Abstract

We address the problem of space-invariant image restoration when the blurring operator is not known exactly, a situation that arises regularly in practice. To account for this uncertainty, we model the point-spread function as the sum of a known deterministic component and an unknown random one. Such an approach has been studied before, but the problem of estimating the parameters of the restoration filter to our knowledge has not been addressed systematically. We propose an approach based on a Gaussian statistical assumption and derive an iterative, expectation–maximization algorithm that simultaneously restores the image and estimates the required filter parameters. We obtain two versions of the algorithm based on two different models for the statistics of the image. The computations are performed in the discrete Fourier transform domain; thus they are computationally efficient even for large images. We examine the convergence properties of the resulting estimators and evaluate their performance experimentally.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (96)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription