Abstract

We compared the spatial distribution of short-wavelength-sensitive (SWS or blue) cone photoreceptors in the retinas of eight primate species. The regularity of the SWS cone array was quantified with a statistic (packing factor) that varies between a random distribution (0) and a triangular array (1). We find wide variability among species, with packing factors varying between 0.06 and 0.3. The SWS cone array in at least two New World monkey species is indistinguishable from a random array. The SWS cone density gradient across the retina was measured in the capuchin monkey Cebus apella and the squirrel monkey Saimiri sciureus. Both species show a peak density of 5000–8000 cells/mm2 at the fovea and a 50-fold central–peripheral density gradient. In contrast to the wide variation in local regularity, the spatial density and the topography of SWS cones are well preserved across primates.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Szél, P. Röhlich, A. R. Caffé, T. van Veen, “Distribution of cone photoreceptors in the mammalian retina,” Microsc. Res. Tech. 35, 445–462 (1996).
    [CrossRef]
  2. G. H. Jacobs, “The distribution and nature of colour vision among the mammals,” Biol. Rev. 68, 413–471 (1993).
    [CrossRef] [PubMed]
  3. D. R. Williams, D. I. A. MacLeod, M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
    [CrossRef] [PubMed]
  4. C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
    [CrossRef] [PubMed]
  5. P. K. Ahnelt, H. Kolb, R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina,” J. Comp. Neurol. 255, 18–34 (1987).
    [CrossRef] [PubMed]
  6. D. R. Williams, D. I. A. MacLeod, M. Hayhoe, “Foveal tritanopia,” Vision Res. 21, 1341–1356 (1981).
    [CrossRef] [PubMed]
  7. O. S. Packer, D. R. Williams, D. G. Bensinger, “Photopigment transmittance imaging of the primate photoreceptor mosaic,” J. Neurosci. 16, 2251–2260 (1996).
    [PubMed]
  8. M. B. Shapiro, S. J. Schein, F. M. De Monasterio, “Regularity and structure of the spatial pattern of blue cones of macaque retina,” J. Am. Stat. Assoc. 80, 803–814 (1985).
    [CrossRef]
  9. F. M. De Monasterio, S. J. Schein, E. P. McCrane, “Staining of blue-sensitive cones of the macaque retina by a fluorescent dye,” Science 213, 1278–1281 (1981).
    [CrossRef]
  10. K. Bumsted, A. Hendrickson, “Distribution and development of short-wavelength cones differ between Macaca monkey and human fovea,” J. Comp. Neurol. 403, 502–516 (1999).
    [CrossRef] [PubMed]
  11. P. R. Martin, U. Grünert, “Analysis of the short wavelength sensitive (‘blue’) cone mosaic in the primate retina: a comparison of New World and Old World monkeys,” J. Comp. Neurol. 406, 1–14 (1999).
    [CrossRef] [PubMed]
  12. K. C. Wikler, P. Rakic, “Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates,” J. Neurosci. 10, 3390–3401 (1990).
    [PubMed]
  13. R. E. Marc, H. G. Sperling, “Chromatic organization of primate cones,” Science 196, 454–456 (1977).
    [CrossRef] [PubMed]
  14. D. H. Brainard, D. R. Williams, “Spatial reconstruction of signals from short-wavelength cones,” Vision Res. 33, 105–116 (1993).
    [CrossRef] [PubMed]
  15. G. H. Jacobs, J. F. Deegan, J. Neitz, M. A. Crognale, M. Neitz, “Photopigments and color vision in the nocturnal monkey, Aotus,” Vision Res. 33, 1773–1783 (1993).
    [CrossRef] [PubMed]
  16. J. F. Deegan, G. H. Jacobs, “Spectral sensitivity and photopigments of a nocturnal prosimian, the bushbaby (Otolemur crassicaudatis),” Am. J. Primatol. 40, 55–66 (1996).
    [CrossRef]
  17. R. W. Rodieck, “The density recovery profile: a method for the analysis of points in the plane applicable to retinal studies,” Visual Neurosci. 6, 95–111 (1991).
    [CrossRef]
  18. P. R. Martin, T. L. Chan, U. Grünert, “Spatial irregularity of the short wavelength sensitive (‘blue’) cone mosaic in the primate retina,” Soc. Neurosci. Abstr. 25, 137 (1999).
  19. T. Yeh, B. B. Lee, J. Kremers, J. A. Cowing, D. M. Hunt, P. R. Martin, J. B. Troy, “Visual responses in the lateral geniculate nucleus of dichromatic and trichromatic marmosets (Callithrix jacchus),” J. Neurosci. 15, 7892–7904 (1995).
    [PubMed]
  20. L. C. Silveira, B. B. Lee, E. S. Yamada, J. Kremers, D. M. Hunt, P. R. Martin, F. Gomes, “Ganglion cells of a short wavelength sensitive cone pathway in New World monkeys: morphology and physiology,” Visual Neurosci. 16, 333–343 (1999).
    [CrossRef]
  21. T. L. Chan, U. Grünert, “Horizontal cell connections with short wavelength-sensitive cones in the retina: a comparison between New World and Old World primates,” J. Comp. Neurol. 393, 196–209 (1998).
    [CrossRef] [PubMed]
  22. Y. Wang, J. P. Macke, S. L. Merbs, D. J. Zack, B. Klaunberg, J. Bennett, J. Gearhart, J. Nathans, “A locus control region adjacent to the human red and green visual pigment genes,” Neuron 9, 429–440 (1992).
    [CrossRef] [PubMed]
  23. B. Müller, L. Peichl, “Topography of cones and rods in the tree shrew retina,” J. Comp. Neurol. 282, 581–294 (1989).
    [CrossRef] [PubMed]
  24. E. Harlow, D. Lane, Antibodies: a Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1988).
  25. J. Nathans, D. Thomas, D. S. Hogness, “Molecular genetics of human color vision: the genes encoding blue, green, and red pigments,” Science 232, 193–202 (1986).
    [CrossRef] [PubMed]
  26. K. Bumsted, C. Jasoni, A. Szél, A. Hendrickson, “Spatial and temporal expression of cone opsins during monkey retinal development,” J. Comp. Neurol. 378, 117–134 (1997).
    [CrossRef] [PubMed]
  27. R. M. Harland, “In situ hybridization: an improved whole-mount method for Xenopus embryos,” Methods Cell Biol. 36, 685–695 (1991).
    [CrossRef]
  28. P. Halasz, P. R. Martin, “A microcomputer based system for semi-automatic analysis of histological sections,” Proc. R. Microscop. Soc. 19, 312 (1984).
  29. H. D. Wilder, U. Grunert, B. B. Lee, P. R. Martin, “Topography of ganglion cells and photoreceptors in the retina of a New World monkey. The marmoset Callithrix jacchus,” Visual Neurosci. 13, 335–352 (1996).
    [CrossRef]
  30. A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
    [CrossRef] [PubMed]
  31. H. Wässle, H. J. Riemann, “The mosaic of nerve cells in the mammalian retina,” Proc. R. Soc. London Ser. B 200, 441–461 (1978).
    [CrossRef]
  32. J. E. Cook, “Spatial properties of retinal mosaics: an empirical evaluation of some existing measures,” Visual Neurosci. 13, 15–30 (1996).
    [CrossRef]
  33. L. Galli-Resta, E. Novelli, Z. Kryger, G. H. Jacobs, B. E. Reese, “Modelling the mosaic organization of rod and cone photoreceptors with a minimal-spacing rule,” Eur. J. Neurosci. 11, 1461–1469 (1999).
    [CrossRef] [PubMed]
  34. A. K. Goodchild, K. K. Ghosh, P. R. Martin, “Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset Callithrix jacchus,” J. Comp. Neurol. 366, 55–75 (1996).
    [CrossRef] [PubMed]
  35. N. Kouyama, D. W. Marshak, “Bipolar cells specific for blue cones in the macaque retina,” J. Neurosci. 12, 1233–1252 (1992).
    [PubMed]
  36. D. R. Williams, R. Collier, “Consequences of spatial sampling by a human photoreceptor mosaic,” Science 221, 385–387 (1983).
    [CrossRef] [PubMed]
  37. R. W. Williams, D. Goldowitz, “Structure of clonal and polyclonal cell arrays in chimeric mouse retina,” Proc. Natl. Acad. Sci. USA 89, 1184–1188 (1992).
    [CrossRef] [PubMed]
  38. L. Peichl, K. Moutairou, “Absence of short-wavelength sensitive cones in the retinae of seals (Carnivora) and African giant rats (Rodentia),” Eur. J. Neurosci. 10, 2586–2594 (1998).
    [CrossRef] [PubMed]
  39. C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
    [CrossRef] [PubMed]
  40. K. C. Wikler, R. W. Williams, P. Rakic, “Photoreceptor mosaic: number and distribution of rods and cones in the rhesus monkey retina,” J. Comp. Neurol. 297, 499–508 (1990).
    [CrossRef] [PubMed]
  41. O. Packer, A. E. Hendrickson, C. A. Curcio, “Photoreceptor topography of the adult pigtail macaque (Macaca nemestrina),” J. Comp. Neurol. 288, 165–183 (1989).
    [CrossRef] [PubMed]

1999 (6)

K. Bumsted, A. Hendrickson, “Distribution and development of short-wavelength cones differ between Macaca monkey and human fovea,” J. Comp. Neurol. 403, 502–516 (1999).
[CrossRef] [PubMed]

P. R. Martin, U. Grünert, “Analysis of the short wavelength sensitive (‘blue’) cone mosaic in the primate retina: a comparison of New World and Old World monkeys,” J. Comp. Neurol. 406, 1–14 (1999).
[CrossRef] [PubMed]

P. R. Martin, T. L. Chan, U. Grünert, “Spatial irregularity of the short wavelength sensitive (‘blue’) cone mosaic in the primate retina,” Soc. Neurosci. Abstr. 25, 137 (1999).

L. C. Silveira, B. B. Lee, E. S. Yamada, J. Kremers, D. M. Hunt, P. R. Martin, F. Gomes, “Ganglion cells of a short wavelength sensitive cone pathway in New World monkeys: morphology and physiology,” Visual Neurosci. 16, 333–343 (1999).
[CrossRef]

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

L. Galli-Resta, E. Novelli, Z. Kryger, G. H. Jacobs, B. E. Reese, “Modelling the mosaic organization of rod and cone photoreceptors with a minimal-spacing rule,” Eur. J. Neurosci. 11, 1461–1469 (1999).
[CrossRef] [PubMed]

1998 (2)

L. Peichl, K. Moutairou, “Absence of short-wavelength sensitive cones in the retinae of seals (Carnivora) and African giant rats (Rodentia),” Eur. J. Neurosci. 10, 2586–2594 (1998).
[CrossRef] [PubMed]

T. L. Chan, U. Grünert, “Horizontal cell connections with short wavelength-sensitive cones in the retina: a comparison between New World and Old World primates,” J. Comp. Neurol. 393, 196–209 (1998).
[CrossRef] [PubMed]

1997 (1)

K. Bumsted, C. Jasoni, A. Szél, A. Hendrickson, “Spatial and temporal expression of cone opsins during monkey retinal development,” J. Comp. Neurol. 378, 117–134 (1997).
[CrossRef] [PubMed]

1996 (6)

A. K. Goodchild, K. K. Ghosh, P. R. Martin, “Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset Callithrix jacchus,” J. Comp. Neurol. 366, 55–75 (1996).
[CrossRef] [PubMed]

J. F. Deegan, G. H. Jacobs, “Spectral sensitivity and photopigments of a nocturnal prosimian, the bushbaby (Otolemur crassicaudatis),” Am. J. Primatol. 40, 55–66 (1996).
[CrossRef]

O. S. Packer, D. R. Williams, D. G. Bensinger, “Photopigment transmittance imaging of the primate photoreceptor mosaic,” J. Neurosci. 16, 2251–2260 (1996).
[PubMed]

A. Szél, P. Röhlich, A. R. Caffé, T. van Veen, “Distribution of cone photoreceptors in the mammalian retina,” Microsc. Res. Tech. 35, 445–462 (1996).
[CrossRef]

H. D. Wilder, U. Grunert, B. B. Lee, P. R. Martin, “Topography of ganglion cells and photoreceptors in the retina of a New World monkey. The marmoset Callithrix jacchus,” Visual Neurosci. 13, 335–352 (1996).
[CrossRef]

J. E. Cook, “Spatial properties of retinal mosaics: an empirical evaluation of some existing measures,” Visual Neurosci. 13, 15–30 (1996).
[CrossRef]

1995 (1)

T. Yeh, B. B. Lee, J. Kremers, J. A. Cowing, D. M. Hunt, P. R. Martin, J. B. Troy, “Visual responses in the lateral geniculate nucleus of dichromatic and trichromatic marmosets (Callithrix jacchus),” J. Neurosci. 15, 7892–7904 (1995).
[PubMed]

1993 (3)

D. H. Brainard, D. R. Williams, “Spatial reconstruction of signals from short-wavelength cones,” Vision Res. 33, 105–116 (1993).
[CrossRef] [PubMed]

G. H. Jacobs, J. F. Deegan, J. Neitz, M. A. Crognale, M. Neitz, “Photopigments and color vision in the nocturnal monkey, Aotus,” Vision Res. 33, 1773–1783 (1993).
[CrossRef] [PubMed]

G. H. Jacobs, “The distribution and nature of colour vision among the mammals,” Biol. Rev. 68, 413–471 (1993).
[CrossRef] [PubMed]

1992 (3)

N. Kouyama, D. W. Marshak, “Bipolar cells specific for blue cones in the macaque retina,” J. Neurosci. 12, 1233–1252 (1992).
[PubMed]

Y. Wang, J. P. Macke, S. L. Merbs, D. J. Zack, B. Klaunberg, J. Bennett, J. Gearhart, J. Nathans, “A locus control region adjacent to the human red and green visual pigment genes,” Neuron 9, 429–440 (1992).
[CrossRef] [PubMed]

R. W. Williams, D. Goldowitz, “Structure of clonal and polyclonal cell arrays in chimeric mouse retina,” Proc. Natl. Acad. Sci. USA 89, 1184–1188 (1992).
[CrossRef] [PubMed]

1991 (3)

R. M. Harland, “In situ hybridization: an improved whole-mount method for Xenopus embryos,” Methods Cell Biol. 36, 685–695 (1991).
[CrossRef]

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

R. W. Rodieck, “The density recovery profile: a method for the analysis of points in the plane applicable to retinal studies,” Visual Neurosci. 6, 95–111 (1991).
[CrossRef]

1990 (3)

K. C. Wikler, P. Rakic, “Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates,” J. Neurosci. 10, 3390–3401 (1990).
[PubMed]

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

K. C. Wikler, R. W. Williams, P. Rakic, “Photoreceptor mosaic: number and distribution of rods and cones in the rhesus monkey retina,” J. Comp. Neurol. 297, 499–508 (1990).
[CrossRef] [PubMed]

1989 (2)

O. Packer, A. E. Hendrickson, C. A. Curcio, “Photoreceptor topography of the adult pigtail macaque (Macaca nemestrina),” J. Comp. Neurol. 288, 165–183 (1989).
[CrossRef] [PubMed]

B. Müller, L. Peichl, “Topography of cones and rods in the tree shrew retina,” J. Comp. Neurol. 282, 581–294 (1989).
[CrossRef] [PubMed]

1987 (1)

P. K. Ahnelt, H. Kolb, R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina,” J. Comp. Neurol. 255, 18–34 (1987).
[CrossRef] [PubMed]

1986 (1)

J. Nathans, D. Thomas, D. S. Hogness, “Molecular genetics of human color vision: the genes encoding blue, green, and red pigments,” Science 232, 193–202 (1986).
[CrossRef] [PubMed]

1985 (1)

M. B. Shapiro, S. J. Schein, F. M. De Monasterio, “Regularity and structure of the spatial pattern of blue cones of macaque retina,” J. Am. Stat. Assoc. 80, 803–814 (1985).
[CrossRef]

1984 (1)

P. Halasz, P. R. Martin, “A microcomputer based system for semi-automatic analysis of histological sections,” Proc. R. Microscop. Soc. 19, 312 (1984).

1983 (1)

D. R. Williams, R. Collier, “Consequences of spatial sampling by a human photoreceptor mosaic,” Science 221, 385–387 (1983).
[CrossRef] [PubMed]

1981 (3)

F. M. De Monasterio, S. J. Schein, E. P. McCrane, “Staining of blue-sensitive cones of the macaque retina by a fluorescent dye,” Science 213, 1278–1281 (1981).
[CrossRef]

D. R. Williams, D. I. A. MacLeod, M. Hayhoe, “Foveal tritanopia,” Vision Res. 21, 1341–1356 (1981).
[CrossRef] [PubMed]

D. R. Williams, D. I. A. MacLeod, M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
[CrossRef] [PubMed]

1978 (1)

H. Wässle, H. J. Riemann, “The mosaic of nerve cells in the mammalian retina,” Proc. R. Soc. London Ser. B 200, 441–461 (1978).
[CrossRef]

1977 (1)

R. E. Marc, H. G. Sperling, “Chromatic organization of primate cones,” Science 196, 454–456 (1977).
[CrossRef] [PubMed]

Ahnelt, P. K.

P. K. Ahnelt, H. Kolb, R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina,” J. Comp. Neurol. 255, 18–34 (1987).
[CrossRef] [PubMed]

Allen, K. A.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Bennett, J.

Y. Wang, J. P. Macke, S. L. Merbs, D. J. Zack, B. Klaunberg, J. Bennett, J. Gearhart, J. Nathans, “A locus control region adjacent to the human red and green visual pigment genes,” Neuron 9, 429–440 (1992).
[CrossRef] [PubMed]

Bensinger, D. G.

O. S. Packer, D. R. Williams, D. G. Bensinger, “Photopigment transmittance imaging of the primate photoreceptor mosaic,” J. Neurosci. 16, 2251–2260 (1996).
[PubMed]

Brainard, D. H.

D. H. Brainard, D. R. Williams, “Spatial reconstruction of signals from short-wavelength cones,” Vision Res. 33, 105–116 (1993).
[CrossRef] [PubMed]

Bumsted, K.

K. Bumsted, A. Hendrickson, “Distribution and development of short-wavelength cones differ between Macaca monkey and human fovea,” J. Comp. Neurol. 403, 502–516 (1999).
[CrossRef] [PubMed]

K. Bumsted, C. Jasoni, A. Szél, A. Hendrickson, “Spatial and temporal expression of cone opsins during monkey retinal development,” J. Comp. Neurol. 378, 117–134 (1997).
[CrossRef] [PubMed]

Caffé, A. R.

A. Szél, P. Röhlich, A. R. Caffé, T. van Veen, “Distribution of cone photoreceptors in the mammalian retina,” Microsc. Res. Tech. 35, 445–462 (1996).
[CrossRef]

Chan, T. L.

P. R. Martin, T. L. Chan, U. Grünert, “Spatial irregularity of the short wavelength sensitive (‘blue’) cone mosaic in the primate retina,” Soc. Neurosci. Abstr. 25, 137 (1999).

T. L. Chan, U. Grünert, “Horizontal cell connections with short wavelength-sensitive cones in the retina: a comparison between New World and Old World primates,” J. Comp. Neurol. 393, 196–209 (1998).
[CrossRef] [PubMed]

Collier, R.

D. R. Williams, R. Collier, “Consequences of spatial sampling by a human photoreceptor mosaic,” Science 221, 385–387 (1983).
[CrossRef] [PubMed]

Cook, J. E.

J. E. Cook, “Spatial properties of retinal mosaics: an empirical evaluation of some existing measures,” Visual Neurosci. 13, 15–30 (1996).
[CrossRef]

Cowing, J. A.

T. Yeh, B. B. Lee, J. Kremers, J. A. Cowing, D. M. Hunt, P. R. Martin, J. B. Troy, “Visual responses in the lateral geniculate nucleus of dichromatic and trichromatic marmosets (Callithrix jacchus),” J. Neurosci. 15, 7892–7904 (1995).
[PubMed]

Crognale, M. A.

G. H. Jacobs, J. F. Deegan, J. Neitz, M. A. Crognale, M. Neitz, “Photopigments and color vision in the nocturnal monkey, Aotus,” Vision Res. 33, 1773–1783 (1993).
[CrossRef] [PubMed]

Curcio, C. A.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

O. Packer, A. E. Hendrickson, C. A. Curcio, “Photoreceptor topography of the adult pigtail macaque (Macaca nemestrina),” J. Comp. Neurol. 288, 165–183 (1989).
[CrossRef] [PubMed]

De Monasterio, F. M.

M. B. Shapiro, S. J. Schein, F. M. De Monasterio, “Regularity and structure of the spatial pattern of blue cones of macaque retina,” J. Am. Stat. Assoc. 80, 803–814 (1985).
[CrossRef]

F. M. De Monasterio, S. J. Schein, E. P. McCrane, “Staining of blue-sensitive cones of the macaque retina by a fluorescent dye,” Science 213, 1278–1281 (1981).
[CrossRef]

Deegan, J. F.

J. F. Deegan, G. H. Jacobs, “Spectral sensitivity and photopigments of a nocturnal prosimian, the bushbaby (Otolemur crassicaudatis),” Am. J. Primatol. 40, 55–66 (1996).
[CrossRef]

G. H. Jacobs, J. F. Deegan, J. Neitz, M. A. Crognale, M. Neitz, “Photopigments and color vision in the nocturnal monkey, Aotus,” Vision Res. 33, 1773–1783 (1993).
[CrossRef] [PubMed]

Galli-Resta, L.

L. Galli-Resta, E. Novelli, Z. Kryger, G. H. Jacobs, B. E. Reese, “Modelling the mosaic organization of rod and cone photoreceptors with a minimal-spacing rule,” Eur. J. Neurosci. 11, 1461–1469 (1999).
[CrossRef] [PubMed]

Gearhart, J.

Y. Wang, J. P. Macke, S. L. Merbs, D. J. Zack, B. Klaunberg, J. Bennett, J. Gearhart, J. Nathans, “A locus control region adjacent to the human red and green visual pigment genes,” Neuron 9, 429–440 (1992).
[CrossRef] [PubMed]

Ghosh, K. K.

A. K. Goodchild, K. K. Ghosh, P. R. Martin, “Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset Callithrix jacchus,” J. Comp. Neurol. 366, 55–75 (1996).
[CrossRef] [PubMed]

Goldowitz, D.

R. W. Williams, D. Goldowitz, “Structure of clonal and polyclonal cell arrays in chimeric mouse retina,” Proc. Natl. Acad. Sci. USA 89, 1184–1188 (1992).
[CrossRef] [PubMed]

Gomes, F.

L. C. Silveira, B. B. Lee, E. S. Yamada, J. Kremers, D. M. Hunt, P. R. Martin, F. Gomes, “Ganglion cells of a short wavelength sensitive cone pathway in New World monkeys: morphology and physiology,” Visual Neurosci. 16, 333–343 (1999).
[CrossRef]

Goodchild, A. K.

A. K. Goodchild, K. K. Ghosh, P. R. Martin, “Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset Callithrix jacchus,” J. Comp. Neurol. 366, 55–75 (1996).
[CrossRef] [PubMed]

Grunert, U.

H. D. Wilder, U. Grunert, B. B. Lee, P. R. Martin, “Topography of ganglion cells and photoreceptors in the retina of a New World monkey. The marmoset Callithrix jacchus,” Visual Neurosci. 13, 335–352 (1996).
[CrossRef]

Grünert, U.

P. R. Martin, T. L. Chan, U. Grünert, “Spatial irregularity of the short wavelength sensitive (‘blue’) cone mosaic in the primate retina,” Soc. Neurosci. Abstr. 25, 137 (1999).

P. R. Martin, U. Grünert, “Analysis of the short wavelength sensitive (‘blue’) cone mosaic in the primate retina: a comparison of New World and Old World monkeys,” J. Comp. Neurol. 406, 1–14 (1999).
[CrossRef] [PubMed]

T. L. Chan, U. Grünert, “Horizontal cell connections with short wavelength-sensitive cones in the retina: a comparison between New World and Old World primates,” J. Comp. Neurol. 393, 196–209 (1998).
[CrossRef] [PubMed]

Halasz, P.

P. Halasz, P. R. Martin, “A microcomputer based system for semi-automatic analysis of histological sections,” Proc. R. Microscop. Soc. 19, 312 (1984).

Harland, R. M.

R. M. Harland, “In situ hybridization: an improved whole-mount method for Xenopus embryos,” Methods Cell Biol. 36, 685–695 (1991).
[CrossRef]

Harlow, E.

E. Harlow, D. Lane, Antibodies: a Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1988).

Hayhoe, M.

D. R. Williams, D. I. A. MacLeod, M. Hayhoe, “Foveal tritanopia,” Vision Res. 21, 1341–1356 (1981).
[CrossRef] [PubMed]

D. R. Williams, D. I. A. MacLeod, M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
[CrossRef] [PubMed]

Hendrickson, A.

K. Bumsted, A. Hendrickson, “Distribution and development of short-wavelength cones differ between Macaca monkey and human fovea,” J. Comp. Neurol. 403, 502–516 (1999).
[CrossRef] [PubMed]

K. Bumsted, C. Jasoni, A. Szél, A. Hendrickson, “Spatial and temporal expression of cone opsins during monkey retinal development,” J. Comp. Neurol. 378, 117–134 (1997).
[CrossRef] [PubMed]

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

O. Packer, A. E. Hendrickson, C. A. Curcio, “Photoreceptor topography of the adult pigtail macaque (Macaca nemestrina),” J. Comp. Neurol. 288, 165–183 (1989).
[CrossRef] [PubMed]

Hogness, D. S.

J. Nathans, D. Thomas, D. S. Hogness, “Molecular genetics of human color vision: the genes encoding blue, green, and red pigments,” Science 232, 193–202 (1986).
[CrossRef] [PubMed]

Hunt, D. M.

L. C. Silveira, B. B. Lee, E. S. Yamada, J. Kremers, D. M. Hunt, P. R. Martin, F. Gomes, “Ganglion cells of a short wavelength sensitive cone pathway in New World monkeys: morphology and physiology,” Visual Neurosci. 16, 333–343 (1999).
[CrossRef]

T. Yeh, B. B. Lee, J. Kremers, J. A. Cowing, D. M. Hunt, P. R. Martin, J. B. Troy, “Visual responses in the lateral geniculate nucleus of dichromatic and trichromatic marmosets (Callithrix jacchus),” J. Neurosci. 15, 7892–7904 (1995).
[PubMed]

Hurley, J. B.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Jacobs, G. H.

L. Galli-Resta, E. Novelli, Z. Kryger, G. H. Jacobs, B. E. Reese, “Modelling the mosaic organization of rod and cone photoreceptors with a minimal-spacing rule,” Eur. J. Neurosci. 11, 1461–1469 (1999).
[CrossRef] [PubMed]

J. F. Deegan, G. H. Jacobs, “Spectral sensitivity and photopigments of a nocturnal prosimian, the bushbaby (Otolemur crassicaudatis),” Am. J. Primatol. 40, 55–66 (1996).
[CrossRef]

G. H. Jacobs, J. F. Deegan, J. Neitz, M. A. Crognale, M. Neitz, “Photopigments and color vision in the nocturnal monkey, Aotus,” Vision Res. 33, 1773–1783 (1993).
[CrossRef] [PubMed]

G. H. Jacobs, “The distribution and nature of colour vision among the mammals,” Biol. Rev. 68, 413–471 (1993).
[CrossRef] [PubMed]

Jasoni, C.

K. Bumsted, C. Jasoni, A. Szél, A. Hendrickson, “Spatial and temporal expression of cone opsins during monkey retinal development,” J. Comp. Neurol. 378, 117–134 (1997).
[CrossRef] [PubMed]

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

Klaunberg, B.

Y. Wang, J. P. Macke, S. L. Merbs, D. J. Zack, B. Klaunberg, J. Bennett, J. Gearhart, J. Nathans, “A locus control region adjacent to the human red and green visual pigment genes,” Neuron 9, 429–440 (1992).
[CrossRef] [PubMed]

Klock, I. B.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Kolb, H.

P. K. Ahnelt, H. Kolb, R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina,” J. Comp. Neurol. 255, 18–34 (1987).
[CrossRef] [PubMed]

Kouyama, N.

N. Kouyama, D. W. Marshak, “Bipolar cells specific for blue cones in the macaque retina,” J. Neurosci. 12, 1233–1252 (1992).
[PubMed]

Kremers, J.

L. C. Silveira, B. B. Lee, E. S. Yamada, J. Kremers, D. M. Hunt, P. R. Martin, F. Gomes, “Ganglion cells of a short wavelength sensitive cone pathway in New World monkeys: morphology and physiology,” Visual Neurosci. 16, 333–343 (1999).
[CrossRef]

T. Yeh, B. B. Lee, J. Kremers, J. A. Cowing, D. M. Hunt, P. R. Martin, J. B. Troy, “Visual responses in the lateral geniculate nucleus of dichromatic and trichromatic marmosets (Callithrix jacchus),” J. Neurosci. 15, 7892–7904 (1995).
[PubMed]

Kryger, Z.

L. Galli-Resta, E. Novelli, Z. Kryger, G. H. Jacobs, B. E. Reese, “Modelling the mosaic organization of rod and cone photoreceptors with a minimal-spacing rule,” Eur. J. Neurosci. 11, 1461–1469 (1999).
[CrossRef] [PubMed]

Lane, D.

E. Harlow, D. Lane, Antibodies: a Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1988).

Lee, B. B.

L. C. Silveira, B. B. Lee, E. S. Yamada, J. Kremers, D. M. Hunt, P. R. Martin, F. Gomes, “Ganglion cells of a short wavelength sensitive cone pathway in New World monkeys: morphology and physiology,” Visual Neurosci. 16, 333–343 (1999).
[CrossRef]

H. D. Wilder, U. Grunert, B. B. Lee, P. R. Martin, “Topography of ganglion cells and photoreceptors in the retina of a New World monkey. The marmoset Callithrix jacchus,” Visual Neurosci. 13, 335–352 (1996).
[CrossRef]

T. Yeh, B. B. Lee, J. Kremers, J. A. Cowing, D. M. Hunt, P. R. Martin, J. B. Troy, “Visual responses in the lateral geniculate nucleus of dichromatic and trichromatic marmosets (Callithrix jacchus),” J. Neurosci. 15, 7892–7904 (1995).
[PubMed]

Lerea, C. L.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Macke, J. P.

Y. Wang, J. P. Macke, S. L. Merbs, D. J. Zack, B. Klaunberg, J. Bennett, J. Gearhart, J. Nathans, “A locus control region adjacent to the human red and green visual pigment genes,” Neuron 9, 429–440 (1992).
[CrossRef] [PubMed]

MacLeod, D. I. A.

D. R. Williams, D. I. A. MacLeod, M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
[CrossRef] [PubMed]

D. R. Williams, D. I. A. MacLeod, M. Hayhoe, “Foveal tritanopia,” Vision Res. 21, 1341–1356 (1981).
[CrossRef] [PubMed]

Marc, R. E.

R. E. Marc, H. G. Sperling, “Chromatic organization of primate cones,” Science 196, 454–456 (1977).
[CrossRef] [PubMed]

Marshak, D. W.

N. Kouyama, D. W. Marshak, “Bipolar cells specific for blue cones in the macaque retina,” J. Neurosci. 12, 1233–1252 (1992).
[PubMed]

Martin, P. R.

P. R. Martin, T. L. Chan, U. Grünert, “Spatial irregularity of the short wavelength sensitive (‘blue’) cone mosaic in the primate retina,” Soc. Neurosci. Abstr. 25, 137 (1999).

L. C. Silveira, B. B. Lee, E. S. Yamada, J. Kremers, D. M. Hunt, P. R. Martin, F. Gomes, “Ganglion cells of a short wavelength sensitive cone pathway in New World monkeys: morphology and physiology,” Visual Neurosci. 16, 333–343 (1999).
[CrossRef]

P. R. Martin, U. Grünert, “Analysis of the short wavelength sensitive (‘blue’) cone mosaic in the primate retina: a comparison of New World and Old World monkeys,” J. Comp. Neurol. 406, 1–14 (1999).
[CrossRef] [PubMed]

A. K. Goodchild, K. K. Ghosh, P. R. Martin, “Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset Callithrix jacchus,” J. Comp. Neurol. 366, 55–75 (1996).
[CrossRef] [PubMed]

H. D. Wilder, U. Grunert, B. B. Lee, P. R. Martin, “Topography of ganglion cells and photoreceptors in the retina of a New World monkey. The marmoset Callithrix jacchus,” Visual Neurosci. 13, 335–352 (1996).
[CrossRef]

T. Yeh, B. B. Lee, J. Kremers, J. A. Cowing, D. M. Hunt, P. R. Martin, J. B. Troy, “Visual responses in the lateral geniculate nucleus of dichromatic and trichromatic marmosets (Callithrix jacchus),” J. Neurosci. 15, 7892–7904 (1995).
[PubMed]

P. Halasz, P. R. Martin, “A microcomputer based system for semi-automatic analysis of histological sections,” Proc. R. Microscop. Soc. 19, 312 (1984).

McCrane, E. P.

F. M. De Monasterio, S. J. Schein, E. P. McCrane, “Staining of blue-sensitive cones of the macaque retina by a fluorescent dye,” Science 213, 1278–1281 (1981).
[CrossRef]

Merbs, S. L.

Y. Wang, J. P. Macke, S. L. Merbs, D. J. Zack, B. Klaunberg, J. Bennett, J. Gearhart, J. Nathans, “A locus control region adjacent to the human red and green visual pigment genes,” Neuron 9, 429–440 (1992).
[CrossRef] [PubMed]

Milam, A. H.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Moutairou, K.

L. Peichl, K. Moutairou, “Absence of short-wavelength sensitive cones in the retinae of seals (Carnivora) and African giant rats (Rodentia),” Eur. J. Neurosci. 10, 2586–2594 (1998).
[CrossRef] [PubMed]

Müller, B.

B. Müller, L. Peichl, “Topography of cones and rods in the tree shrew retina,” J. Comp. Neurol. 282, 581–294 (1989).
[CrossRef] [PubMed]

Nathans, J.

Y. Wang, J. P. Macke, S. L. Merbs, D. J. Zack, B. Klaunberg, J. Bennett, J. Gearhart, J. Nathans, “A locus control region adjacent to the human red and green visual pigment genes,” Neuron 9, 429–440 (1992).
[CrossRef] [PubMed]

J. Nathans, D. Thomas, D. S. Hogness, “Molecular genetics of human color vision: the genes encoding blue, green, and red pigments,” Science 232, 193–202 (1986).
[CrossRef] [PubMed]

Neitz, J.

G. H. Jacobs, J. F. Deegan, J. Neitz, M. A. Crognale, M. Neitz, “Photopigments and color vision in the nocturnal monkey, Aotus,” Vision Res. 33, 1773–1783 (1993).
[CrossRef] [PubMed]

Neitz, M.

G. H. Jacobs, J. F. Deegan, J. Neitz, M. A. Crognale, M. Neitz, “Photopigments and color vision in the nocturnal monkey, Aotus,” Vision Res. 33, 1773–1783 (1993).
[CrossRef] [PubMed]

Novelli, E.

L. Galli-Resta, E. Novelli, Z. Kryger, G. H. Jacobs, B. E. Reese, “Modelling the mosaic organization of rod and cone photoreceptors with a minimal-spacing rule,” Eur. J. Neurosci. 11, 1461–1469 (1999).
[CrossRef] [PubMed]

Packer, O.

O. Packer, A. E. Hendrickson, C. A. Curcio, “Photoreceptor topography of the adult pigtail macaque (Macaca nemestrina),” J. Comp. Neurol. 288, 165–183 (1989).
[CrossRef] [PubMed]

Packer, O. S.

O. S. Packer, D. R. Williams, D. G. Bensinger, “Photopigment transmittance imaging of the primate photoreceptor mosaic,” J. Neurosci. 16, 2251–2260 (1996).
[PubMed]

Peichl, L.

L. Peichl, K. Moutairou, “Absence of short-wavelength sensitive cones in the retinae of seals (Carnivora) and African giant rats (Rodentia),” Eur. J. Neurosci. 10, 2586–2594 (1998).
[CrossRef] [PubMed]

B. Müller, L. Peichl, “Topography of cones and rods in the tree shrew retina,” J. Comp. Neurol. 282, 581–294 (1989).
[CrossRef] [PubMed]

Pflug, R.

P. K. Ahnelt, H. Kolb, R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina,” J. Comp. Neurol. 255, 18–34 (1987).
[CrossRef] [PubMed]

Rakic, P.

K. C. Wikler, P. Rakic, “Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates,” J. Neurosci. 10, 3390–3401 (1990).
[PubMed]

K. C. Wikler, R. W. Williams, P. Rakic, “Photoreceptor mosaic: number and distribution of rods and cones in the rhesus monkey retina,” J. Comp. Neurol. 297, 499–508 (1990).
[CrossRef] [PubMed]

Reese, B. E.

L. Galli-Resta, E. Novelli, Z. Kryger, G. H. Jacobs, B. E. Reese, “Modelling the mosaic organization of rod and cone photoreceptors with a minimal-spacing rule,” Eur. J. Neurosci. 11, 1461–1469 (1999).
[CrossRef] [PubMed]

Riemann, H. J.

H. Wässle, H. J. Riemann, “The mosaic of nerve cells in the mammalian retina,” Proc. R. Soc. London Ser. B 200, 441–461 (1978).
[CrossRef]

Rodieck, R. W.

R. W. Rodieck, “The density recovery profile: a method for the analysis of points in the plane applicable to retinal studies,” Visual Neurosci. 6, 95–111 (1991).
[CrossRef]

Röhlich, P.

A. Szél, P. Röhlich, A. R. Caffé, T. van Veen, “Distribution of cone photoreceptors in the mammalian retina,” Microsc. Res. Tech. 35, 445–462 (1996).
[CrossRef]

Roorda, A.

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

Schein, S. J.

M. B. Shapiro, S. J. Schein, F. M. De Monasterio, “Regularity and structure of the spatial pattern of blue cones of macaque retina,” J. Am. Stat. Assoc. 80, 803–814 (1985).
[CrossRef]

F. M. De Monasterio, S. J. Schein, E. P. McCrane, “Staining of blue-sensitive cones of the macaque retina by a fluorescent dye,” Science 213, 1278–1281 (1981).
[CrossRef]

Shapiro, M. B.

M. B. Shapiro, S. J. Schein, F. M. De Monasterio, “Regularity and structure of the spatial pattern of blue cones of macaque retina,” J. Am. Stat. Assoc. 80, 803–814 (1985).
[CrossRef]

Silveira, L. C.

L. C. Silveira, B. B. Lee, E. S. Yamada, J. Kremers, D. M. Hunt, P. R. Martin, F. Gomes, “Ganglion cells of a short wavelength sensitive cone pathway in New World monkeys: morphology and physiology,” Visual Neurosci. 16, 333–343 (1999).
[CrossRef]

Sloan, K. R.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

Sperling, H. G.

R. E. Marc, H. G. Sperling, “Chromatic organization of primate cones,” Science 196, 454–456 (1977).
[CrossRef] [PubMed]

Szél, A.

K. Bumsted, C. Jasoni, A. Szél, A. Hendrickson, “Spatial and temporal expression of cone opsins during monkey retinal development,” J. Comp. Neurol. 378, 117–134 (1997).
[CrossRef] [PubMed]

A. Szél, P. Röhlich, A. R. Caffé, T. van Veen, “Distribution of cone photoreceptors in the mammalian retina,” Microsc. Res. Tech. 35, 445–462 (1996).
[CrossRef]

Thomas, D.

J. Nathans, D. Thomas, D. S. Hogness, “Molecular genetics of human color vision: the genes encoding blue, green, and red pigments,” Science 232, 193–202 (1986).
[CrossRef] [PubMed]

Troy, J. B.

T. Yeh, B. B. Lee, J. Kremers, J. A. Cowing, D. M. Hunt, P. R. Martin, J. B. Troy, “Visual responses in the lateral geniculate nucleus of dichromatic and trichromatic marmosets (Callithrix jacchus),” J. Neurosci. 15, 7892–7904 (1995).
[PubMed]

van Veen, T.

A. Szél, P. Röhlich, A. R. Caffé, T. van Veen, “Distribution of cone photoreceptors in the mammalian retina,” Microsc. Res. Tech. 35, 445–462 (1996).
[CrossRef]

Wang, Y.

Y. Wang, J. P. Macke, S. L. Merbs, D. J. Zack, B. Klaunberg, J. Bennett, J. Gearhart, J. Nathans, “A locus control region adjacent to the human red and green visual pigment genes,” Neuron 9, 429–440 (1992).
[CrossRef] [PubMed]

Wässle, H.

H. Wässle, H. J. Riemann, “The mosaic of nerve cells in the mammalian retina,” Proc. R. Soc. London Ser. B 200, 441–461 (1978).
[CrossRef]

Wikler, K. C.

K. C. Wikler, R. W. Williams, P. Rakic, “Photoreceptor mosaic: number and distribution of rods and cones in the rhesus monkey retina,” J. Comp. Neurol. 297, 499–508 (1990).
[CrossRef] [PubMed]

K. C. Wikler, P. Rakic, “Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates,” J. Neurosci. 10, 3390–3401 (1990).
[PubMed]

Wilder, H. D.

H. D. Wilder, U. Grunert, B. B. Lee, P. R. Martin, “Topography of ganglion cells and photoreceptors in the retina of a New World monkey. The marmoset Callithrix jacchus,” Visual Neurosci. 13, 335–352 (1996).
[CrossRef]

Williams, D. R.

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

O. S. Packer, D. R. Williams, D. G. Bensinger, “Photopigment transmittance imaging of the primate photoreceptor mosaic,” J. Neurosci. 16, 2251–2260 (1996).
[PubMed]

D. H. Brainard, D. R. Williams, “Spatial reconstruction of signals from short-wavelength cones,” Vision Res. 33, 105–116 (1993).
[CrossRef] [PubMed]

D. R. Williams, R. Collier, “Consequences of spatial sampling by a human photoreceptor mosaic,” Science 221, 385–387 (1983).
[CrossRef] [PubMed]

D. R. Williams, D. I. A. MacLeod, M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
[CrossRef] [PubMed]

D. R. Williams, D. I. A. MacLeod, M. Hayhoe, “Foveal tritanopia,” Vision Res. 21, 1341–1356 (1981).
[CrossRef] [PubMed]

Williams, R. W.

R. W. Williams, D. Goldowitz, “Structure of clonal and polyclonal cell arrays in chimeric mouse retina,” Proc. Natl. Acad. Sci. USA 89, 1184–1188 (1992).
[CrossRef] [PubMed]

K. C. Wikler, R. W. Williams, P. Rakic, “Photoreceptor mosaic: number and distribution of rods and cones in the rhesus monkey retina,” J. Comp. Neurol. 297, 499–508 (1990).
[CrossRef] [PubMed]

Yamada, E. S.

L. C. Silveira, B. B. Lee, E. S. Yamada, J. Kremers, D. M. Hunt, P. R. Martin, F. Gomes, “Ganglion cells of a short wavelength sensitive cone pathway in New World monkeys: morphology and physiology,” Visual Neurosci. 16, 333–343 (1999).
[CrossRef]

Yeh, T.

T. Yeh, B. B. Lee, J. Kremers, J. A. Cowing, D. M. Hunt, P. R. Martin, J. B. Troy, “Visual responses in the lateral geniculate nucleus of dichromatic and trichromatic marmosets (Callithrix jacchus),” J. Neurosci. 15, 7892–7904 (1995).
[PubMed]

Zack, D. J.

Y. Wang, J. P. Macke, S. L. Merbs, D. J. Zack, B. Klaunberg, J. Bennett, J. Gearhart, J. Nathans, “A locus control region adjacent to the human red and green visual pigment genes,” Neuron 9, 429–440 (1992).
[CrossRef] [PubMed]

Am. J. Primatol. (1)

J. F. Deegan, G. H. Jacobs, “Spectral sensitivity and photopigments of a nocturnal prosimian, the bushbaby (Otolemur crassicaudatis),” Am. J. Primatol. 40, 55–66 (1996).
[CrossRef]

Biol. Rev. (1)

G. H. Jacobs, “The distribution and nature of colour vision among the mammals,” Biol. Rev. 68, 413–471 (1993).
[CrossRef] [PubMed]

Eur. J. Neurosci. (2)

L. Galli-Resta, E. Novelli, Z. Kryger, G. H. Jacobs, B. E. Reese, “Modelling the mosaic organization of rod and cone photoreceptors with a minimal-spacing rule,” Eur. J. Neurosci. 11, 1461–1469 (1999).
[CrossRef] [PubMed]

L. Peichl, K. Moutairou, “Absence of short-wavelength sensitive cones in the retinae of seals (Carnivora) and African giant rats (Rodentia),” Eur. J. Neurosci. 10, 2586–2594 (1998).
[CrossRef] [PubMed]

J. Am. Stat. Assoc. (1)

M. B. Shapiro, S. J. Schein, F. M. De Monasterio, “Regularity and structure of the spatial pattern of blue cones of macaque retina,” J. Am. Stat. Assoc. 80, 803–814 (1985).
[CrossRef]

J. Comp. Neurol. (11)

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

P. K. Ahnelt, H. Kolb, R. Pflug, “Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina,” J. Comp. Neurol. 255, 18–34 (1987).
[CrossRef] [PubMed]

K. Bumsted, A. Hendrickson, “Distribution and development of short-wavelength cones differ between Macaca monkey and human fovea,” J. Comp. Neurol. 403, 502–516 (1999).
[CrossRef] [PubMed]

P. R. Martin, U. Grünert, “Analysis of the short wavelength sensitive (‘blue’) cone mosaic in the primate retina: a comparison of New World and Old World monkeys,” J. Comp. Neurol. 406, 1–14 (1999).
[CrossRef] [PubMed]

A. K. Goodchild, K. K. Ghosh, P. R. Martin, “Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset Callithrix jacchus,” J. Comp. Neurol. 366, 55–75 (1996).
[CrossRef] [PubMed]

T. L. Chan, U. Grünert, “Horizontal cell connections with short wavelength-sensitive cones in the retina: a comparison between New World and Old World primates,” J. Comp. Neurol. 393, 196–209 (1998).
[CrossRef] [PubMed]

B. Müller, L. Peichl, “Topography of cones and rods in the tree shrew retina,” J. Comp. Neurol. 282, 581–294 (1989).
[CrossRef] [PubMed]

K. Bumsted, C. Jasoni, A. Szél, A. Hendrickson, “Spatial and temporal expression of cone opsins during monkey retinal development,” J. Comp. Neurol. 378, 117–134 (1997).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, R. E. Kalina, A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990).
[CrossRef] [PubMed]

K. C. Wikler, R. W. Williams, P. Rakic, “Photoreceptor mosaic: number and distribution of rods and cones in the rhesus monkey retina,” J. Comp. Neurol. 297, 499–508 (1990).
[CrossRef] [PubMed]

O. Packer, A. E. Hendrickson, C. A. Curcio, “Photoreceptor topography of the adult pigtail macaque (Macaca nemestrina),” J. Comp. Neurol. 288, 165–183 (1989).
[CrossRef] [PubMed]

J. Neurosci. (4)

N. Kouyama, D. W. Marshak, “Bipolar cells specific for blue cones in the macaque retina,” J. Neurosci. 12, 1233–1252 (1992).
[PubMed]

K. C. Wikler, P. Rakic, “Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates,” J. Neurosci. 10, 3390–3401 (1990).
[PubMed]

T. Yeh, B. B. Lee, J. Kremers, J. A. Cowing, D. M. Hunt, P. R. Martin, J. B. Troy, “Visual responses in the lateral geniculate nucleus of dichromatic and trichromatic marmosets (Callithrix jacchus),” J. Neurosci. 15, 7892–7904 (1995).
[PubMed]

O. S. Packer, D. R. Williams, D. G. Bensinger, “Photopigment transmittance imaging of the primate photoreceptor mosaic,” J. Neurosci. 16, 2251–2260 (1996).
[PubMed]

Methods Cell Biol. (1)

R. M. Harland, “In situ hybridization: an improved whole-mount method for Xenopus embryos,” Methods Cell Biol. 36, 685–695 (1991).
[CrossRef]

Microsc. Res. Tech. (1)

A. Szél, P. Röhlich, A. R. Caffé, T. van Veen, “Distribution of cone photoreceptors in the mammalian retina,” Microsc. Res. Tech. 35, 445–462 (1996).
[CrossRef]

Nature (1)

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

Neuron (1)

Y. Wang, J. P. Macke, S. L. Merbs, D. J. Zack, B. Klaunberg, J. Bennett, J. Gearhart, J. Nathans, “A locus control region adjacent to the human red and green visual pigment genes,” Neuron 9, 429–440 (1992).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

R. W. Williams, D. Goldowitz, “Structure of clonal and polyclonal cell arrays in chimeric mouse retina,” Proc. Natl. Acad. Sci. USA 89, 1184–1188 (1992).
[CrossRef] [PubMed]

Proc. R. Microscop. Soc. (1)

P. Halasz, P. R. Martin, “A microcomputer based system for semi-automatic analysis of histological sections,” Proc. R. Microscop. Soc. 19, 312 (1984).

Proc. R. Soc. London Ser. B (1)

H. Wässle, H. J. Riemann, “The mosaic of nerve cells in the mammalian retina,” Proc. R. Soc. London Ser. B 200, 441–461 (1978).
[CrossRef]

Science (4)

J. Nathans, D. Thomas, D. S. Hogness, “Molecular genetics of human color vision: the genes encoding blue, green, and red pigments,” Science 232, 193–202 (1986).
[CrossRef] [PubMed]

D. R. Williams, R. Collier, “Consequences of spatial sampling by a human photoreceptor mosaic,” Science 221, 385–387 (1983).
[CrossRef] [PubMed]

F. M. De Monasterio, S. J. Schein, E. P. McCrane, “Staining of blue-sensitive cones of the macaque retina by a fluorescent dye,” Science 213, 1278–1281 (1981).
[CrossRef]

R. E. Marc, H. G. Sperling, “Chromatic organization of primate cones,” Science 196, 454–456 (1977).
[CrossRef] [PubMed]

Soc. Neurosci. Abstr. (1)

P. R. Martin, T. L. Chan, U. Grünert, “Spatial irregularity of the short wavelength sensitive (‘blue’) cone mosaic in the primate retina,” Soc. Neurosci. Abstr. 25, 137 (1999).

Vision Res. (4)

D. H. Brainard, D. R. Williams, “Spatial reconstruction of signals from short-wavelength cones,” Vision Res. 33, 105–116 (1993).
[CrossRef] [PubMed]

G. H. Jacobs, J. F. Deegan, J. Neitz, M. A. Crognale, M. Neitz, “Photopigments and color vision in the nocturnal monkey, Aotus,” Vision Res. 33, 1773–1783 (1993).
[CrossRef] [PubMed]

D. R. Williams, D. I. A. MacLeod, M. Hayhoe, “Foveal tritanopia,” Vision Res. 21, 1341–1356 (1981).
[CrossRef] [PubMed]

D. R. Williams, D. I. A. MacLeod, M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357–1375 (1981).
[CrossRef] [PubMed]

Visual Neurosci. (4)

L. C. Silveira, B. B. Lee, E. S. Yamada, J. Kremers, D. M. Hunt, P. R. Martin, F. Gomes, “Ganglion cells of a short wavelength sensitive cone pathway in New World monkeys: morphology and physiology,” Visual Neurosci. 16, 333–343 (1999).
[CrossRef]

R. W. Rodieck, “The density recovery profile: a method for the analysis of points in the plane applicable to retinal studies,” Visual Neurosci. 6, 95–111 (1991).
[CrossRef]

J. E. Cook, “Spatial properties of retinal mosaics: an empirical evaluation of some existing measures,” Visual Neurosci. 13, 15–30 (1996).
[CrossRef]

H. D. Wilder, U. Grunert, B. B. Lee, P. R. Martin, “Topography of ganglion cells and photoreceptors in the retina of a New World monkey. The marmoset Callithrix jacchus,” Visual Neurosci. 13, 335–352 (1996).
[CrossRef]

Other (1)

E. Harlow, D. Lane, Antibodies: a Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Whole-mount preparation of the marmoset perifovea (eccentricity between 1 and 2 mm) processed by in situ hybridization with cDNA encoding human SWS cone opsin. Labeled SWS cones appear darkly stained. The focus is on the outer nuclear layer, at the level of the cone cell bodies. The outlines of unlabeled, presumably ML, cones are also visible. Scale bar, 20 µm.

Fig. 2
Fig. 2

Whole-mount preparations showing cones labeled with the JH 455 (SWS) antiserum in eight primate species. Preparations from Old World primates are shown in the left-hand panels; those from New World primates, in the right-hand panels. The focus is on the inner segments. In some preparations only the outer segments of the SWS cones are labeled. For some preparations the exact eccentricity (given in parentheses) is not known; these are denoted by abbreviations [far peripheral (fp), above 10 mm; midperipheral (mp), 5–10 mm]. (A) Orangutan (17 mm), (B) baboon (fp), (C) chimpanzee (mp), (D) macaque (10 mm), (E) capuchin (5 mm), (F) squirrel monkey (8 mm), (G) tamarin (mp), (H) marmoset (4 mm). Scale bar in (A), 50 µm, applies to all the panels.

Fig. 3
Fig. 3

Quantification of SWS cone spatial patterns by nearest-neighbor analysis and by DRP. The measurements are shown schematically in panels (A)–(C); the background to these panels is a segment of Fig. 1. (A) Nearest neighbor. For each labeled cell, the center–center distance to its nearest neighbor (arrow) is measured. (B) For the DRP, the spatial density of other labeled cells (dots) is calculated in annuli (circles) at increasing distances from each cell. (C) The cell body diameter is calculated as the area-equivalent circle for each cell. (D), (F), Nearest-neighbor (dark) and DRP (light) histograms for (D) the marmoset and (F) the macaque. Random distribution in the marmoset is indicated by the Poisson-like distribution of nearest-neighbor distances and by the instantaneous increase in local density at a distance equivalent to the diameter of a single cell. Regular distribution in the macaque is indicated by the symmetric Gaussian-like distribution of nearest neighbors and by the smooth increase in local cell density over a distance much larger (5–10×) than the diameter of a single cell. The horizontal line and the y-axis label show the average density in the sample field. (E) Cell body diameters measured in the same sample as for the DRP in (D). ER, effective radius; MR, maximum radius. These terms are defined in the text above.

Fig. 4
Fig. 4

Comparison of SWS cone distribution in three primate retinas. The left-hand panels show the center positions for a field of labeled SWS cones for each species. The side length of each square sample field is given at the far left. The right-hand panels show the nearest-neighbor (dark) and the DRP (light) histogram: (A), (B) baboon; eccentricity (e), 10.6 mm; (C), (D) capuchin monkey; e, 5.2 mm; (E), (F) squirrel monkey; e, 6.6 mm. Note the low PF and non-Gaussian nearest-neighbor distribution in the squirrel monkey as compared with the other two species.

Fig. 5
Fig. 5

Comparison of PF. Each bar shows the mean and the standard deviation for samples from one retina. The number of sample fields and the species are shown at the base of each bar. The species are arranged in ascending order of regularity of SWS cone array (a PF value of 0 is a random array; a PF value of 1 is a triangular array). Values from the New World monkeys are shown as light bars; values from the Old World primates and the tree shrew Tupaia are shown as dark bars.

Fig. 6
Fig. 6

Comparison of PF and SWS cone density in the macaque and in the marmoset. (A), (B) Spatial density of SWS cones at sample points between 0.9 and 14.8 mm in (A) the macaque and in (B) the marmoset. (C) Comparison of PF in the macaque (open circles) and in the marmoset (filled circles). There is no dependence of PF on eccentricity and no overlap in PF between the species. (D) Comparison of PF and cell density. There is no overlap in the data between the species and no dependence on cell density for the range 300–1500 cells/mm2.

Fig. 7
Fig. 7

Spatial density of SWS cones in the (A), (B) squirrel monkey and (C), (D) in the capuchin monkey. (B), (D) Outline drawings showing the retinal whole mount, with the position of each sample field marked as a small square. The open circle marks the foveola. The shaded circle marks the optic disk. The fainter (dotted) lines of the outline drawings show the approximate size of pieces of these retinas that were used for other purposes. The largest square in each outline marks the sample field used for DRP analysis. The scale [in (D)] is the same for both retinas. (A), (C) Spatial density profiles showing a peak at the fovea (capuchin monkey, 6981 cells/mm2; squirrel monkey, 8990 cells/mm2), with a steep decrease over the first 2–3 mm and a shallower gradient thereafter.

Fig. 8
Fig. 8

Foveolar pattern of SWS cones in the squirrel monkey. Position of each (A) labeled and (B) unlabeled cone at the foveola is marked in the same 200 µm×50 µm field. The faint (dotted) lines intersect at the center of the foveola. (C) Graph showing the spatial density of labeled (filled circles) and unlabeled (open circles) at 10-µm intervals along this field. There is no decrease in SWS cone density at the foveola.

Tables (1)

Tables Icon

Table 1 Regularity of the SWS Cone Arraya

Metrics