelength-cone (L-cone) and middle-wavelength-cone (M-cone) signals in the luminance mechanism with minimal contamination by chromatic mechanism(s). The technique can also estimate, simultaneously with the phase shift, the weight ratio of L and M cones for the luminance mechanism. We measured motion identification thresholds for a 1.0 cycle/deg, 12.0-Hz sinusoidal grating representing different vector directions in L- and M-cone contrast space. The physical phase of the L- and M-cone signals was varied over a broad range between -150 deg and +150 deg to investigate the effect on the threshold contours. The slope of the threshold contour in cone contrast space varied as a function of the physical phase. Estimates of the intrinsic phase shift between L and M cones are based on the change in slope of the threshold contour. The estimates are consistent with previous reports and show that whereas the L-cone signal lags behind the M-cone signal by ∼35 deg for an orange background, the M-cone signal lags behind the L-cone signal by ∼8 deg for a green background.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. T. Lindsey, J. Pokorny, V. C. Smith, “Phase-dependent sensitivity to heterochromatic flicker,” J. Opt. Soc. Am. A 3, 921–927 (1986).
    [CrossRef] [PubMed]
  2. W. H. Swanson, J. Pokorny, V. C. Smith, “Effects of temporal frequency on phase-dependent sensitivity to heterochromatic flicker,” J. Opt. Soc. Am. A 4, 2266–2273 (1987).
    [CrossRef] [PubMed]
  3. W. H. Swanson, J. Pokorny, V. C. Smith, “Effects of chromatic adaptation on phase-dependent sensitivity to heterochromatic flicker,” J. Opt. Soc. Am. A 5, 1976–1982 (1988).
    [CrossRef] [PubMed]
  4. W. H. Swanson, “Time, color, and phase,” in Visual Science and Engineering: Models and Applications, D. H. Kelly, ed. (Marcel Dekker, New York, 1994), pp. 191–225.
  5. C. F. Stromeyer, A. Chaparro, A. S. Tolias, R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red–green) mechanism,” J. Physiol. 499, 227–254 (1997).
  6. C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chaparro, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. 485, 221–243 (1995).
    [PubMed]
  7. S. M. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 156–166.
  8. M. A. Webster, J. D. Mollon, “Motion minima for different directions in color space,” Vision Res. 37, 1479–1498 (1997).
    [CrossRef] [PubMed]
  9. V. C. Smith, J. Pokorny, “Spectral sensitivity of the fo- veal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [CrossRef] [PubMed]
  10. S. J. Cropper, A. M. Derrington, “Rapid colour-specific detection of motion in human vision,” Nature 379, 72–74 (1996).
    [CrossRef] [PubMed]
  11. D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [CrossRef] [PubMed]
  12. A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
    [CrossRef] [PubMed]
  13. V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, A. Valberg, “Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights,” J. Physiol. 458, 191–221 (1992).
    [PubMed]
  14. K. R. Gegenfurtner, M. J. Hawken, “Temporal and chromatic properties of motion mechanisms,” Vision Res. 35, 1547–1563 (1995).
    [CrossRef] [PubMed]
  15. M. J. Sankeralli, K. T. Mullen, “Estimation of the L-, M-, and S-cone weights of the postreceptoral detection mechanisms,” J. Opt. Soc. Am. A 13, 906–915 (1996).
    [CrossRef]
  16. J. Kremers, T. Usui, H. P. N. Scholl, L. T. Sharpe, “Color signal contributions to electrograms in dichromats and trichromat,” Invest. Ophthalmol. Visual Sci. 40, 920–930 (1999).
  17. S. Tsujimura, S. Shioiri, Y. Hirai, “Effect of phase on threshold contour in cone contrast space for motion identification: estimation of intrinsic phase shift between L and M cones,” in Proceedings of the 8th Congress of the International Colour Association 97 (Color Science Association of Japan, Tokyo, 1997), pp. 263–266.
  18. S. Tsujimura, S. Shioiri, H. Yaguchi, Y. Hirai, “Technique for estimating the intrinsic phase shift between L- and M-cone signals in the luminance mechanism,” Invest. Ophthalmol. Visual Sci. 40, S354 (1999).

1999 (2)

J. Kremers, T. Usui, H. P. N. Scholl, L. T. Sharpe, “Color signal contributions to electrograms in dichromats and trichromat,” Invest. Ophthalmol. Visual Sci. 40, 920–930 (1999).

S. Tsujimura, S. Shioiri, H. Yaguchi, Y. Hirai, “Technique for estimating the intrinsic phase shift between L- and M-cone signals in the luminance mechanism,” Invest. Ophthalmol. Visual Sci. 40, S354 (1999).

1997 (2)

C. F. Stromeyer, A. Chaparro, A. S. Tolias, R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red–green) mechanism,” J. Physiol. 499, 227–254 (1997).

M. A. Webster, J. D. Mollon, “Motion minima for different directions in color space,” Vision Res. 37, 1479–1498 (1997).
[CrossRef] [PubMed]

1996 (2)

1995 (2)

K. R. Gegenfurtner, M. J. Hawken, “Temporal and chromatic properties of motion mechanisms,” Vision Res. 35, 1547–1563 (1995).
[CrossRef] [PubMed]

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chaparro, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. 485, 221–243 (1995).
[PubMed]

1993 (1)

A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
[CrossRef] [PubMed]

1992 (1)

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, A. Valberg, “Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights,” J. Physiol. 458, 191–221 (1992).
[PubMed]

1988 (1)

1987 (1)

1986 (1)

1979 (1)

1975 (1)

V. C. Smith, J. Pokorny, “Spectral sensitivity of the fo- veal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Anstis, S. M.

S. M. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 156–166.

Boynton, R. M.

Cavanagh, P.

S. M. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 156–166.

Chaparro, A.

C. F. Stromeyer, A. Chaparro, A. S. Tolias, R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red–green) mechanism,” J. Physiol. 499, 227–254 (1997).

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chaparro, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. 485, 221–243 (1995).
[PubMed]

Cropper, S. J.

S. J. Cropper, A. M. Derrington, “Rapid colour-specific detection of motion in human vision,” Nature 379, 72–74 (1996).
[CrossRef] [PubMed]

Derrington, A. M.

S. J. Cropper, A. M. Derrington, “Rapid colour-specific detection of motion in human vision,” Nature 379, 72–74 (1996).
[CrossRef] [PubMed]

A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
[CrossRef] [PubMed]

Eskew, R. T.

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chaparro, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. 485, 221–243 (1995).
[PubMed]

Gegenfurtner, K. R.

K. R. Gegenfurtner, M. J. Hawken, “Temporal and chromatic properties of motion mechanisms,” Vision Res. 35, 1547–1563 (1995).
[CrossRef] [PubMed]

Hawken, M. J.

K. R. Gegenfurtner, M. J. Hawken, “Temporal and chromatic properties of motion mechanisms,” Vision Res. 35, 1547–1563 (1995).
[CrossRef] [PubMed]

Henning, G. B.

A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
[CrossRef] [PubMed]

Hirai, Y.

S. Tsujimura, S. Shioiri, H. Yaguchi, Y. Hirai, “Technique for estimating the intrinsic phase shift between L- and M-cone signals in the luminance mechanism,” Invest. Ophthalmol. Visual Sci. 40, S354 (1999).

S. Tsujimura, S. Shioiri, Y. Hirai, “Effect of phase on threshold contour in cone contrast space for motion identification: estimation of intrinsic phase shift between L and M cones,” in Proceedings of the 8th Congress of the International Colour Association 97 (Color Science Association of Japan, Tokyo, 1997), pp. 263–266.

Kremers, J.

J. Kremers, T. Usui, H. P. N. Scholl, L. T. Sharpe, “Color signal contributions to electrograms in dichromats and trichromat,” Invest. Ophthalmol. Visual Sci. 40, 920–930 (1999).

Kronauer, R. E.

C. F. Stromeyer, A. Chaparro, A. S. Tolias, R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red–green) mechanism,” J. Physiol. 499, 227–254 (1997).

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chaparro, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. 485, 221–243 (1995).
[PubMed]

Lee, B. B.

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, A. Valberg, “Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights,” J. Physiol. 458, 191–221 (1992).
[PubMed]

Lindsey, D. T.

MacLeod, D. I. A.

Martin, P. R.

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, A. Valberg, “Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights,” J. Physiol. 458, 191–221 (1992).
[PubMed]

Mollon, J. D.

M. A. Webster, J. D. Mollon, “Motion minima for different directions in color space,” Vision Res. 37, 1479–1498 (1997).
[CrossRef] [PubMed]

Mullen, K. T.

Pokorny, J.

Ryu, A.

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chaparro, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. 485, 221–243 (1995).
[PubMed]

Sankeralli, M. J.

Scholl, H. P. N.

J. Kremers, T. Usui, H. P. N. Scholl, L. T. Sharpe, “Color signal contributions to electrograms in dichromats and trichromat,” Invest. Ophthalmol. Visual Sci. 40, 920–930 (1999).

Sharpe, L. T.

J. Kremers, T. Usui, H. P. N. Scholl, L. T. Sharpe, “Color signal contributions to electrograms in dichromats and trichromat,” Invest. Ophthalmol. Visual Sci. 40, 920–930 (1999).

Shioiri, S.

S. Tsujimura, S. Shioiri, H. Yaguchi, Y. Hirai, “Technique for estimating the intrinsic phase shift between L- and M-cone signals in the luminance mechanism,” Invest. Ophthalmol. Visual Sci. 40, S354 (1999).

S. Tsujimura, S. Shioiri, Y. Hirai, “Effect of phase on threshold contour in cone contrast space for motion identification: estimation of intrinsic phase shift between L and M cones,” in Proceedings of the 8th Congress of the International Colour Association 97 (Color Science Association of Japan, Tokyo, 1997), pp. 263–266.

Smith, V. C.

Stromeyer, C. F.

C. F. Stromeyer, A. Chaparro, A. S. Tolias, R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red–green) mechanism,” J. Physiol. 499, 227–254 (1997).

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chaparro, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. 485, 221–243 (1995).
[PubMed]

Swanson, W. H.

Tolias, A. S.

C. F. Stromeyer, A. Chaparro, A. S. Tolias, R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red–green) mechanism,” J. Physiol. 499, 227–254 (1997).

Tsujimura, S.

S. Tsujimura, S. Shioiri, H. Yaguchi, Y. Hirai, “Technique for estimating the intrinsic phase shift between L- and M-cone signals in the luminance mechanism,” Invest. Ophthalmol. Visual Sci. 40, S354 (1999).

S. Tsujimura, S. Shioiri, Y. Hirai, “Effect of phase on threshold contour in cone contrast space for motion identification: estimation of intrinsic phase shift between L and M cones,” in Proceedings of the 8th Congress of the International Colour Association 97 (Color Science Association of Japan, Tokyo, 1997), pp. 263–266.

Usui, T.

J. Kremers, T. Usui, H. P. N. Scholl, L. T. Sharpe, “Color signal contributions to electrograms in dichromats and trichromat,” Invest. Ophthalmol. Visual Sci. 40, 920–930 (1999).

Valberg, A.

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, A. Valberg, “Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights,” J. Physiol. 458, 191–221 (1992).
[PubMed]

Webster, M. A.

M. A. Webster, J. D. Mollon, “Motion minima for different directions in color space,” Vision Res. 37, 1479–1498 (1997).
[CrossRef] [PubMed]

Yaguchi, H.

S. Tsujimura, S. Shioiri, H. Yaguchi, Y. Hirai, “Technique for estimating the intrinsic phase shift between L- and M-cone signals in the luminance mechanism,” Invest. Ophthalmol. Visual Sci. 40, S354 (1999).

Invest. Ophthalmol. Visual Sci. (2)

J. Kremers, T. Usui, H. P. N. Scholl, L. T. Sharpe, “Color signal contributions to electrograms in dichromats and trichromat,” Invest. Ophthalmol. Visual Sci. 40, 920–930 (1999).

S. Tsujimura, S. Shioiri, H. Yaguchi, Y. Hirai, “Technique for estimating the intrinsic phase shift between L- and M-cone signals in the luminance mechanism,” Invest. Ophthalmol. Visual Sci. 40, S354 (1999).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (4)

J. Physiol. (3)

C. F. Stromeyer, A. Chaparro, A. S. Tolias, R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red–green) mechanism,” J. Physiol. 499, 227–254 (1997).

C. F. Stromeyer, R. E. Kronauer, A. Ryu, A. Chaparro, R. T. Eskew, “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. 485, 221–243 (1995).
[PubMed]

V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, A. Valberg, “Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights,” J. Physiol. 458, 191–221 (1992).
[PubMed]

Nature (1)

S. J. Cropper, A. M. Derrington, “Rapid colour-specific detection of motion in human vision,” Nature 379, 72–74 (1996).
[CrossRef] [PubMed]

Vision Res. (4)

K. R. Gegenfurtner, M. J. Hawken, “Temporal and chromatic properties of motion mechanisms,” Vision Res. 35, 1547–1563 (1995).
[CrossRef] [PubMed]

A. M. Derrington, G. B. Henning, “Detecting and discriminating the direction of motion of luminance and colour gratings,” Vision Res. 33, 799–811 (1993).
[CrossRef] [PubMed]

M. A. Webster, J. D. Mollon, “Motion minima for different directions in color space,” Vision Res. 37, 1479–1498 (1997).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the fo- veal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Other (3)

S. M. Anstis, P. Cavanagh, “A minimum motion technique for judging equiluminance,” in Colour Vision: Physiology and Psychophysics, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 156–166.

W. H. Swanson, “Time, color, and phase,” in Visual Science and Engineering: Models and Applications, D. H. Kelly, ed. (Marcel Dekker, New York, 1994), pp. 191–225.

S. Tsujimura, S. Shioiri, Y. Hirai, “Effect of phase on threshold contour in cone contrast space for motion identification: estimation of intrinsic phase shift between L and M cones,” in Proceedings of the 8th Congress of the International Colour Association 97 (Color Science Association of Japan, Tokyo, 1997), pp. 263–266.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Predicted threshold contours with no intrinsic phase shift between L and M cones for a relative physical phase of 0 deg (solid line), 60 deg (dotted–dashed curve), and 120 deg (dashed curve). With the increase of the physical phase, the slope of the contour, S1(ϕp, a) rotates about the origin. (b) The slope of the contour as a function of relative physical phase with the intrinsic phase shift of ϕi. The ellipses above the panel represent threshold contours for several physical phases. The slope is 90 deg at the physical phase of 90-ϕi.

Fig. 2
Fig. 2

Threshold contours for motion identification for the orange background. The solid curve represents the ellipse fitted to the threshold data (circles) by a least-squares method. The value at the lower-right corner in each panel represents the slope of the ellipse contour, and the value at the upper-left corner represents the physical phase condition (not all phase conditions are shown).

Fig. 3
Fig. 3

Threshold contour for motion identification for the green background. All other details are as in Fig. 2.

Fig. 4
Fig. 4

Relationship between the slope of the contour and the relative physical phase for the orange and the green backgrounds. The dotted curve indicates the function shown in Eq. (7) fitted to the data (circles). To fit the data, the two variable parameters were (1) the intrinsic phase shift, ϕi[deg], and (2) the weight ratio of the L-cone and M-cone contrast to luminance mechanism, ai (shown at upper-right corner).

Fig. 5
Fig. 5

Motion identification contours assessed by the quadrature protocol for observer ST (left column) and observer YT (right column). Thè values at the upper-right corner in each panel represent the slope of the fitted line and the correlation coefficient, respectively. The arrow represents the direction and the amplitude of the pedestal grating used.

Fig. 6
Fig. 6

Schematic diagram to show how the abbreviation method relates to the slope of the threshold ellipse. The diagram illustrates the change in shape of the threshold contour with the increase of physical phase (intrinsic phase is assumed to be zero in this case). The threshold in the 60-deg vector direction increases with the increase in physical phase from 60 to 120 deg, whereas that in the 120-deg direction decreases. The ratio of the threshold for the 60-deg direction to that for the 120-deg direction is 1.0 at the physical phase where the slope of the threshold contour is 90 deg (the physical phase is 90 deg in this case). If the intrinsic phase shift is ϕi, the ratio is 1.0 when the phase shift is 90-ϕi.

Fig. 7
Fig. 7

Estimate of phase by the abbreviation method. The physical phase for a ratio of 1 was determined from a linear regression line and is indicated by the white arrow. The black arrow indicates the phase where the slope is rotated 90 deg from that obtained in experiment 1.

Fig. 8
Fig. 8

Thresholds along the luminance axis as a function of relative physical phase. Data (circles) are from thresholds along a 60-deg vector direction in Figs. 2 and 3. The dotted curves represent the theoretical curve in Eq. (C4) of Appendix C with parameters obtained in the main experiment. The threshold data near 180-ϕi (indicated by arrows) might be contaminated by chromatic mechanism(s).

Fig. 9
Fig. 9

Thresholds and theoretical contours for the orange and the green backgrounds. The solid curve represents the theoretical curve. Other details are the same as for Fig. 2.

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

L(x, t)=Lm[1+L sin(ωsx+ωtt)],
M(x, t)=Mm[1+M sin(ωsx+ωtt)],
D=aL+bM,
D2=(aL)2+(bM)2+2ab cos(ϕi)LM.
L(x, t)=Lm[1+L sin(ωsx+ωtt-ϕp)].
D2=(aL)2+(bM)2+2ab cos(ϕp+ϕi)LM.
Sl(ϕp+ϕi, ai)
=2ai cos(ϕp+ϕi)ai2-1-[ai4-2ai2+1+4ai2 cos2(ϕp+ϕi)]1/2,
F=a2ab cos(ϕp+ϕi)ab cos(ϕp+ϕi)b2.
p1,2=a2-b2[a4-2a2b2+b4+4a2b2 cos2(ϕp+ϕi)]1/22ab cos(ϕp+ϕi), 1.
ai=a/b
Sl(ϕp+ϕi, ai)
=2ai cos(ϕp+ϕi)ai2-1-[ai4-2ai2+1+4ai2 cos2(ϕp+ϕi)]1/2.
L2=D22a2[1+cos(ϕp+ϕi)],
M2=D22b2[1+cos(ϕp+ϕi)].
T(ϕp+ϕi)=L2+M2
=D2 cos[(ϕp+ϕi)/2]1a2+1b21/2.
T2(θ, ϕp+ϕi)=D2b2 cos2(θ)×1ai2+tan2(θ)+2ai tan(θ)cos(ϕp+ϕi).
CL2(θ0, ϕp+ϕi)=D22ai2b2[1+cos(ϕp+ϕi)],
CM2(θ0, ϕp+ϕi)=D2 tan2(θ)2ai2b2[1+cos(ϕp+ϕi)].
CL2TL2(ϕp+ϕi)=12 cos[(ϕp+ϕi)/2],
CM2TM2(ϕp+ϕi)=12 cos[(ϕp+ϕi)/2],
TL2(0°, ϕp+ϕi)=D2ai2b2,
TM2(90°, ϕp+ϕi)=ai2D2a2.
Tsum=CL2TL2+CM2TM21/2
=1cos[(ϕp+ϕi)/2].
f(θ,ϕp+ϕi)=ai2+tan2(θ)+2ai tan(θ)cos(ϕp+ϕi)ai2+tan2(θ)-2ai tan(θ)cos(ϕp+ϕi)1/2.
(ϕp+ϕi)f(θ,ϕp+ϕi)
=-2[ai2+tan2(θ)]ai tan(θ)sin(ϕp+ϕi)[ai2+tan2(θ)-2ai tan(θ)cos(ϕp+ϕi)]2
×1f(θ,ϕp+ϕi).
(ϕp+ϕi)f(θ,π/2)=-2ai tan(θ)ai2+tan2(θ).
df(θ0,ϕp+ϕi)=1+cos(ϕp+ϕi)sin(ϕp+ϕi).

Metrics