Abstract

When an object moves along a trajectory in three-dimensional (3-D) space, there are potentially two orthogonal components that could be used to detect its motion: stereomotion resulting from the difference or disparity between the images in the right and left eyes, and lateral motion from the sum or average of the image motions in the right and left eyes. Using a suprathreshold search task for a target moving amid 3-D distractors, we found a range of 3-D trajectories for which increasing the stereomotion component did not improve detection. However, with larger stereomotion components, performance improved. The addition of random-motion noise to only the lateral motion component adversely affected the detection of both lateral motion and stereomotion. These data suggest that the visual system uses the average of the monocular image motions for the detection of a range of 3-D trajectories. In addition, a mechanism sensitive to the changing disparity may also be used but only for a very restricted range of 3-D motions.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Tyler, “Stereoscopic depth movement: two eyes less sensitive than one,” Science 174, 958–961 (1971).
    [CrossRef] [PubMed]
  2. C. W. Tyler, “Characteristics of stereomovement suppression,” Percept. Psychophys. 17, 225–230 (1975).
    [CrossRef]
  3. G. Westheimer, “Detection of disparity motion by the human observer,” Optom. Vision Sci. 67, 627–630 (1990).
    [CrossRef]
  4. B. G. Cumming, “The relationship between stereoacuity and stereomotion thresholds,” Perception 24, 105–114 (1995).
    [CrossRef] [PubMed]
  5. D. Regan, K. I. Beverley, “Binocular and monocular stimuli for motion in depth: Changing-disparity and changing-size feed the same motion-in-depth stage,” Vision Res. 19, 1331–1342 (1979).
    [CrossRef] [PubMed]
  6. D. Regan, “Depth from motion and motion-in-depth,” in Binocular Vision, D. Regan, ed. (CRC Press, Boca Raton, Fla.,1991), pp. 137–169.
  7. B. G. Cumming, “Motion-in-depth,” in Visual Detection of Motion, A. T. Smith, R. J. Snowden, eds. (Academic, London, 1994), pp. 333–366.
  8. D. Regan, “Binocular correlates of the direction of motion in depth,” Vision Res. 33, 2359–2360 (1993).
    [CrossRef] [PubMed]
  9. B. G. Cumming, A. J. Parker, “Binocular mechanisms for detecting motion-in-depth,” Vision Res. 34, 483–496 (1994).
    [CrossRef] [PubMed]
  10. B. Julesz, Foundations of Cyclopean Perception (U. of Chicago Press, Chicago, Ill., 1971).
  11. J. M. Harris, S. P. McKee, S. N. J. Watamaniuk, “Visual search for motion-in-depth: stereomotion does not ‘pop out’ from disparity noise,” Nature Neurosci. 1, 165–168 (1998).
    [CrossRef]
  12. R. Cormack, R. Fox, “The computation of retinal disparity,” Percept. Psychophys. 37, 176–178 (1985).
    [CrossRef] [PubMed]
  13. J. M. Harris, J. H. Sumnall, “Detecting binocular 3-D motion in static 3-D noise: no effect of viewing distance,” Spatial Vision (to be published).
  14. C. V. Portfors-Yeomans, D. Regan, “Cyclopean discrimination thresholds for the direction and speed of motion in depth,” Vision Res. 36, 3265–3280 (1996).
    [CrossRef] [PubMed]
  15. K. I. Beverley, D. Regan, “Evidence for the existence of neural mechanisms selectively sensitive to the direction of movement in space,” J. Physiol. 235, 17–29 (1973).
    [PubMed]
  16. K. I. Beverley, D. Regan, “The relation between discrimination and sensitivity in the perception of motion in depth,” J. Physiol. 249, 387–398 (1975).
    [PubMed]
  17. E. B. Johnston, B. G. Cumming, A. J. Parker, “Integration of depth modules: stereopsis and texture,” Vision Res. 33, 813–826 (1993).
    [CrossRef] [PubMed]
  18. K. Ball, R. Sekuler, J. Machamer, “Detection and identification of moving targets,” Vision Res. 23, 229–238 (1983).
    [CrossRef] [PubMed]
  19. D. W. Williams, R. Sekuler, “Coherent global motion percepts from stochastic local motions,” Vision Res. 24, 55–62 (1984).
    [CrossRef] [PubMed]
  20. W. T. Newsome, E. B. Paré, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
    [PubMed]
  21. M. O. Scase, O. J. Braddick, J. E. Raymond, “What is noise for the motion system?” Vision Res. 36, 2579–2586 (1996).
    [CrossRef] [PubMed]
  22. J. M. Harris, S. N. J. Watamaniuk, “Speed discrimination of motion-in-depth using binocular cues,” Vision Res. 35, 885–896 (1995).
    [CrossRef] [PubMed]
  23. C. V. Portfors, D. Regan, “Just-noticeable difference in the speed of cyclopean motion in depth and the speed of cyclopean motion within a frontoparallel plane,” J. Exp. Psychol. 23, 1074–1086 (1997).
  24. R. P. Kohly, D. Regan, “Evidence for a mechanism sensitive to the speed of cyclopean form,” Vision Res. 39, 1011–1024 (1999).
    [CrossRef] [PubMed]
  25. E. Kowler, “The stability of gaze and its implications for vision,” in Eye Movements, R. H. S. Carpenter, ed. (CRC Press, Boca Raton, Fla.,1991), pp. 71–94.
  26. K. Nakayama, G. H. Silverman, “Serial and parallel processing of visual feature conjunctions,” Nature 320, 264–265 (1986).
    [CrossRef] [PubMed]
  27. P. Verghese, D. G. Pelli, “The information capacity of visual attention,” Vision Res. 32, 983–995 (1992).
    [CrossRef] [PubMed]
  28. K. Nakayama, C. W. Tyler, “Psychophysical isolation of movement sensitivity by removal of familiar position cues,” Vision Res. 21, 427–433 (1981).
    [CrossRef] [PubMed]
  29. R. Sekuler, L. Ganz, “Aftereffect of seen motion with a stabilized retinal image,” Science 139, 419–420 (1963).
    [CrossRef] [PubMed]
  30. A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
    [CrossRef] [PubMed]
  31. D. Regan, K. I. Beverley, “Some dynamic features of depth perception,” Vision Res. 13, 2369–2378 (1973).
    [CrossRef] [PubMed]
  32. J. H. Sumnall, J. M. Harris, “Minimum displacement thresholds for 3-D motion depend on the average binocular signal,” Invest. Ophthalmol. Visual Sci. 40, S765 (1999).
  33. W. Richards, D. Regan, “A stereo field map with implications for disparity processing,” Invest. Ophthalmol. Visual Sci. 12, 904–909 (1973).
  34. D. Regan, C. J. Erkelens, H. Collewijn, “Visual field defects for vergence eye movements and for stereomotion perception,” Invest. Ophthalmol. Visual Sci. 27, 584–597 (1986).
  35. X. Hong, D. Regan, “Visual field defects for unidirectional and oscillatory motion in depth,” Vision Res. 29, 809–819 (1989).
    [CrossRef] [PubMed]
  36. A. M. Norcia, C. W. Tyler, “Temporal frequency limits for stereoscopic apparent motion processes,” Vision Res. 24, 395–402 (1984).
    [CrossRef] [PubMed]
  37. C. W. Tyler, “Sensory processing of binocular disparity,” in Vergence Eye Movements: Basic and Clinical Aspects, C. M. Schor, K. J. Ciuffreda, eds. (Butterworth, Boston, Mass.,1983), pp. 199–295.
  38. C. Wheatstone, “Contributions to the physiology of vision II,” Philos. Trans. R. Soc. London, Ser. B 142, 1–18 (1852).
  39. D. Regan, K. I. Beverley, “Illusory motion in depth: aftereffect of adaptation to changing size,” Vision Res. 18, 209–212 (1978a).
    [CrossRef]
  40. D. Regan, K. I. Beverley, “Looming detectors in the human visual pathway,” Vision Res. 18, 415–421 (1978b).
    [CrossRef]
  41. F. Hoyle, The Black Cloud (Penguin, London, 1957).
  42. D. N. Lee, “A theory of visual control of breaking based on information about time to collision,” Perception 5, 437–459 (1976).
    [CrossRef]
  43. R. Gray, D. Regan, “Accuracy of estimating time to collision using binocular and monocular information,” Vision Res. 38, 499–512 (1997).
    [CrossRef]
  44. S. K. Rushton, J. P. Wann, “Weighted combination of size and disparity: a computational model for timing a ball catch,” Nature Neurosci. 2, 186–190 (1999).
    [CrossRef] [PubMed]

1999 (3)

R. P. Kohly, D. Regan, “Evidence for a mechanism sensitive to the speed of cyclopean form,” Vision Res. 39, 1011–1024 (1999).
[CrossRef] [PubMed]

J. H. Sumnall, J. M. Harris, “Minimum displacement thresholds for 3-D motion depend on the average binocular signal,” Invest. Ophthalmol. Visual Sci. 40, S765 (1999).

S. K. Rushton, J. P. Wann, “Weighted combination of size and disparity: a computational model for timing a ball catch,” Nature Neurosci. 2, 186–190 (1999).
[CrossRef] [PubMed]

1998 (1)

J. M. Harris, S. P. McKee, S. N. J. Watamaniuk, “Visual search for motion-in-depth: stereomotion does not ‘pop out’ from disparity noise,” Nature Neurosci. 1, 165–168 (1998).
[CrossRef]

1997 (2)

C. V. Portfors, D. Regan, “Just-noticeable difference in the speed of cyclopean motion in depth and the speed of cyclopean motion within a frontoparallel plane,” J. Exp. Psychol. 23, 1074–1086 (1997).

R. Gray, D. Regan, “Accuracy of estimating time to collision using binocular and monocular information,” Vision Res. 38, 499–512 (1997).
[CrossRef]

1996 (2)

M. O. Scase, O. J. Braddick, J. E. Raymond, “What is noise for the motion system?” Vision Res. 36, 2579–2586 (1996).
[CrossRef] [PubMed]

C. V. Portfors-Yeomans, D. Regan, “Cyclopean discrimination thresholds for the direction and speed of motion in depth,” Vision Res. 36, 3265–3280 (1996).
[CrossRef] [PubMed]

1995 (2)

B. G. Cumming, “The relationship between stereoacuity and stereomotion thresholds,” Perception 24, 105–114 (1995).
[CrossRef] [PubMed]

J. M. Harris, S. N. J. Watamaniuk, “Speed discrimination of motion-in-depth using binocular cues,” Vision Res. 35, 885–896 (1995).
[CrossRef] [PubMed]

1994 (1)

B. G. Cumming, A. J. Parker, “Binocular mechanisms for detecting motion-in-depth,” Vision Res. 34, 483–496 (1994).
[CrossRef] [PubMed]

1993 (2)

E. B. Johnston, B. G. Cumming, A. J. Parker, “Integration of depth modules: stereopsis and texture,” Vision Res. 33, 813–826 (1993).
[CrossRef] [PubMed]

D. Regan, “Binocular correlates of the direction of motion in depth,” Vision Res. 33, 2359–2360 (1993).
[CrossRef] [PubMed]

1992 (1)

P. Verghese, D. G. Pelli, “The information capacity of visual attention,” Vision Res. 32, 983–995 (1992).
[CrossRef] [PubMed]

1990 (1)

G. Westheimer, “Detection of disparity motion by the human observer,” Optom. Vision Sci. 67, 627–630 (1990).
[CrossRef]

1989 (1)

X. Hong, D. Regan, “Visual field defects for unidirectional and oscillatory motion in depth,” Vision Res. 29, 809–819 (1989).
[CrossRef] [PubMed]

1988 (1)

W. T. Newsome, E. B. Paré, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
[PubMed]

1986 (2)

D. Regan, C. J. Erkelens, H. Collewijn, “Visual field defects for vergence eye movements and for stereomotion perception,” Invest. Ophthalmol. Visual Sci. 27, 584–597 (1986).

K. Nakayama, G. H. Silverman, “Serial and parallel processing of visual feature conjunctions,” Nature 320, 264–265 (1986).
[CrossRef] [PubMed]

1985 (1)

R. Cormack, R. Fox, “The computation of retinal disparity,” Percept. Psychophys. 37, 176–178 (1985).
[CrossRef] [PubMed]

1984 (2)

D. W. Williams, R. Sekuler, “Coherent global motion percepts from stochastic local motions,” Vision Res. 24, 55–62 (1984).
[CrossRef] [PubMed]

A. M. Norcia, C. W. Tyler, “Temporal frequency limits for stereoscopic apparent motion processes,” Vision Res. 24, 395–402 (1984).
[CrossRef] [PubMed]

1983 (1)

K. Ball, R. Sekuler, J. Machamer, “Detection and identification of moving targets,” Vision Res. 23, 229–238 (1983).
[CrossRef] [PubMed]

1981 (2)

K. Nakayama, C. W. Tyler, “Psychophysical isolation of movement sensitivity by removal of familiar position cues,” Vision Res. 21, 427–433 (1981).
[CrossRef] [PubMed]

A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef] [PubMed]

1979 (1)

D. Regan, K. I. Beverley, “Binocular and monocular stimuli for motion in depth: Changing-disparity and changing-size feed the same motion-in-depth stage,” Vision Res. 19, 1331–1342 (1979).
[CrossRef] [PubMed]

1976 (1)

D. N. Lee, “A theory of visual control of breaking based on information about time to collision,” Perception 5, 437–459 (1976).
[CrossRef]

1975 (2)

C. W. Tyler, “Characteristics of stereomovement suppression,” Percept. Psychophys. 17, 225–230 (1975).
[CrossRef]

K. I. Beverley, D. Regan, “The relation between discrimination and sensitivity in the perception of motion in depth,” J. Physiol. 249, 387–398 (1975).
[PubMed]

1973 (3)

K. I. Beverley, D. Regan, “Evidence for the existence of neural mechanisms selectively sensitive to the direction of movement in space,” J. Physiol. 235, 17–29 (1973).
[PubMed]

W. Richards, D. Regan, “A stereo field map with implications for disparity processing,” Invest. Ophthalmol. Visual Sci. 12, 904–909 (1973).

D. Regan, K. I. Beverley, “Some dynamic features of depth perception,” Vision Res. 13, 2369–2378 (1973).
[CrossRef] [PubMed]

1971 (1)

C. W. Tyler, “Stereoscopic depth movement: two eyes less sensitive than one,” Science 174, 958–961 (1971).
[CrossRef] [PubMed]

1963 (1)

R. Sekuler, L. Ganz, “Aftereffect of seen motion with a stabilized retinal image,” Science 139, 419–420 (1963).
[CrossRef] [PubMed]

1852 (1)

C. Wheatstone, “Contributions to the physiology of vision II,” Philos. Trans. R. Soc. London, Ser. B 142, 1–18 (1852).

Ball, K.

K. Ball, R. Sekuler, J. Machamer, “Detection and identification of moving targets,” Vision Res. 23, 229–238 (1983).
[CrossRef] [PubMed]

Beverley, K. I.

D. Regan, K. I. Beverley, “Binocular and monocular stimuli for motion in depth: Changing-disparity and changing-size feed the same motion-in-depth stage,” Vision Res. 19, 1331–1342 (1979).
[CrossRef] [PubMed]

D. Regan, K. I. Beverley, “Looming detectors in the human visual pathway,” Vision Res. 18, 415–421 (1978b).
[CrossRef]

D. Regan, K. I. Beverley, “Illusory motion in depth: aftereffect of adaptation to changing size,” Vision Res. 18, 209–212 (1978a).
[CrossRef]

K. I. Beverley, D. Regan, “The relation between discrimination and sensitivity in the perception of motion in depth,” J. Physiol. 249, 387–398 (1975).
[PubMed]

K. I. Beverley, D. Regan, “Evidence for the existence of neural mechanisms selectively sensitive to the direction of movement in space,” J. Physiol. 235, 17–29 (1973).
[PubMed]

D. Regan, K. I. Beverley, “Some dynamic features of depth perception,” Vision Res. 13, 2369–2378 (1973).
[CrossRef] [PubMed]

Braddick, O. J.

M. O. Scase, O. J. Braddick, J. E. Raymond, “What is noise for the motion system?” Vision Res. 36, 2579–2586 (1996).
[CrossRef] [PubMed]

Collewijn, H.

D. Regan, C. J. Erkelens, H. Collewijn, “Visual field defects for vergence eye movements and for stereomotion perception,” Invest. Ophthalmol. Visual Sci. 27, 584–597 (1986).

Cormack, R.

R. Cormack, R. Fox, “The computation of retinal disparity,” Percept. Psychophys. 37, 176–178 (1985).
[CrossRef] [PubMed]

Cumming, B. G.

B. G. Cumming, “The relationship between stereoacuity and stereomotion thresholds,” Perception 24, 105–114 (1995).
[CrossRef] [PubMed]

B. G. Cumming, A. J. Parker, “Binocular mechanisms for detecting motion-in-depth,” Vision Res. 34, 483–496 (1994).
[CrossRef] [PubMed]

E. B. Johnston, B. G. Cumming, A. J. Parker, “Integration of depth modules: stereopsis and texture,” Vision Res. 33, 813–826 (1993).
[CrossRef] [PubMed]

B. G. Cumming, “Motion-in-depth,” in Visual Detection of Motion, A. T. Smith, R. J. Snowden, eds. (Academic, London, 1994), pp. 333–366.

Erkelens, C. J.

D. Regan, C. J. Erkelens, H. Collewijn, “Visual field defects for vergence eye movements and for stereomotion perception,” Invest. Ophthalmol. Visual Sci. 27, 584–597 (1986).

Fox, R.

R. Cormack, R. Fox, “The computation of retinal disparity,” Percept. Psychophys. 37, 176–178 (1985).
[CrossRef] [PubMed]

Ganz, L.

R. Sekuler, L. Ganz, “Aftereffect of seen motion with a stabilized retinal image,” Science 139, 419–420 (1963).
[CrossRef] [PubMed]

Gray, R.

R. Gray, D. Regan, “Accuracy of estimating time to collision using binocular and monocular information,” Vision Res. 38, 499–512 (1997).
[CrossRef]

Harris, J. M.

J. H. Sumnall, J. M. Harris, “Minimum displacement thresholds for 3-D motion depend on the average binocular signal,” Invest. Ophthalmol. Visual Sci. 40, S765 (1999).

J. M. Harris, S. P. McKee, S. N. J. Watamaniuk, “Visual search for motion-in-depth: stereomotion does not ‘pop out’ from disparity noise,” Nature Neurosci. 1, 165–168 (1998).
[CrossRef]

J. M. Harris, S. N. J. Watamaniuk, “Speed discrimination of motion-in-depth using binocular cues,” Vision Res. 35, 885–896 (1995).
[CrossRef] [PubMed]

J. M. Harris, J. H. Sumnall, “Detecting binocular 3-D motion in static 3-D noise: no effect of viewing distance,” Spatial Vision (to be published).

Hong, X.

X. Hong, D. Regan, “Visual field defects for unidirectional and oscillatory motion in depth,” Vision Res. 29, 809–819 (1989).
[CrossRef] [PubMed]

Hoyle, F.

F. Hoyle, The Black Cloud (Penguin, London, 1957).

Johnston, E. B.

E. B. Johnston, B. G. Cumming, A. J. Parker, “Integration of depth modules: stereopsis and texture,” Vision Res. 33, 813–826 (1993).
[CrossRef] [PubMed]

Julesz, B.

B. Julesz, Foundations of Cyclopean Perception (U. of Chicago Press, Chicago, Ill., 1971).

Kohly, R. P.

R. P. Kohly, D. Regan, “Evidence for a mechanism sensitive to the speed of cyclopean form,” Vision Res. 39, 1011–1024 (1999).
[CrossRef] [PubMed]

Kowler, E.

E. Kowler, “The stability of gaze and its implications for vision,” in Eye Movements, R. H. S. Carpenter, ed. (CRC Press, Boca Raton, Fla.,1991), pp. 71–94.

Lee, D. N.

D. N. Lee, “A theory of visual control of breaking based on information about time to collision,” Perception 5, 437–459 (1976).
[CrossRef]

Machamer, J.

K. Ball, R. Sekuler, J. Machamer, “Detection and identification of moving targets,” Vision Res. 23, 229–238 (1983).
[CrossRef] [PubMed]

McKee, S. P.

J. M. Harris, S. P. McKee, S. N. J. Watamaniuk, “Visual search for motion-in-depth: stereomotion does not ‘pop out’ from disparity noise,” Nature Neurosci. 1, 165–168 (1998).
[CrossRef]

Nakayama, K.

K. Nakayama, G. H. Silverman, “Serial and parallel processing of visual feature conjunctions,” Nature 320, 264–265 (1986).
[CrossRef] [PubMed]

K. Nakayama, C. W. Tyler, “Psychophysical isolation of movement sensitivity by removal of familiar position cues,” Vision Res. 21, 427–433 (1981).
[CrossRef] [PubMed]

Newsome, W. T.

W. T. Newsome, E. B. Paré, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
[PubMed]

Norcia, A. M.

A. M. Norcia, C. W. Tyler, “Temporal frequency limits for stereoscopic apparent motion processes,” Vision Res. 24, 395–402 (1984).
[CrossRef] [PubMed]

Paré, E. B.

W. T. Newsome, E. B. Paré, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
[PubMed]

Parker, A. J.

B. G. Cumming, A. J. Parker, “Binocular mechanisms for detecting motion-in-depth,” Vision Res. 34, 483–496 (1994).
[CrossRef] [PubMed]

E. B. Johnston, B. G. Cumming, A. J. Parker, “Integration of depth modules: stereopsis and texture,” Vision Res. 33, 813–826 (1993).
[CrossRef] [PubMed]

Pelli, D. G.

P. Verghese, D. G. Pelli, “The information capacity of visual attention,” Vision Res. 32, 983–995 (1992).
[CrossRef] [PubMed]

Portfors, C. V.

C. V. Portfors, D. Regan, “Just-noticeable difference in the speed of cyclopean motion in depth and the speed of cyclopean motion within a frontoparallel plane,” J. Exp. Psychol. 23, 1074–1086 (1997).

Portfors-Yeomans, C. V.

C. V. Portfors-Yeomans, D. Regan, “Cyclopean discrimination thresholds for the direction and speed of motion in depth,” Vision Res. 36, 3265–3280 (1996).
[CrossRef] [PubMed]

Raymond, J. E.

M. O. Scase, O. J. Braddick, J. E. Raymond, “What is noise for the motion system?” Vision Res. 36, 2579–2586 (1996).
[CrossRef] [PubMed]

Regan, D.

R. P. Kohly, D. Regan, “Evidence for a mechanism sensitive to the speed of cyclopean form,” Vision Res. 39, 1011–1024 (1999).
[CrossRef] [PubMed]

R. Gray, D. Regan, “Accuracy of estimating time to collision using binocular and monocular information,” Vision Res. 38, 499–512 (1997).
[CrossRef]

C. V. Portfors, D. Regan, “Just-noticeable difference in the speed of cyclopean motion in depth and the speed of cyclopean motion within a frontoparallel plane,” J. Exp. Psychol. 23, 1074–1086 (1997).

C. V. Portfors-Yeomans, D. Regan, “Cyclopean discrimination thresholds for the direction and speed of motion in depth,” Vision Res. 36, 3265–3280 (1996).
[CrossRef] [PubMed]

D. Regan, “Binocular correlates of the direction of motion in depth,” Vision Res. 33, 2359–2360 (1993).
[CrossRef] [PubMed]

X. Hong, D. Regan, “Visual field defects for unidirectional and oscillatory motion in depth,” Vision Res. 29, 809–819 (1989).
[CrossRef] [PubMed]

D. Regan, C. J. Erkelens, H. Collewijn, “Visual field defects for vergence eye movements and for stereomotion perception,” Invest. Ophthalmol. Visual Sci. 27, 584–597 (1986).

D. Regan, K. I. Beverley, “Binocular and monocular stimuli for motion in depth: Changing-disparity and changing-size feed the same motion-in-depth stage,” Vision Res. 19, 1331–1342 (1979).
[CrossRef] [PubMed]

D. Regan, K. I. Beverley, “Looming detectors in the human visual pathway,” Vision Res. 18, 415–421 (1978b).
[CrossRef]

D. Regan, K. I. Beverley, “Illusory motion in depth: aftereffect of adaptation to changing size,” Vision Res. 18, 209–212 (1978a).
[CrossRef]

K. I. Beverley, D. Regan, “The relation between discrimination and sensitivity in the perception of motion in depth,” J. Physiol. 249, 387–398 (1975).
[PubMed]

W. Richards, D. Regan, “A stereo field map with implications for disparity processing,” Invest. Ophthalmol. Visual Sci. 12, 904–909 (1973).

K. I. Beverley, D. Regan, “Evidence for the existence of neural mechanisms selectively sensitive to the direction of movement in space,” J. Physiol. 235, 17–29 (1973).
[PubMed]

D. Regan, K. I. Beverley, “Some dynamic features of depth perception,” Vision Res. 13, 2369–2378 (1973).
[CrossRef] [PubMed]

D. Regan, “Depth from motion and motion-in-depth,” in Binocular Vision, D. Regan, ed. (CRC Press, Boca Raton, Fla.,1991), pp. 137–169.

Richards, W.

W. Richards, D. Regan, “A stereo field map with implications for disparity processing,” Invest. Ophthalmol. Visual Sci. 12, 904–909 (1973).

Robson, J. G.

A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef] [PubMed]

Rushton, S. K.

S. K. Rushton, J. P. Wann, “Weighted combination of size and disparity: a computational model for timing a ball catch,” Nature Neurosci. 2, 186–190 (1999).
[CrossRef] [PubMed]

Scase, M. O.

M. O. Scase, O. J. Braddick, J. E. Raymond, “What is noise for the motion system?” Vision Res. 36, 2579–2586 (1996).
[CrossRef] [PubMed]

Sekuler, R.

D. W. Williams, R. Sekuler, “Coherent global motion percepts from stochastic local motions,” Vision Res. 24, 55–62 (1984).
[CrossRef] [PubMed]

K. Ball, R. Sekuler, J. Machamer, “Detection and identification of moving targets,” Vision Res. 23, 229–238 (1983).
[CrossRef] [PubMed]

R. Sekuler, L. Ganz, “Aftereffect of seen motion with a stabilized retinal image,” Science 139, 419–420 (1963).
[CrossRef] [PubMed]

Silverman, G. H.

K. Nakayama, G. H. Silverman, “Serial and parallel processing of visual feature conjunctions,” Nature 320, 264–265 (1986).
[CrossRef] [PubMed]

Sumnall, J. H.

J. H. Sumnall, J. M. Harris, “Minimum displacement thresholds for 3-D motion depend on the average binocular signal,” Invest. Ophthalmol. Visual Sci. 40, S765 (1999).

J. M. Harris, J. H. Sumnall, “Detecting binocular 3-D motion in static 3-D noise: no effect of viewing distance,” Spatial Vision (to be published).

Tyler, C. W.

A. M. Norcia, C. W. Tyler, “Temporal frequency limits for stereoscopic apparent motion processes,” Vision Res. 24, 395–402 (1984).
[CrossRef] [PubMed]

K. Nakayama, C. W. Tyler, “Psychophysical isolation of movement sensitivity by removal of familiar position cues,” Vision Res. 21, 427–433 (1981).
[CrossRef] [PubMed]

C. W. Tyler, “Characteristics of stereomovement suppression,” Percept. Psychophys. 17, 225–230 (1975).
[CrossRef]

C. W. Tyler, “Stereoscopic depth movement: two eyes less sensitive than one,” Science 174, 958–961 (1971).
[CrossRef] [PubMed]

C. W. Tyler, “Sensory processing of binocular disparity,” in Vergence Eye Movements: Basic and Clinical Aspects, C. M. Schor, K. J. Ciuffreda, eds. (Butterworth, Boston, Mass.,1983), pp. 199–295.

Verghese, P.

P. Verghese, D. G. Pelli, “The information capacity of visual attention,” Vision Res. 32, 983–995 (1992).
[CrossRef] [PubMed]

Wann, J. P.

S. K. Rushton, J. P. Wann, “Weighted combination of size and disparity: a computational model for timing a ball catch,” Nature Neurosci. 2, 186–190 (1999).
[CrossRef] [PubMed]

Watamaniuk, S. N. J.

J. M. Harris, S. P. McKee, S. N. J. Watamaniuk, “Visual search for motion-in-depth: stereomotion does not ‘pop out’ from disparity noise,” Nature Neurosci. 1, 165–168 (1998).
[CrossRef]

J. M. Harris, S. N. J. Watamaniuk, “Speed discrimination of motion-in-depth using binocular cues,” Vision Res. 35, 885–896 (1995).
[CrossRef] [PubMed]

Watson, A. B.

A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef] [PubMed]

Westheimer, G.

G. Westheimer, “Detection of disparity motion by the human observer,” Optom. Vision Sci. 67, 627–630 (1990).
[CrossRef]

Wheatstone, C.

C. Wheatstone, “Contributions to the physiology of vision II,” Philos. Trans. R. Soc. London, Ser. B 142, 1–18 (1852).

Williams, D. W.

D. W. Williams, R. Sekuler, “Coherent global motion percepts from stochastic local motions,” Vision Res. 24, 55–62 (1984).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. (3)

J. H. Sumnall, J. M. Harris, “Minimum displacement thresholds for 3-D motion depend on the average binocular signal,” Invest. Ophthalmol. Visual Sci. 40, S765 (1999).

W. Richards, D. Regan, “A stereo field map with implications for disparity processing,” Invest. Ophthalmol. Visual Sci. 12, 904–909 (1973).

D. Regan, C. J. Erkelens, H. Collewijn, “Visual field defects for vergence eye movements and for stereomotion perception,” Invest. Ophthalmol. Visual Sci. 27, 584–597 (1986).

J. Exp. Psychol. (1)

C. V. Portfors, D. Regan, “Just-noticeable difference in the speed of cyclopean motion in depth and the speed of cyclopean motion within a frontoparallel plane,” J. Exp. Psychol. 23, 1074–1086 (1997).

J. Neurosci. (1)

W. T. Newsome, E. B. Paré, “A selective impairment of motion perception following lesions of the middle temporal visual area (MT),” J. Neurosci. 8, 2201–2211 (1988).
[PubMed]

J. Physiol. (2)

K. I. Beverley, D. Regan, “Evidence for the existence of neural mechanisms selectively sensitive to the direction of movement in space,” J. Physiol. 235, 17–29 (1973).
[PubMed]

K. I. Beverley, D. Regan, “The relation between discrimination and sensitivity in the perception of motion in depth,” J. Physiol. 249, 387–398 (1975).
[PubMed]

Nature (1)

K. Nakayama, G. H. Silverman, “Serial and parallel processing of visual feature conjunctions,” Nature 320, 264–265 (1986).
[CrossRef] [PubMed]

Nature Neurosci. (2)

J. M. Harris, S. P. McKee, S. N. J. Watamaniuk, “Visual search for motion-in-depth: stereomotion does not ‘pop out’ from disparity noise,” Nature Neurosci. 1, 165–168 (1998).
[CrossRef]

S. K. Rushton, J. P. Wann, “Weighted combination of size and disparity: a computational model for timing a ball catch,” Nature Neurosci. 2, 186–190 (1999).
[CrossRef] [PubMed]

Optom. Vision Sci. (1)

G. Westheimer, “Detection of disparity motion by the human observer,” Optom. Vision Sci. 67, 627–630 (1990).
[CrossRef]

Percept. Psychophys. (2)

C. W. Tyler, “Characteristics of stereomovement suppression,” Percept. Psychophys. 17, 225–230 (1975).
[CrossRef]

R. Cormack, R. Fox, “The computation of retinal disparity,” Percept. Psychophys. 37, 176–178 (1985).
[CrossRef] [PubMed]

Perception (2)

B. G. Cumming, “The relationship between stereoacuity and stereomotion thresholds,” Perception 24, 105–114 (1995).
[CrossRef] [PubMed]

D. N. Lee, “A theory of visual control of breaking based on information about time to collision,” Perception 5, 437–459 (1976).
[CrossRef]

Philos. Trans. R. Soc. London, Ser. B (1)

C. Wheatstone, “Contributions to the physiology of vision II,” Philos. Trans. R. Soc. London, Ser. B 142, 1–18 (1852).

Science (2)

R. Sekuler, L. Ganz, “Aftereffect of seen motion with a stabilized retinal image,” Science 139, 419–420 (1963).
[CrossRef] [PubMed]

C. W. Tyler, “Stereoscopic depth movement: two eyes less sensitive than one,” Science 174, 958–961 (1971).
[CrossRef] [PubMed]

Vision Res. (19)

D. Regan, “Binocular correlates of the direction of motion in depth,” Vision Res. 33, 2359–2360 (1993).
[CrossRef] [PubMed]

B. G. Cumming, A. J. Parker, “Binocular mechanisms for detecting motion-in-depth,” Vision Res. 34, 483–496 (1994).
[CrossRef] [PubMed]

D. Regan, K. I. Beverley, “Binocular and monocular stimuli for motion in depth: Changing-disparity and changing-size feed the same motion-in-depth stage,” Vision Res. 19, 1331–1342 (1979).
[CrossRef] [PubMed]

M. O. Scase, O. J. Braddick, J. E. Raymond, “What is noise for the motion system?” Vision Res. 36, 2579–2586 (1996).
[CrossRef] [PubMed]

J. M. Harris, S. N. J. Watamaniuk, “Speed discrimination of motion-in-depth using binocular cues,” Vision Res. 35, 885–896 (1995).
[CrossRef] [PubMed]

E. B. Johnston, B. G. Cumming, A. J. Parker, “Integration of depth modules: stereopsis and texture,” Vision Res. 33, 813–826 (1993).
[CrossRef] [PubMed]

K. Ball, R. Sekuler, J. Machamer, “Detection and identification of moving targets,” Vision Res. 23, 229–238 (1983).
[CrossRef] [PubMed]

D. W. Williams, R. Sekuler, “Coherent global motion percepts from stochastic local motions,” Vision Res. 24, 55–62 (1984).
[CrossRef] [PubMed]

A. B. Watson, J. G. Robson, “Discrimination at threshold: labelled detectors in human vision,” Vision Res. 21, 1115–1122 (1981).
[CrossRef] [PubMed]

D. Regan, K. I. Beverley, “Some dynamic features of depth perception,” Vision Res. 13, 2369–2378 (1973).
[CrossRef] [PubMed]

R. Gray, D. Regan, “Accuracy of estimating time to collision using binocular and monocular information,” Vision Res. 38, 499–512 (1997).
[CrossRef]

D. Regan, K. I. Beverley, “Illusory motion in depth: aftereffect of adaptation to changing size,” Vision Res. 18, 209–212 (1978a).
[CrossRef]

D. Regan, K. I. Beverley, “Looming detectors in the human visual pathway,” Vision Res. 18, 415–421 (1978b).
[CrossRef]

P. Verghese, D. G. Pelli, “The information capacity of visual attention,” Vision Res. 32, 983–995 (1992).
[CrossRef] [PubMed]

K. Nakayama, C. W. Tyler, “Psychophysical isolation of movement sensitivity by removal of familiar position cues,” Vision Res. 21, 427–433 (1981).
[CrossRef] [PubMed]

R. P. Kohly, D. Regan, “Evidence for a mechanism sensitive to the speed of cyclopean form,” Vision Res. 39, 1011–1024 (1999).
[CrossRef] [PubMed]

X. Hong, D. Regan, “Visual field defects for unidirectional and oscillatory motion in depth,” Vision Res. 29, 809–819 (1989).
[CrossRef] [PubMed]

A. M. Norcia, C. W. Tyler, “Temporal frequency limits for stereoscopic apparent motion processes,” Vision Res. 24, 395–402 (1984).
[CrossRef] [PubMed]

C. V. Portfors-Yeomans, D. Regan, “Cyclopean discrimination thresholds for the direction and speed of motion in depth,” Vision Res. 36, 3265–3280 (1996).
[CrossRef] [PubMed]

Other (7)

C. W. Tyler, “Sensory processing of binocular disparity,” in Vergence Eye Movements: Basic and Clinical Aspects, C. M. Schor, K. J. Ciuffreda, eds. (Butterworth, Boston, Mass.,1983), pp. 199–295.

E. Kowler, “The stability of gaze and its implications for vision,” in Eye Movements, R. H. S. Carpenter, ed. (CRC Press, Boca Raton, Fla.,1991), pp. 71–94.

F. Hoyle, The Black Cloud (Penguin, London, 1957).

J. M. Harris, J. H. Sumnall, “Detecting binocular 3-D motion in static 3-D noise: no effect of viewing distance,” Spatial Vision (to be published).

D. Regan, “Depth from motion and motion-in-depth,” in Binocular Vision, D. Regan, ed. (CRC Press, Boca Raton, Fla.,1991), pp. 137–169.

B. G. Cumming, “Motion-in-depth,” in Visual Detection of Motion, A. T. Smith, R. J. Snowden, eds. (Academic, London, 1994), pp. 333–366.

B. Julesz, Foundations of Cyclopean Perception (U. of Chicago Press, Chicago, Ill., 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram showing the relationship between an object moving in 3-D space and the geometrical projection of images in the right and left eyes. An observer with interocular separation I fixates at a distance D and views an object at a distance Z. The x and z components of the object’s motion are denoted Vx and Vz, respectively, and the resultant angular motions of the image on the right and left retinas are denoted Vr and Vl, respectively.

Fig. 2
Fig. 2

Schematic diagram showing the unique relationships between the binocular average or lateral motion signal (υx) and the binocular difference or stereomotion signal (υz) for five different trajectories of 3-D motion: (a) straight ahead, (b) between the eyes, (c) directly toward the left eye, (d) wide of the head, and (e) frontoparallel. Note that υx and υz are expressed in equivalent retinal units (see Section 2).

Fig. 3
Fig. 3

Schematic diagram of the stimulus (cyclopean view). The upper panel shows the target dot defined by lateral or x motion (υx). The lower panel shows the target dot defined by stereomotion or z motion (υz).

Fig. 4
Fig. 4

Percent correct detection as a function of the number of distractor dots for three observers. The stereomotion component is constant: υz=8 s-1. The lateral motion component assumes one of three values: υx=0 s-1 (squares); υx=2 s-1 (circles); υx=4 s-1 (triangles). The horizontal dotted line indicates chance performance (50% correct), and error bars show standard errors.

Fig. 5
Fig. 5

Percent correct detection as a function of the number of distractor dots for three observers. The lateral motion component is constant: υx=2 s-1. The stereomotion component assumes one of four values: υz=0 s-1 (squares); υz=2 s-1 (circles); υz=4 s-1 (triangles); and υz=8 s-1 (diamonds). The horizontal dotted line indicates chance performance (50% correct), and error bars show standard errors.

Fig. 6
Fig. 6

Percent correct detection as a function of the standard deviation of the Gaussian x-jitter distribution for three observers. The target is defined by lateral motion only: υx=4 s-1. The target dot is presented alone (squares) and with 200 distractor dots (circles). The horizontal dotted line indicates chance performance (50% correct), and error bars show standard errors.

Fig. 7
Fig. 7

Percent correct detection as a function of the standard deviation of the Gaussian x-jitter distribution for three observers. The target is defined by stereomotion only: υz=8 s-1. The target dot is presented alone (squares) and with 200 distractor dots (circles). The horizontal dotted line indicates chance performance (50% correct), and error bars show standard errors.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

δ[I(D-Z)]/D2.
Vz[(dδ/dt)D2]/I.
Vz[(Vr-Vl)D2]/I.
Vx[(Vr+Vl)D]/2.
υz=Vr-Vl,
υx=(Vr+Vl)/2.

Metrics