Abstract

Vision begins with specialized retinal circuits that encode diverse types of information. For Old World primates, these circuits sample three submosaics formed by cone photoreceptors sensitive to short, middle, and long wavelengths. For spatial acuity, the photon catch between any two cones is compared for discrimination of patterns as fine as the cone mosaic. For color vision, the photon catch between different cone types is compared for discrimination of fine spectral differences on the basis of hue. The retinal circuits for these two tasks differ at the synaptic level to form distinct representations of signals from the cone mosaic.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Williams, “Seeing through the photoreceptor mosaic,” Trends Neurosci. 9, 193–198 (1986).
    [CrossRef]
  2. Y. Tsukamoto, P. Masarachia, S. J. Schein, P. Sterling, “Gap junctions between the pedicles of macaque foveal cones,” Vision Res. 32, 1809–1815 (1992).
    [CrossRef] [PubMed]
  3. D. J. Calkins, P. Sterling, “Evidence that circuits for spatial and color vision segregate at the first retinal synapse,” Neuron 24, 313–321 (1999).
    [CrossRef] [PubMed]
  4. D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).
  5. D. J. Calkins, S. Schein, Y. Tsukamoto, P. Sterling, “M and L cones in macaque fovea connect to midget ganglion cells via different numbers of excitatory synapses,” Nature 371, 70–72 (1994).
    [CrossRef] [PubMed]
  6. D. J. Calkins, Y. Tsukamoto, P. Sterling, “Foveal cones form basal as well as invaginating junctions with diffuse ON bipolar cells,” Vision Res. 36, 3373–3381 (1996).
    [CrossRef] [PubMed]
  7. D. J. Calkins, P. Sterling, “Absence of spectrally specific lateral inputs to midget ganglion cells in primate retina,” Nature 381, 613–615 (1996).
    [CrossRef] [PubMed]
  8. D. J. Calkins, Y. Tsukamoto, P. Sterling, “Microcircuitry and mosaic of a blue/yellow ganglion cell in the primate retina,” J. Neurosci. 18, 3373–3385 (1998).
    [PubMed]
  9. M. Chun, U. Grünert, P. Martin, H. Wässle, “The synaptic complex of cones in the fovea and the periphery of the macaque monkey retina,” Vision Res. 36, 3373–3381 (1996).
    [CrossRef]
  10. L. Missotten, The Ultrastructure of the Human Retina (Editions Arscia S.A., Brussels, 1965).
  11. J. E. Dowling, B. B. Boycott, “Organization of the primate retina: electron microscopy,” Proc. R. Soc. London Ser. B 166, 80–111 (1966).
    [CrossRef]
  12. H. Wässle, B. B. Boycott, “Functional architecture of the mammalian retina,” Physiol. Rev. 71, 447–480 (1991).
  13. J. M. Hopkins, B. B. Boycott, “The cone synapses of cone bipolar cells of primate retina,” J. Neurocytol. 26, 313–325 (1997).
    [CrossRef] [PubMed]
  14. H. Kolb, R. Nelson, “The organization of photoreceptor to bipolar synapses in the outer plexiform layer,” in Neurobiology and Clinical Aspects of the Outer Retina, M. B. A. Djamgoz, S. N. Archer, S. Vallerga, eds. (Chapman & Hall, London, 1995), pp. 273–296.
  15. H. Wässle, U. Grünert, P. R. Martin, B. B. Boycott, “Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina,” Vision Res. 34, 561–579 (1994).
    [CrossRef] [PubMed]
  16. H. Kolb, “Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells,” Philos. Trans. R. Soc. London Ser. B 258, 261–283 (1970).
    [CrossRef]
  17. Y. Tsukamoto, R. G. Smith, P. Sterling, “ ‘Collective coding’ of correlated cone signals in the retinal ganglion cell,” Proc. Natl. Acad. Sci. USA 87, 1860–1864 (1990).
    [CrossRef]
  18. S. L. Polyak, The Retina (U. Chicago Press, Chicago, Ill., 1941).
  19. H. Kolb, L. Dekorver, “Midget ganglion cells of the parafovea of the human retina: a study by electron microscopy and serial section reconstructions,” J. Comp. Neurol. 303, 617–636 (1991).
    [CrossRef] [PubMed]
  20. D. M. Dacey, “The mosaic of midget ganglion cells in the human retina,” J. Neurosci. 13, 5334–5355 (1993).
    [PubMed]
  21. J. D. Mollon, J. K. Bowmaker, “The spatial arrangement of cones in the primate fovea,” Nature 360, 677–679 (1992).
    [CrossRef] [PubMed]
  22. O. S. Packer, D. R. Williams, D. G. Bensinger, “Photopigment transmittance imaging of the primate photoreceptor mosaic,” J. Neurosci. 16, 2251–2260 (1996).
    [PubMed]
  23. D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
    [CrossRef]
  24. S. S. Herr, N. Tiv, K. Klug, S. J. Schein, P. Sterling, “L and M cones in macaque fovea make different numbers of synaptic contacts with OFF (but not ON) midget bipolar cells,” ARVO Abstr. 36, 2368 (1995).
  25. S. S. Herr, N. Tiv, P. Sterling, S. J. Schein, “S cones in macaque fovea are invaginated by one type of ON bipolar cell, but L and M cones are invaginated by midget and diffuse bipolar cells,” ARVO Abstr. 37, 4864 (1996).
  26. A. P. Mariani, “Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive,” Nature 308, 184–186 (1984).
    [CrossRef] [PubMed]
  27. N. Kouyama, D. W. Marshak, “Bipolar cells specific for blue cones in the macaque retina,” J. Neurosci. 12, 1233–1252 (1992).
    [PubMed]
  28. F. M. de Monasterio, P. Gouras, “Functional properties of ganglion cells of rhesus monkey retina,” J. Physiol. (London) 251, 167–195 (1975).
  29. D. M. Dacey, B. B. Lee, “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature 367, 731–735 (1994).
    [CrossRef] [PubMed]
  30. K. Klug, N. Tiv, Y. Tsukamoto, P. Sterling, S. J. Schein, “Blue cones contact OFF-midget bipolar cells,” Soc. Neurosci. Abstr. 19, 351.7 (1992).
  31. K. Klug, Y. Tsukamoto, P. Sterling, S. J. Schein, “Blue cone off-midget ganglion cells in macaque,” ARVO Abstr. 34, 1398 (1993).
  32. D. J. Calkins, “Synaptic organization of cone pathways in the primate retina,” in Color Vision: from Molecular Genetics to Perception, K. Gegenfurtner, L. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 1999).
  33. F. M. de Monasterio, “Properties of ganglion cells with atypical receptive-field organization in retina of macaques,” J. Neurophysiol. 41, 1435–1449 (1978).
    [PubMed]
  34. D. M. Dacey, “Morphology of a small field bistratified ganglion cell type in the macaque and human retina,” Visual Neurosci. 10, 1081–1098 (1993).
    [CrossRef]
  35. K. K. Ghosh, P. R. Martin, U. Grünert, “Morphological analysis of the blue cone pathway in the retina of a New World monkey, the marmoset Callithrix jacchus,” J. Comp. Neurol. 379, 211–225 (1997).
    [CrossRef] [PubMed]
  36. L. N. Thibos, F. E. Cheney, D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4, 1524–1529 (1987).
    [CrossRef] [PubMed]
  37. E. Kaplan, B. B. Lee, R. M. Shapley, “New views of primate retinal function,” in Progress in Retinal Research, N. Osborne, J. Chader, eds. (Pergamon, Oxford, UK, 1990), Vol. 9, pp. 273–336.
  38. R. L. De Valois, H. Morgan, D. M. Snodderly, “Psychophysical studies of monkey vision. III. Spatial luminance contrast sensitivity tests of macaque and human observers,” Vision Res. 14, 75–81 (1974).
    [CrossRef] [PubMed]
  39. D. R. Williams, N. Sekiguchi, W. Haake, D. Brainard, O. Packer, “The cost of trichromacy for spatial vision,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 11–22.
  40. B. B. Boycott, J. M. Hopkins, H. G. Sperling, “Cone connections of the horizontal cells of the rhesus monkey’s retina,” Proc. R. Soc. London Ser. B 229, 345–379 (1987).
    [CrossRef]
  41. R. F. Dacheux, E. Raviola, “Physiology of H1 horizontal cells in the primate retina,” Proc. R. Soc. London Ser. B 239, 213–230 (1990).
    [CrossRef]
  42. D. M. Dacey, B. B. Lee, D. K. Stafford, J. Pokorny, V. C. Smith, “Horizontal cells of the primate retina: cone specificity without spectral opponency,” Science 271, 656–659 (1996).
    [CrossRef] [PubMed]
  43. D. Osorio, T. R. J. Bossomaier, “Human cone-pigment spectral sensitivities and the reflectances of natural surfaces,” Biol. Cybern. 67, 217–222 (1992).
    [CrossRef] [PubMed]
  44. M. G. Nagle, D. Osorio, “The tuning of human photopigments may minimize red–green chromatic signals in natural conditions,” Proc. R. Soc. London Ser. B 252, 209–213 (1993).
    [CrossRef]
  45. L. M. Hurvich, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
    [CrossRef] [PubMed]
  46. E. N. Pugh, J. Larimer, “Test of the identity of the site of blue/yellow cancellation and the site of chromatic antagonism in the π1 pathway,” Vision Res. 20, 779–788 (1980).
    [CrossRef]
  47. J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions in color space,” Vision Res. 22, 1123–1131 (1982).
    [CrossRef]
  48. R. W. Rodieck, “Which cells code for color?” in From Pigments to Perception, A. Valberg, B. Lee, eds. (Plenum, New York, 1991), pp. 83–93.
  49. N. Sekiguchi, D. R. Williams, D. H. Brainard, “Efficiency in detection of isoluminant and isochromatic interference fringes,” J. Opt. Soc. Am. A 10, 2118–2133 (1993).
    [CrossRef]
  50. C. Noorlander, J. J. Koenderink, R. J. Den Ouden, B. W. Edens, “Sensitivity to spatiotemporal colour contrast in the peripheral visual field,” Vision Res. 23, 1–11 (1983).
    [CrossRef] [PubMed]
  51. R. F. Hess, K. T. Mullen, E. Zrenner, “Human photopic vision with only short wavelength cones post-receptoral properties,” J. Physiol. (London) 417, 151–172 (1989).
  52. E. J. Chichilnisky, D. A. Baylor, “Single S cone inputs to blue-on ganglion cells in monkey retina,” ARVO Abstr. 40, 3096 (1999).
  53. D. R. Williams, N. Sekiguchi, D. H. Brainard, “Color, contrast sensitivity, and the cone mosaic,” Proc. Natl. Acad. Sci. USA 90, 9770–9777 (1993).
    [CrossRef] [PubMed]

2000 (1)

1999 (2)

D. J. Calkins, P. Sterling, “Evidence that circuits for spatial and color vision segregate at the first retinal synapse,” Neuron 24, 313–321 (1999).
[CrossRef] [PubMed]

E. J. Chichilnisky, D. A. Baylor, “Single S cone inputs to blue-on ganglion cells in monkey retina,” ARVO Abstr. 40, 3096 (1999).

1998 (1)

D. J. Calkins, Y. Tsukamoto, P. Sterling, “Microcircuitry and mosaic of a blue/yellow ganglion cell in the primate retina,” J. Neurosci. 18, 3373–3385 (1998).
[PubMed]

1997 (2)

J. M. Hopkins, B. B. Boycott, “The cone synapses of cone bipolar cells of primate retina,” J. Neurocytol. 26, 313–325 (1997).
[CrossRef] [PubMed]

K. K. Ghosh, P. R. Martin, U. Grünert, “Morphological analysis of the blue cone pathway in the retina of a New World monkey, the marmoset Callithrix jacchus,” J. Comp. Neurol. 379, 211–225 (1997).
[CrossRef] [PubMed]

1996 (6)

O. S. Packer, D. R. Williams, D. G. Bensinger, “Photopigment transmittance imaging of the primate photoreceptor mosaic,” J. Neurosci. 16, 2251–2260 (1996).
[PubMed]

S. S. Herr, N. Tiv, P. Sterling, S. J. Schein, “S cones in macaque fovea are invaginated by one type of ON bipolar cell, but L and M cones are invaginated by midget and diffuse bipolar cells,” ARVO Abstr. 37, 4864 (1996).

M. Chun, U. Grünert, P. Martin, H. Wässle, “The synaptic complex of cones in the fovea and the periphery of the macaque monkey retina,” Vision Res. 36, 3373–3381 (1996).
[CrossRef]

D. J. Calkins, Y. Tsukamoto, P. Sterling, “Foveal cones form basal as well as invaginating junctions with diffuse ON bipolar cells,” Vision Res. 36, 3373–3381 (1996).
[CrossRef] [PubMed]

D. J. Calkins, P. Sterling, “Absence of spectrally specific lateral inputs to midget ganglion cells in primate retina,” Nature 381, 613–615 (1996).
[CrossRef] [PubMed]

D. M. Dacey, B. B. Lee, D. K. Stafford, J. Pokorny, V. C. Smith, “Horizontal cells of the primate retina: cone specificity without spectral opponency,” Science 271, 656–659 (1996).
[CrossRef] [PubMed]

1995 (1)

S. S. Herr, N. Tiv, K. Klug, S. J. Schein, P. Sterling, “L and M cones in macaque fovea make different numbers of synaptic contacts with OFF (but not ON) midget bipolar cells,” ARVO Abstr. 36, 2368 (1995).

1994 (3)

D. M. Dacey, B. B. Lee, “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature 367, 731–735 (1994).
[CrossRef] [PubMed]

H. Wässle, U. Grünert, P. R. Martin, B. B. Boycott, “Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina,” Vision Res. 34, 561–579 (1994).
[CrossRef] [PubMed]

D. J. Calkins, S. Schein, Y. Tsukamoto, P. Sterling, “M and L cones in macaque fovea connect to midget ganglion cells via different numbers of excitatory synapses,” Nature 371, 70–72 (1994).
[CrossRef] [PubMed]

1993 (6)

D. M. Dacey, “The mosaic of midget ganglion cells in the human retina,” J. Neurosci. 13, 5334–5355 (1993).
[PubMed]

D. M. Dacey, “Morphology of a small field bistratified ganglion cell type in the macaque and human retina,” Visual Neurosci. 10, 1081–1098 (1993).
[CrossRef]

K. Klug, Y. Tsukamoto, P. Sterling, S. J. Schein, “Blue cone off-midget ganglion cells in macaque,” ARVO Abstr. 34, 1398 (1993).

M. G. Nagle, D. Osorio, “The tuning of human photopigments may minimize red–green chromatic signals in natural conditions,” Proc. R. Soc. London Ser. B 252, 209–213 (1993).
[CrossRef]

N. Sekiguchi, D. R. Williams, D. H. Brainard, “Efficiency in detection of isoluminant and isochromatic interference fringes,” J. Opt. Soc. Am. A 10, 2118–2133 (1993).
[CrossRef]

D. R. Williams, N. Sekiguchi, D. H. Brainard, “Color, contrast sensitivity, and the cone mosaic,” Proc. Natl. Acad. Sci. USA 90, 9770–9777 (1993).
[CrossRef] [PubMed]

1992 (5)

D. Osorio, T. R. J. Bossomaier, “Human cone-pigment spectral sensitivities and the reflectances of natural surfaces,” Biol. Cybern. 67, 217–222 (1992).
[CrossRef] [PubMed]

K. Klug, N. Tiv, Y. Tsukamoto, P. Sterling, S. J. Schein, “Blue cones contact OFF-midget bipolar cells,” Soc. Neurosci. Abstr. 19, 351.7 (1992).

N. Kouyama, D. W. Marshak, “Bipolar cells specific for blue cones in the macaque retina,” J. Neurosci. 12, 1233–1252 (1992).
[PubMed]

J. D. Mollon, J. K. Bowmaker, “The spatial arrangement of cones in the primate fovea,” Nature 360, 677–679 (1992).
[CrossRef] [PubMed]

Y. Tsukamoto, P. Masarachia, S. J. Schein, P. Sterling, “Gap junctions between the pedicles of macaque foveal cones,” Vision Res. 32, 1809–1815 (1992).
[CrossRef] [PubMed]

1991 (2)

H. Kolb, L. Dekorver, “Midget ganglion cells of the parafovea of the human retina: a study by electron microscopy and serial section reconstructions,” J. Comp. Neurol. 303, 617–636 (1991).
[CrossRef] [PubMed]

H. Wässle, B. B. Boycott, “Functional architecture of the mammalian retina,” Physiol. Rev. 71, 447–480 (1991).

1990 (2)

Y. Tsukamoto, R. G. Smith, P. Sterling, “ ‘Collective coding’ of correlated cone signals in the retinal ganglion cell,” Proc. Natl. Acad. Sci. USA 87, 1860–1864 (1990).
[CrossRef]

R. F. Dacheux, E. Raviola, “Physiology of H1 horizontal cells in the primate retina,” Proc. R. Soc. London Ser. B 239, 213–230 (1990).
[CrossRef]

1989 (1)

R. F. Hess, K. T. Mullen, E. Zrenner, “Human photopic vision with only short wavelength cones post-receptoral properties,” J. Physiol. (London) 417, 151–172 (1989).

1987 (3)

B. B. Boycott, J. M. Hopkins, H. G. Sperling, “Cone connections of the horizontal cells of the rhesus monkey’s retina,” Proc. R. Soc. London Ser. B 229, 345–379 (1987).
[CrossRef]

L. N. Thibos, F. E. Cheney, D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4, 1524–1529 (1987).
[CrossRef] [PubMed]

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

1986 (1)

D. R. Williams, “Seeing through the photoreceptor mosaic,” Trends Neurosci. 9, 193–198 (1986).
[CrossRef]

1984 (1)

A. P. Mariani, “Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive,” Nature 308, 184–186 (1984).
[CrossRef] [PubMed]

1983 (1)

C. Noorlander, J. J. Koenderink, R. J. Den Ouden, B. W. Edens, “Sensitivity to spatiotemporal colour contrast in the peripheral visual field,” Vision Res. 23, 1–11 (1983).
[CrossRef] [PubMed]

1982 (1)

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions in color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef]

1980 (1)

E. N. Pugh, J. Larimer, “Test of the identity of the site of blue/yellow cancellation and the site of chromatic antagonism in the π1 pathway,” Vision Res. 20, 779–788 (1980).
[CrossRef]

1978 (1)

F. M. de Monasterio, “Properties of ganglion cells with atypical receptive-field organization in retina of macaques,” J. Neurophysiol. 41, 1435–1449 (1978).
[PubMed]

1975 (1)

F. M. de Monasterio, P. Gouras, “Functional properties of ganglion cells of rhesus monkey retina,” J. Physiol. (London) 251, 167–195 (1975).

1974 (1)

R. L. De Valois, H. Morgan, D. M. Snodderly, “Psychophysical studies of monkey vision. III. Spatial luminance contrast sensitivity tests of macaque and human observers,” Vision Res. 14, 75–81 (1974).
[CrossRef] [PubMed]

1970 (1)

H. Kolb, “Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells,” Philos. Trans. R. Soc. London Ser. B 258, 261–283 (1970).
[CrossRef]

1966 (1)

J. E. Dowling, B. B. Boycott, “Organization of the primate retina: electron microscopy,” Proc. R. Soc. London Ser. B 166, 80–111 (1966).
[CrossRef]

1957 (1)

L. M. Hurvich, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
[CrossRef] [PubMed]

Baylor, D. A.

E. J. Chichilnisky, D. A. Baylor, “Single S cone inputs to blue-on ganglion cells in monkey retina,” ARVO Abstr. 40, 3096 (1999).

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

Bensinger, D. G.

O. S. Packer, D. R. Williams, D. G. Bensinger, “Photopigment transmittance imaging of the primate photoreceptor mosaic,” J. Neurosci. 16, 2251–2260 (1996).
[PubMed]

Bossomaier, T. R. J.

D. Osorio, T. R. J. Bossomaier, “Human cone-pigment spectral sensitivities and the reflectances of natural surfaces,” Biol. Cybern. 67, 217–222 (1992).
[CrossRef] [PubMed]

Bowmaker, J. K.

J. D. Mollon, J. K. Bowmaker, “The spatial arrangement of cones in the primate fovea,” Nature 360, 677–679 (1992).
[CrossRef] [PubMed]

Boycott, B. B.

J. M. Hopkins, B. B. Boycott, “The cone synapses of cone bipolar cells of primate retina,” J. Neurocytol. 26, 313–325 (1997).
[CrossRef] [PubMed]

H. Wässle, U. Grünert, P. R. Martin, B. B. Boycott, “Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina,” Vision Res. 34, 561–579 (1994).
[CrossRef] [PubMed]

H. Wässle, B. B. Boycott, “Functional architecture of the mammalian retina,” Physiol. Rev. 71, 447–480 (1991).

B. B. Boycott, J. M. Hopkins, H. G. Sperling, “Cone connections of the horizontal cells of the rhesus monkey’s retina,” Proc. R. Soc. London Ser. B 229, 345–379 (1987).
[CrossRef]

J. E. Dowling, B. B. Boycott, “Organization of the primate retina: electron microscopy,” Proc. R. Soc. London Ser. B 166, 80–111 (1966).
[CrossRef]

Brainard, D.

D. R. Williams, N. Sekiguchi, W. Haake, D. Brainard, O. Packer, “The cost of trichromacy for spatial vision,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 11–22.

Brainard, D. H.

Calderone, J. B.

Calkins, D. J.

D. J. Calkins, P. Sterling, “Evidence that circuits for spatial and color vision segregate at the first retinal synapse,” Neuron 24, 313–321 (1999).
[CrossRef] [PubMed]

D. J. Calkins, Y. Tsukamoto, P. Sterling, “Microcircuitry and mosaic of a blue/yellow ganglion cell in the primate retina,” J. Neurosci. 18, 3373–3385 (1998).
[PubMed]

D. J. Calkins, Y. Tsukamoto, P. Sterling, “Foveal cones form basal as well as invaginating junctions with diffuse ON bipolar cells,” Vision Res. 36, 3373–3381 (1996).
[CrossRef] [PubMed]

D. J. Calkins, P. Sterling, “Absence of spectrally specific lateral inputs to midget ganglion cells in primate retina,” Nature 381, 613–615 (1996).
[CrossRef] [PubMed]

D. J. Calkins, S. Schein, Y. Tsukamoto, P. Sterling, “M and L cones in macaque fovea connect to midget ganglion cells via different numbers of excitatory synapses,” Nature 371, 70–72 (1994).
[CrossRef] [PubMed]

D. J. Calkins, “Synaptic organization of cone pathways in the primate retina,” in Color Vision: from Molecular Genetics to Perception, K. Gegenfurtner, L. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 1999).

Cheney, F. E.

Chichilnisky, E. J.

E. J. Chichilnisky, D. A. Baylor, “Single S cone inputs to blue-on ganglion cells in monkey retina,” ARVO Abstr. 40, 3096 (1999).

Chun, M.

M. Chun, U. Grünert, P. Martin, H. Wässle, “The synaptic complex of cones in the fovea and the periphery of the macaque monkey retina,” Vision Res. 36, 3373–3381 (1996).
[CrossRef]

Dacey, D. M.

D. M. Dacey, B. B. Lee, D. K. Stafford, J. Pokorny, V. C. Smith, “Horizontal cells of the primate retina: cone specificity without spectral opponency,” Science 271, 656–659 (1996).
[CrossRef] [PubMed]

D. M. Dacey, B. B. Lee, “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature 367, 731–735 (1994).
[CrossRef] [PubMed]

D. M. Dacey, “The mosaic of midget ganglion cells in the human retina,” J. Neurosci. 13, 5334–5355 (1993).
[PubMed]

D. M. Dacey, “Morphology of a small field bistratified ganglion cell type in the macaque and human retina,” Visual Neurosci. 10, 1081–1098 (1993).
[CrossRef]

Dacheux, R. F.

R. F. Dacheux, E. Raviola, “Physiology of H1 horizontal cells in the primate retina,” Proc. R. Soc. London Ser. B 239, 213–230 (1990).
[CrossRef]

de Monasterio, F. M.

F. M. de Monasterio, “Properties of ganglion cells with atypical receptive-field organization in retina of macaques,” J. Neurophysiol. 41, 1435–1449 (1978).
[PubMed]

F. M. de Monasterio, P. Gouras, “Functional properties of ganglion cells of rhesus monkey retina,” J. Physiol. (London) 251, 167–195 (1975).

De Valois, R. L.

R. L. De Valois, H. Morgan, D. M. Snodderly, “Psychophysical studies of monkey vision. III. Spatial luminance contrast sensitivity tests of macaque and human observers,” Vision Res. 14, 75–81 (1974).
[CrossRef] [PubMed]

Dekorver, L.

H. Kolb, L. Dekorver, “Midget ganglion cells of the parafovea of the human retina: a study by electron microscopy and serial section reconstructions,” J. Comp. Neurol. 303, 617–636 (1991).
[CrossRef] [PubMed]

Den Ouden, R. J.

C. Noorlander, J. J. Koenderink, R. J. Den Ouden, B. W. Edens, “Sensitivity to spatiotemporal colour contrast in the peripheral visual field,” Vision Res. 23, 1–11 (1983).
[CrossRef] [PubMed]

Dowling, J. E.

J. E. Dowling, B. B. Boycott, “Organization of the primate retina: electron microscopy,” Proc. R. Soc. London Ser. B 166, 80–111 (1966).
[CrossRef]

Edens, B. W.

C. Noorlander, J. J. Koenderink, R. J. Den Ouden, B. W. Edens, “Sensitivity to spatiotemporal colour contrast in the peripheral visual field,” Vision Res. 23, 1–11 (1983).
[CrossRef] [PubMed]

Ghosh, K. K.

K. K. Ghosh, P. R. Martin, U. Grünert, “Morphological analysis of the blue cone pathway in the retina of a New World monkey, the marmoset Callithrix jacchus,” J. Comp. Neurol. 379, 211–225 (1997).
[CrossRef] [PubMed]

Gouras, P.

F. M. de Monasterio, P. Gouras, “Functional properties of ganglion cells of rhesus monkey retina,” J. Physiol. (London) 251, 167–195 (1975).

Grünert, U.

K. K. Ghosh, P. R. Martin, U. Grünert, “Morphological analysis of the blue cone pathway in the retina of a New World monkey, the marmoset Callithrix jacchus,” J. Comp. Neurol. 379, 211–225 (1997).
[CrossRef] [PubMed]

M. Chun, U. Grünert, P. Martin, H. Wässle, “The synaptic complex of cones in the fovea and the periphery of the macaque monkey retina,” Vision Res. 36, 3373–3381 (1996).
[CrossRef]

H. Wässle, U. Grünert, P. R. Martin, B. B. Boycott, “Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina,” Vision Res. 34, 561–579 (1994).
[CrossRef] [PubMed]

Haake, W.

D. R. Williams, N. Sekiguchi, W. Haake, D. Brainard, O. Packer, “The cost of trichromacy for spatial vision,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 11–22.

Heeley, D. W.

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions in color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef]

Herr, S. S.

S. S. Herr, N. Tiv, P. Sterling, S. J. Schein, “S cones in macaque fovea are invaginated by one type of ON bipolar cell, but L and M cones are invaginated by midget and diffuse bipolar cells,” ARVO Abstr. 37, 4864 (1996).

S. S. Herr, N. Tiv, K. Klug, S. J. Schein, P. Sterling, “L and M cones in macaque fovea make different numbers of synaptic contacts with OFF (but not ON) midget bipolar cells,” ARVO Abstr. 36, 2368 (1995).

Hess, R. F.

R. F. Hess, K. T. Mullen, E. Zrenner, “Human photopic vision with only short wavelength cones post-receptoral properties,” J. Physiol. (London) 417, 151–172 (1989).

Hopkins, J. M.

J. M. Hopkins, B. B. Boycott, “The cone synapses of cone bipolar cells of primate retina,” J. Neurocytol. 26, 313–325 (1997).
[CrossRef] [PubMed]

B. B. Boycott, J. M. Hopkins, H. G. Sperling, “Cone connections of the horizontal cells of the rhesus monkey’s retina,” Proc. R. Soc. London Ser. B 229, 345–379 (1987).
[CrossRef]

Hurvich, L. M.

L. M. Hurvich, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
[CrossRef] [PubMed]

Jacobs, G. H.

Jameson, D.

L. M. Hurvich, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
[CrossRef] [PubMed]

Kaplan, E.

E. Kaplan, B. B. Lee, R. M. Shapley, “New views of primate retinal function,” in Progress in Retinal Research, N. Osborne, J. Chader, eds. (Pergamon, Oxford, UK, 1990), Vol. 9, pp. 273–336.

Klug, K.

S. S. Herr, N. Tiv, K. Klug, S. J. Schein, P. Sterling, “L and M cones in macaque fovea make different numbers of synaptic contacts with OFF (but not ON) midget bipolar cells,” ARVO Abstr. 36, 2368 (1995).

K. Klug, Y. Tsukamoto, P. Sterling, S. J. Schein, “Blue cone off-midget ganglion cells in macaque,” ARVO Abstr. 34, 1398 (1993).

K. Klug, N. Tiv, Y. Tsukamoto, P. Sterling, S. J. Schein, “Blue cones contact OFF-midget bipolar cells,” Soc. Neurosci. Abstr. 19, 351.7 (1992).

Koenderink, J. J.

C. Noorlander, J. J. Koenderink, R. J. Den Ouden, B. W. Edens, “Sensitivity to spatiotemporal colour contrast in the peripheral visual field,” Vision Res. 23, 1–11 (1983).
[CrossRef] [PubMed]

Kolb, H.

H. Kolb, L. Dekorver, “Midget ganglion cells of the parafovea of the human retina: a study by electron microscopy and serial section reconstructions,” J. Comp. Neurol. 303, 617–636 (1991).
[CrossRef] [PubMed]

H. Kolb, “Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells,” Philos. Trans. R. Soc. London Ser. B 258, 261–283 (1970).
[CrossRef]

H. Kolb, R. Nelson, “The organization of photoreceptor to bipolar synapses in the outer plexiform layer,” in Neurobiology and Clinical Aspects of the Outer Retina, M. B. A. Djamgoz, S. N. Archer, S. Vallerga, eds. (Chapman & Hall, London, 1995), pp. 273–296.

Kouyama, N.

N. Kouyama, D. W. Marshak, “Bipolar cells specific for blue cones in the macaque retina,” J. Neurosci. 12, 1233–1252 (1992).
[PubMed]

Krauskopf, J.

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions in color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef]

Larimer, J.

E. N. Pugh, J. Larimer, “Test of the identity of the site of blue/yellow cancellation and the site of chromatic antagonism in the π1 pathway,” Vision Res. 20, 779–788 (1980).
[CrossRef]

Lee, B. B.

D. M. Dacey, B. B. Lee, D. K. Stafford, J. Pokorny, V. C. Smith, “Horizontal cells of the primate retina: cone specificity without spectral opponency,” Science 271, 656–659 (1996).
[CrossRef] [PubMed]

D. M. Dacey, B. B. Lee, “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature 367, 731–735 (1994).
[CrossRef] [PubMed]

E. Kaplan, B. B. Lee, R. M. Shapley, “New views of primate retinal function,” in Progress in Retinal Research, N. Osborne, J. Chader, eds. (Pergamon, Oxford, UK, 1990), Vol. 9, pp. 273–336.

Mariani, A. P.

A. P. Mariani, “Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive,” Nature 308, 184–186 (1984).
[CrossRef] [PubMed]

Marshak, D. W.

N. Kouyama, D. W. Marshak, “Bipolar cells specific for blue cones in the macaque retina,” J. Neurosci. 12, 1233–1252 (1992).
[PubMed]

Martin, P.

M. Chun, U. Grünert, P. Martin, H. Wässle, “The synaptic complex of cones in the fovea and the periphery of the macaque monkey retina,” Vision Res. 36, 3373–3381 (1996).
[CrossRef]

Martin, P. R.

K. K. Ghosh, P. R. Martin, U. Grünert, “Morphological analysis of the blue cone pathway in the retina of a New World monkey, the marmoset Callithrix jacchus,” J. Comp. Neurol. 379, 211–225 (1997).
[CrossRef] [PubMed]

H. Wässle, U. Grünert, P. R. Martin, B. B. Boycott, “Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina,” Vision Res. 34, 561–579 (1994).
[CrossRef] [PubMed]

Masarachia, P.

Y. Tsukamoto, P. Masarachia, S. J. Schein, P. Sterling, “Gap junctions between the pedicles of macaque foveal cones,” Vision Res. 32, 1809–1815 (1992).
[CrossRef] [PubMed]

Metha, A.

Missotten, L.

L. Missotten, The Ultrastructure of the Human Retina (Editions Arscia S.A., Brussels, 1965).

Mollon, J. D.

J. D. Mollon, J. K. Bowmaker, “The spatial arrangement of cones in the primate fovea,” Nature 360, 677–679 (1992).
[CrossRef] [PubMed]

Morgan, H.

R. L. De Valois, H. Morgan, D. M. Snodderly, “Psychophysical studies of monkey vision. III. Spatial luminance contrast sensitivity tests of macaque and human observers,” Vision Res. 14, 75–81 (1974).
[CrossRef] [PubMed]

Mullen, K. T.

R. F. Hess, K. T. Mullen, E. Zrenner, “Human photopic vision with only short wavelength cones post-receptoral properties,” J. Physiol. (London) 417, 151–172 (1989).

Nagle, M. G.

M. G. Nagle, D. Osorio, “The tuning of human photopigments may minimize red–green chromatic signals in natural conditions,” Proc. R. Soc. London Ser. B 252, 209–213 (1993).
[CrossRef]

Neitz, J.

Neitz, M.

Nelson, R.

H. Kolb, R. Nelson, “The organization of photoreceptor to bipolar synapses in the outer plexiform layer,” in Neurobiology and Clinical Aspects of the Outer Retina, M. B. A. Djamgoz, S. N. Archer, S. Vallerga, eds. (Chapman & Hall, London, 1995), pp. 273–296.

Noorlander, C.

C. Noorlander, J. J. Koenderink, R. J. Den Ouden, B. W. Edens, “Sensitivity to spatiotemporal colour contrast in the peripheral visual field,” Vision Res. 23, 1–11 (1983).
[CrossRef] [PubMed]

Nunn, B. J.

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

Osorio, D.

M. G. Nagle, D. Osorio, “The tuning of human photopigments may minimize red–green chromatic signals in natural conditions,” Proc. R. Soc. London Ser. B 252, 209–213 (1993).
[CrossRef]

D. Osorio, T. R. J. Bossomaier, “Human cone-pigment spectral sensitivities and the reflectances of natural surfaces,” Biol. Cybern. 67, 217–222 (1992).
[CrossRef] [PubMed]

Packer, O.

D. R. Williams, N. Sekiguchi, W. Haake, D. Brainard, O. Packer, “The cost of trichromacy for spatial vision,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 11–22.

Packer, O. S.

O. S. Packer, D. R. Williams, D. G. Bensinger, “Photopigment transmittance imaging of the primate photoreceptor mosaic,” J. Neurosci. 16, 2251–2260 (1996).
[PubMed]

Pokorny, J.

D. M. Dacey, B. B. Lee, D. K. Stafford, J. Pokorny, V. C. Smith, “Horizontal cells of the primate retina: cone specificity without spectral opponency,” Science 271, 656–659 (1996).
[CrossRef] [PubMed]

Polyak, S. L.

S. L. Polyak, The Retina (U. Chicago Press, Chicago, Ill., 1941).

Pugh, E. N.

E. N. Pugh, J. Larimer, “Test of the identity of the site of blue/yellow cancellation and the site of chromatic antagonism in the π1 pathway,” Vision Res. 20, 779–788 (1980).
[CrossRef]

Raviola, E.

R. F. Dacheux, E. Raviola, “Physiology of H1 horizontal cells in the primate retina,” Proc. R. Soc. London Ser. B 239, 213–230 (1990).
[CrossRef]

Rodieck, R. W.

R. W. Rodieck, “Which cells code for color?” in From Pigments to Perception, A. Valberg, B. Lee, eds. (Plenum, New York, 1991), pp. 83–93.

Roorda, A.

Schein, S.

D. J. Calkins, S. Schein, Y. Tsukamoto, P. Sterling, “M and L cones in macaque fovea connect to midget ganglion cells via different numbers of excitatory synapses,” Nature 371, 70–72 (1994).
[CrossRef] [PubMed]

Schein, S. J.

S. S. Herr, N. Tiv, P. Sterling, S. J. Schein, “S cones in macaque fovea are invaginated by one type of ON bipolar cell, but L and M cones are invaginated by midget and diffuse bipolar cells,” ARVO Abstr. 37, 4864 (1996).

S. S. Herr, N. Tiv, K. Klug, S. J. Schein, P. Sterling, “L and M cones in macaque fovea make different numbers of synaptic contacts with OFF (but not ON) midget bipolar cells,” ARVO Abstr. 36, 2368 (1995).

K. Klug, Y. Tsukamoto, P. Sterling, S. J. Schein, “Blue cone off-midget ganglion cells in macaque,” ARVO Abstr. 34, 1398 (1993).

K. Klug, N. Tiv, Y. Tsukamoto, P. Sterling, S. J. Schein, “Blue cones contact OFF-midget bipolar cells,” Soc. Neurosci. Abstr. 19, 351.7 (1992).

Y. Tsukamoto, P. Masarachia, S. J. Schein, P. Sterling, “Gap junctions between the pedicles of macaque foveal cones,” Vision Res. 32, 1809–1815 (1992).
[CrossRef] [PubMed]

Schnapf, J. L.

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

Sekiguchi, N.

D. R. Williams, N. Sekiguchi, D. H. Brainard, “Color, contrast sensitivity, and the cone mosaic,” Proc. Natl. Acad. Sci. USA 90, 9770–9777 (1993).
[CrossRef] [PubMed]

N. Sekiguchi, D. R. Williams, D. H. Brainard, “Efficiency in detection of isoluminant and isochromatic interference fringes,” J. Opt. Soc. Am. A 10, 2118–2133 (1993).
[CrossRef]

D. R. Williams, N. Sekiguchi, W. Haake, D. Brainard, O. Packer, “The cost of trichromacy for spatial vision,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 11–22.

Shapley, R. M.

E. Kaplan, B. B. Lee, R. M. Shapley, “New views of primate retinal function,” in Progress in Retinal Research, N. Osborne, J. Chader, eds. (Pergamon, Oxford, UK, 1990), Vol. 9, pp. 273–336.

Smith, R. G.

Y. Tsukamoto, R. G. Smith, P. Sterling, “ ‘Collective coding’ of correlated cone signals in the retinal ganglion cell,” Proc. Natl. Acad. Sci. USA 87, 1860–1864 (1990).
[CrossRef]

Smith, V. C.

D. M. Dacey, B. B. Lee, D. K. Stafford, J. Pokorny, V. C. Smith, “Horizontal cells of the primate retina: cone specificity without spectral opponency,” Science 271, 656–659 (1996).
[CrossRef] [PubMed]

Snodderly, D. M.

R. L. De Valois, H. Morgan, D. M. Snodderly, “Psychophysical studies of monkey vision. III. Spatial luminance contrast sensitivity tests of macaque and human observers,” Vision Res. 14, 75–81 (1974).
[CrossRef] [PubMed]

Sperling, H. G.

B. B. Boycott, J. M. Hopkins, H. G. Sperling, “Cone connections of the horizontal cells of the rhesus monkey’s retina,” Proc. R. Soc. London Ser. B 229, 345–379 (1987).
[CrossRef]

Stafford, D. K.

D. M. Dacey, B. B. Lee, D. K. Stafford, J. Pokorny, V. C. Smith, “Horizontal cells of the primate retina: cone specificity without spectral opponency,” Science 271, 656–659 (1996).
[CrossRef] [PubMed]

Sterling, P.

D. J. Calkins, P. Sterling, “Evidence that circuits for spatial and color vision segregate at the first retinal synapse,” Neuron 24, 313–321 (1999).
[CrossRef] [PubMed]

D. J. Calkins, Y. Tsukamoto, P. Sterling, “Microcircuitry and mosaic of a blue/yellow ganglion cell in the primate retina,” J. Neurosci. 18, 3373–3385 (1998).
[PubMed]

D. J. Calkins, P. Sterling, “Absence of spectrally specific lateral inputs to midget ganglion cells in primate retina,” Nature 381, 613–615 (1996).
[CrossRef] [PubMed]

D. J. Calkins, Y. Tsukamoto, P. Sterling, “Foveal cones form basal as well as invaginating junctions with diffuse ON bipolar cells,” Vision Res. 36, 3373–3381 (1996).
[CrossRef] [PubMed]

S. S. Herr, N. Tiv, P. Sterling, S. J. Schein, “S cones in macaque fovea are invaginated by one type of ON bipolar cell, but L and M cones are invaginated by midget and diffuse bipolar cells,” ARVO Abstr. 37, 4864 (1996).

S. S. Herr, N. Tiv, K. Klug, S. J. Schein, P. Sterling, “L and M cones in macaque fovea make different numbers of synaptic contacts with OFF (but not ON) midget bipolar cells,” ARVO Abstr. 36, 2368 (1995).

D. J. Calkins, S. Schein, Y. Tsukamoto, P. Sterling, “M and L cones in macaque fovea connect to midget ganglion cells via different numbers of excitatory synapses,” Nature 371, 70–72 (1994).
[CrossRef] [PubMed]

K. Klug, Y. Tsukamoto, P. Sterling, S. J. Schein, “Blue cone off-midget ganglion cells in macaque,” ARVO Abstr. 34, 1398 (1993).

Y. Tsukamoto, P. Masarachia, S. J. Schein, P. Sterling, “Gap junctions between the pedicles of macaque foveal cones,” Vision Res. 32, 1809–1815 (1992).
[CrossRef] [PubMed]

K. Klug, N. Tiv, Y. Tsukamoto, P. Sterling, S. J. Schein, “Blue cones contact OFF-midget bipolar cells,” Soc. Neurosci. Abstr. 19, 351.7 (1992).

Y. Tsukamoto, R. G. Smith, P. Sterling, “ ‘Collective coding’ of correlated cone signals in the retinal ganglion cell,” Proc. Natl. Acad. Sci. USA 87, 1860–1864 (1990).
[CrossRef]

Thibos, L. N.

Tiv, N.

S. S. Herr, N. Tiv, P. Sterling, S. J. Schein, “S cones in macaque fovea are invaginated by one type of ON bipolar cell, but L and M cones are invaginated by midget and diffuse bipolar cells,” ARVO Abstr. 37, 4864 (1996).

S. S. Herr, N. Tiv, K. Klug, S. J. Schein, P. Sterling, “L and M cones in macaque fovea make different numbers of synaptic contacts with OFF (but not ON) midget bipolar cells,” ARVO Abstr. 36, 2368 (1995).

K. Klug, N. Tiv, Y. Tsukamoto, P. Sterling, S. J. Schein, “Blue cones contact OFF-midget bipolar cells,” Soc. Neurosci. Abstr. 19, 351.7 (1992).

Tsukamoto, Y.

D. J. Calkins, Y. Tsukamoto, P. Sterling, “Microcircuitry and mosaic of a blue/yellow ganglion cell in the primate retina,” J. Neurosci. 18, 3373–3385 (1998).
[PubMed]

D. J. Calkins, Y. Tsukamoto, P. Sterling, “Foveal cones form basal as well as invaginating junctions with diffuse ON bipolar cells,” Vision Res. 36, 3373–3381 (1996).
[CrossRef] [PubMed]

D. J. Calkins, S. Schein, Y. Tsukamoto, P. Sterling, “M and L cones in macaque fovea connect to midget ganglion cells via different numbers of excitatory synapses,” Nature 371, 70–72 (1994).
[CrossRef] [PubMed]

K. Klug, Y. Tsukamoto, P. Sterling, S. J. Schein, “Blue cone off-midget ganglion cells in macaque,” ARVO Abstr. 34, 1398 (1993).

Y. Tsukamoto, P. Masarachia, S. J. Schein, P. Sterling, “Gap junctions between the pedicles of macaque foveal cones,” Vision Res. 32, 1809–1815 (1992).
[CrossRef] [PubMed]

K. Klug, N. Tiv, Y. Tsukamoto, P. Sterling, S. J. Schein, “Blue cones contact OFF-midget bipolar cells,” Soc. Neurosci. Abstr. 19, 351.7 (1992).

Y. Tsukamoto, R. G. Smith, P. Sterling, “ ‘Collective coding’ of correlated cone signals in the retinal ganglion cell,” Proc. Natl. Acad. Sci. USA 87, 1860–1864 (1990).
[CrossRef]

Walsh, D. J.

Wässle, H.

M. Chun, U. Grünert, P. Martin, H. Wässle, “The synaptic complex of cones in the fovea and the periphery of the macaque monkey retina,” Vision Res. 36, 3373–3381 (1996).
[CrossRef]

H. Wässle, U. Grünert, P. R. Martin, B. B. Boycott, “Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina,” Vision Res. 34, 561–579 (1994).
[CrossRef] [PubMed]

H. Wässle, B. B. Boycott, “Functional architecture of the mammalian retina,” Physiol. Rev. 71, 447–480 (1991).

Williams, D. R.

D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000).
[CrossRef]

O. S. Packer, D. R. Williams, D. G. Bensinger, “Photopigment transmittance imaging of the primate photoreceptor mosaic,” J. Neurosci. 16, 2251–2260 (1996).
[PubMed]

N. Sekiguchi, D. R. Williams, D. H. Brainard, “Efficiency in detection of isoluminant and isochromatic interference fringes,” J. Opt. Soc. Am. A 10, 2118–2133 (1993).
[CrossRef]

D. R. Williams, N. Sekiguchi, D. H. Brainard, “Color, contrast sensitivity, and the cone mosaic,” Proc. Natl. Acad. Sci. USA 90, 9770–9777 (1993).
[CrossRef] [PubMed]

D. R. Williams, “Seeing through the photoreceptor mosaic,” Trends Neurosci. 9, 193–198 (1986).
[CrossRef]

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions in color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef]

D. R. Williams, N. Sekiguchi, W. Haake, D. Brainard, O. Packer, “The cost of trichromacy for spatial vision,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 11–22.

Yamauchi, Y.

Zrenner, E.

R. F. Hess, K. T. Mullen, E. Zrenner, “Human photopic vision with only short wavelength cones post-receptoral properties,” J. Physiol. (London) 417, 151–172 (1989).

ARVO Abstr. (4)

S. S. Herr, N. Tiv, K. Klug, S. J. Schein, P. Sterling, “L and M cones in macaque fovea make different numbers of synaptic contacts with OFF (but not ON) midget bipolar cells,” ARVO Abstr. 36, 2368 (1995).

S. S. Herr, N. Tiv, P. Sterling, S. J. Schein, “S cones in macaque fovea are invaginated by one type of ON bipolar cell, but L and M cones are invaginated by midget and diffuse bipolar cells,” ARVO Abstr. 37, 4864 (1996).

K. Klug, Y. Tsukamoto, P. Sterling, S. J. Schein, “Blue cone off-midget ganglion cells in macaque,” ARVO Abstr. 34, 1398 (1993).

E. J. Chichilnisky, D. A. Baylor, “Single S cone inputs to blue-on ganglion cells in monkey retina,” ARVO Abstr. 40, 3096 (1999).

Biol. Cybern. (1)

D. Osorio, T. R. J. Bossomaier, “Human cone-pigment spectral sensitivities and the reflectances of natural surfaces,” Biol. Cybern. 67, 217–222 (1992).
[CrossRef] [PubMed]

J. Comp. Neurol. (2)

K. K. Ghosh, P. R. Martin, U. Grünert, “Morphological analysis of the blue cone pathway in the retina of a New World monkey, the marmoset Callithrix jacchus,” J. Comp. Neurol. 379, 211–225 (1997).
[CrossRef] [PubMed]

H. Kolb, L. Dekorver, “Midget ganglion cells of the parafovea of the human retina: a study by electron microscopy and serial section reconstructions,” J. Comp. Neurol. 303, 617–636 (1991).
[CrossRef] [PubMed]

J. Neurocytol. (1)

J. M. Hopkins, B. B. Boycott, “The cone synapses of cone bipolar cells of primate retina,” J. Neurocytol. 26, 313–325 (1997).
[CrossRef] [PubMed]

J. Neurophysiol. (1)

F. M. de Monasterio, “Properties of ganglion cells with atypical receptive-field organization in retina of macaques,” J. Neurophysiol. 41, 1435–1449 (1978).
[PubMed]

J. Neurosci. (4)

O. S. Packer, D. R. Williams, D. G. Bensinger, “Photopigment transmittance imaging of the primate photoreceptor mosaic,” J. Neurosci. 16, 2251–2260 (1996).
[PubMed]

N. Kouyama, D. W. Marshak, “Bipolar cells specific for blue cones in the macaque retina,” J. Neurosci. 12, 1233–1252 (1992).
[PubMed]

D. M. Dacey, “The mosaic of midget ganglion cells in the human retina,” J. Neurosci. 13, 5334–5355 (1993).
[PubMed]

D. J. Calkins, Y. Tsukamoto, P. Sterling, “Microcircuitry and mosaic of a blue/yellow ganglion cell in the primate retina,” J. Neurosci. 18, 3373–3385 (1998).
[PubMed]

J. Opt. Soc. Am. A (3)

J. Physiol. (London) (3)

R. F. Hess, K. T. Mullen, E. Zrenner, “Human photopic vision with only short wavelength cones post-receptoral properties,” J. Physiol. (London) 417, 151–172 (1989).

F. M. de Monasterio, P. Gouras, “Functional properties of ganglion cells of rhesus monkey retina,” J. Physiol. (London) 251, 167–195 (1975).

D. A. Baylor, B. J. Nunn, J. L. Schnapf, “Spectral sensitivity of cones of the monkey Macaca fascicularis,” J. Physiol. (London) 390, 145–160 (1987).

Nature (5)

D. J. Calkins, S. Schein, Y. Tsukamoto, P. Sterling, “M and L cones in macaque fovea connect to midget ganglion cells via different numbers of excitatory synapses,” Nature 371, 70–72 (1994).
[CrossRef] [PubMed]

D. J. Calkins, P. Sterling, “Absence of spectrally specific lateral inputs to midget ganglion cells in primate retina,” Nature 381, 613–615 (1996).
[CrossRef] [PubMed]

J. D. Mollon, J. K. Bowmaker, “The spatial arrangement of cones in the primate fovea,” Nature 360, 677–679 (1992).
[CrossRef] [PubMed]

D. M. Dacey, B. B. Lee, “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature 367, 731–735 (1994).
[CrossRef] [PubMed]

A. P. Mariani, “Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive,” Nature 308, 184–186 (1984).
[CrossRef] [PubMed]

Neuron (1)

D. J. Calkins, P. Sterling, “Evidence that circuits for spatial and color vision segregate at the first retinal synapse,” Neuron 24, 313–321 (1999).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. London Ser. B (1)

H. Kolb, “Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells,” Philos. Trans. R. Soc. London Ser. B 258, 261–283 (1970).
[CrossRef]

Physiol. Rev. (1)

H. Wässle, B. B. Boycott, “Functional architecture of the mammalian retina,” Physiol. Rev. 71, 447–480 (1991).

Proc. Natl. Acad. Sci. USA (2)

Y. Tsukamoto, R. G. Smith, P. Sterling, “ ‘Collective coding’ of correlated cone signals in the retinal ganglion cell,” Proc. Natl. Acad. Sci. USA 87, 1860–1864 (1990).
[CrossRef]

D. R. Williams, N. Sekiguchi, D. H. Brainard, “Color, contrast sensitivity, and the cone mosaic,” Proc. Natl. Acad. Sci. USA 90, 9770–9777 (1993).
[CrossRef] [PubMed]

Proc. R. Soc. London Ser. B (4)

B. B. Boycott, J. M. Hopkins, H. G. Sperling, “Cone connections of the horizontal cells of the rhesus monkey’s retina,” Proc. R. Soc. London Ser. B 229, 345–379 (1987).
[CrossRef]

R. F. Dacheux, E. Raviola, “Physiology of H1 horizontal cells in the primate retina,” Proc. R. Soc. London Ser. B 239, 213–230 (1990).
[CrossRef]

M. G. Nagle, D. Osorio, “The tuning of human photopigments may minimize red–green chromatic signals in natural conditions,” Proc. R. Soc. London Ser. B 252, 209–213 (1993).
[CrossRef]

J. E. Dowling, B. B. Boycott, “Organization of the primate retina: electron microscopy,” Proc. R. Soc. London Ser. B 166, 80–111 (1966).
[CrossRef]

Psychol. Rev. (1)

L. M. Hurvich, D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957).
[CrossRef] [PubMed]

Science (1)

D. M. Dacey, B. B. Lee, D. K. Stafford, J. Pokorny, V. C. Smith, “Horizontal cells of the primate retina: cone specificity without spectral opponency,” Science 271, 656–659 (1996).
[CrossRef] [PubMed]

Soc. Neurosci. Abstr. (1)

K. Klug, N. Tiv, Y. Tsukamoto, P. Sterling, S. J. Schein, “Blue cones contact OFF-midget bipolar cells,” Soc. Neurosci. Abstr. 19, 351.7 (1992).

Trends Neurosci. (1)

D. R. Williams, “Seeing through the photoreceptor mosaic,” Trends Neurosci. 9, 193–198 (1986).
[CrossRef]

Vision Res. (8)

Y. Tsukamoto, P. Masarachia, S. J. Schein, P. Sterling, “Gap junctions between the pedicles of macaque foveal cones,” Vision Res. 32, 1809–1815 (1992).
[CrossRef] [PubMed]

D. J. Calkins, Y. Tsukamoto, P. Sterling, “Foveal cones form basal as well as invaginating junctions with diffuse ON bipolar cells,” Vision Res. 36, 3373–3381 (1996).
[CrossRef] [PubMed]

M. Chun, U. Grünert, P. Martin, H. Wässle, “The synaptic complex of cones in the fovea and the periphery of the macaque monkey retina,” Vision Res. 36, 3373–3381 (1996).
[CrossRef]

R. L. De Valois, H. Morgan, D. M. Snodderly, “Psychophysical studies of monkey vision. III. Spatial luminance contrast sensitivity tests of macaque and human observers,” Vision Res. 14, 75–81 (1974).
[CrossRef] [PubMed]

C. Noorlander, J. J. Koenderink, R. J. Den Ouden, B. W. Edens, “Sensitivity to spatiotemporal colour contrast in the peripheral visual field,” Vision Res. 23, 1–11 (1983).
[CrossRef] [PubMed]

E. N. Pugh, J. Larimer, “Test of the identity of the site of blue/yellow cancellation and the site of chromatic antagonism in the π1 pathway,” Vision Res. 20, 779–788 (1980).
[CrossRef]

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions in color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef]

H. Wässle, U. Grünert, P. R. Martin, B. B. Boycott, “Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina,” Vision Res. 34, 561–579 (1994).
[CrossRef] [PubMed]

Visual Neurosci. (1)

D. M. Dacey, “Morphology of a small field bistratified ganglion cell type in the macaque and human retina,” Visual Neurosci. 10, 1081–1098 (1993).
[CrossRef]

Other (7)

D. J. Calkins, “Synaptic organization of cone pathways in the primate retina,” in Color Vision: from Molecular Genetics to Perception, K. Gegenfurtner, L. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 1999).

D. R. Williams, N. Sekiguchi, W. Haake, D. Brainard, O. Packer, “The cost of trichromacy for spatial vision,” in From Pigments to Perception, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 11–22.

E. Kaplan, B. B. Lee, R. M. Shapley, “New views of primate retinal function,” in Progress in Retinal Research, N. Osborne, J. Chader, eds. (Pergamon, Oxford, UK, 1990), Vol. 9, pp. 273–336.

L. Missotten, The Ultrastructure of the Human Retina (Editions Arscia S.A., Brussels, 1965).

H. Kolb, R. Nelson, “The organization of photoreceptor to bipolar synapses in the outer plexiform layer,” in Neurobiology and Clinical Aspects of the Outer Retina, M. B. A. Djamgoz, S. N. Archer, S. Vallerga, eds. (Chapman & Hall, London, 1995), pp. 273–296.

S. L. Polyak, The Retina (U. Chicago Press, Chicago, Ill., 1941).

R. W. Rodieck, “Which cells code for color?” in From Pigments to Perception, A. Valberg, B. Lee, eds. (Plenum, New York, 1991), pp. 83–93.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Electron micrograph of a vertical thin section along the foveal slope of macaque retina.2 The cone inner segments (IS) contacting the bipolar and ganglion cell circuits that we studied were centered at ∼1° nasal of the center fovea. The tight packing of cones is accompanied by tight packing of their axons or Henle fibers (HF) and cell bodies in the outer nuclear layer (ONL). The high sampling rate of the cone mosaic correlates with multiple rows of neurons across the inner nuclear layer (INL) and the ganglion cell layer (GCL). The dendrites of bipolar cells penetrate the cone terminal space in the outer plexiform layer (OPL), while their axons form connections with ganglion cell dendrites in the inner plexiform layer (IPL).

Fig. 2
Fig. 2

Electron micrograph of a vertical section through the base of a cone terminal.6 Two active zones are each marked by a synaptic ribbon (R) that serves as a docking site for glutamate-containing vesicles. Each ribbon points between a pair of horizontal cell processes (H) to an invagination of the terminal membrane that houses a central bipolar cell dendrite (C) in an arrangement called a triad. Sites of basal contact (B) with bipolar cell dendrites occur adjacent to the invaginating dendrites of triads (triad associated or semi-invaginating, indicated by an asterisk) or outside the invagination (nontriad associated), depending on the type of bipolar cell.

Fig. 3
Fig. 3

(a) Reconstructions of the midget off and on pathways from a single cone terminal.5 Each M and L cone terminal (arrow) contacts one midget off ganglion cell (dark cell body) via a midget off bipolar cell and one midget on ganglion cell (cell body truncated) via a midget on bipolar cell. (b) Reconstructions of the dendritic trees of two neighboring midget off ganglion cells in vertical and horizontal view with their bipolar cell synapses (open circles). The cell on the left branched sparsely and received ∼30 ribbon synapses from its midget bipolar cell, while the cell on the right branched more densely and received ∼50 synapses. Inset (plot): Across a larger sample, the off and on midget pathways from the same cone had highly correlated numbers of ribbon synapses.5 Therefore this difference in number of synapses partitions the M and L cone mosaic into two groups. (c) The surface area of the dendritic tree of the midget ganglion cell increases as a function of the number of ribbon synapses that the bipolar cell provides (on and off cells pooled). Area corresponds to the sum of the membrane over the region contained within the arrows shown in (b). on and off cells from the same cone were highly correlated (see Ref. 5 for details). (d) Reconstruction of the mosaic of foveal cone terminals in our electron microscopy (EM) series rotated to horizontal view. The depth scale marks the progression of ∼320 serial sections cut at 90-nm intervals. Some cones contacted midget pathways with ∼30 synapses between bipolar and ganglion cell (white) or ∼50 synapses between the bipolar and the ganglion cell (gray). S cone terminals (black) were identified by other means (see Subsection 2.C). Cones near the edge of the series could not be classified (dashed outlines).

Fig. 4
Fig. 4

(a) Outlines of the footprint of each midget off (top) and midget on (bottom) bipolar cell axon terminal in our EM series. The depth scale is the same as in Fig. 3(d). Terminals contacted their corresponding midget ganglion cell either via ∼30 ribbon synapses (white) or via ∼50 ribbon synapses (gray); some terminals were not complete (dashed outlines). Each of three S cones contacted a midget off bipolar cell (black), but not a midget on bipolar cell. (b) The bipolar cell terminals in (a) were traced to their corresponding cone terminals, and these were projected onto a triangulation of their inner segment mosaic. Cones with small (white) or large (gray) midget pathways were approximately equally numerous (56 versus 48) and distributed into small clusters of like type after performance of a binomial process (see Subsection 2.B). (c) Drawings of pairs of neighboring midget ganglion cells near the fovea of three Old World species indicate that sparsely versus densely branching cells may be representative of the trichromatic retina (sketch of human retina modified from Ref. 20; those of macaque and chimpanzee, from Ref. 18).

Fig. 5
Fig. 5

(a) Electron micrograph of a vertical section of an extrafoveal S cone axon terminal from the human retina, stained with markers against the S opsin and a kainate glutamate receptor (antibodies provided courtesy of J. Nathans and Chemicon, Inc.). The base of the terminal is enlarged (right) to illustrate the locations of basal junctions with bipolar cell dendrites (arrows). These locations generally mark contact with diffuse off bipolar cells. Dark particles in the terminal represent gold-toned reaction product for the S cone marker, while those in the postsynaptic cleft represent the gold-toned product for the kainate receptor. (b) Light micrograph of a marked S cone stained as in (a), contacting the dendritic tree of an S bipolar cell marked with antibodies against cholecystokinin (courtesy of J. Del Valle). The bipolar cell axon penetrates deeply to ramify at the border between the IPL and the ganglion cell layer (see Fig. 1).

Fig. 6
Fig. 6

(a) Horizontal view of a reconstruction of the dendritic tree of an S bipolar cell receiving select contact (squares) at the invaginations of an S cone (boldface outline). These cells usually receive contact from two or three S cones, with one of these providing most of the synaptic input.8 (b) A diffuse on bipolar cell beneath the same patch of cone terminals receives contact from all cones, including the same S cone (boldface outline), at a few invaginating positions (squares) and more numerously at semi-invaginating basal positions (circles). This finding is based on more-recent and exhaustive tracing of every postsynaptic process from the S cone and on contrasts with earlier suggestions that diffuse on bipolar cells may skip S cones.6,25 (c) Horizontal view of the footprints of S bipolar cell terminals (gray) and the locations of S-on/(M + L)-off ganglion cells (circled asterisks) and S cone terminals (filled circles) in our EM series as a function of the corresponding eccentricity of cone inner segments feeding these circuits.8 Two or three bipolar cells converge upon each ganglion cell, although one of these provides most of the synaptic input. There is one ganglion cell for every S cone.

Fig. 7
Fig. 7

Horizontal view of a reconstruction of the partial dendritic tree of a DB3 cell receiving contact from all cones within its reach, including the S cone shown in Fig. 6 (boldface outline), at basal positions32 (triangles).

Fig. 8
Fig. 8

The S-on/(M + L)-off ganglion cell collects input from three or four S cones via two or three S bipolar cells (dark gray) and from approximately 20 M (light gray) and L (white) cones via approximately four diffuse off bipolar cells.8

Tables (3)

Tables Icon

Table 1 Invaginating Dendrites at M and L Cones

Tables Icon

Table 2 Invaginating Dendrites at an S Cone

Tables Icon

Table 3 Divergence at an S Cone

Metrics