Abstract

Estimates of the relative numbers of long-wavelength-sensitive (L) and middle-wavelength-sensitive (M) cones vary considerably among normal trichromats and depend significantly on the nature of the experimental method employed. Here we estimate L/M cone ratios in a population of normal observers, using three psychophysical tasks—detection thresholds for cone-isolating stimuli at different temporal frequencies, heterochromatic flicker photometry, and cone contrast ratios at minimal flicker perception—as well as flicker electroretinography and retinal densitometry. The psychophysical tasks involving high temporal frequencies, specifically designed to tap into the luminance channel, provide average L/M cone ratios that significantly differ from unity with large interindividual variation. In contrast, the psychophysical tasks involving low temporal frequencies, chosen to tap into the red–green chromatic channel, provide L/M cone ratios that are always close to unity. L/M cone ratios determined from electroretinographic recordings or from retinal densitometry correlate with those determined from the high-temporal-frequency tasks. These findings suggest that the sensitivity of the luminance channel is directly related to the relative densities of the L and the M cones and that the red–green chromatic channel introduces a gain adjustment to compensate for differences in L and M cone signal strength.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. L. de Vries, “Luminosity curve of trichromats,” Nature 157, 736–737 (1946).
    [CrossRef] [PubMed]
  2. H. L. de Vries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica (The Hague) 24, 199–212 (1948).
  3. J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
    [CrossRef] [PubMed]
  4. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [CrossRef] [PubMed]
  5. G. S. Brindley, “The summation areas of human colour-receptive mechanisms at increment threshold,” J. Physiol. (London) 124, 400–408 (1954).
  6. D. H. Kelly, “Spatio-temporal frequency characteristics of color-vision mechanisms,” J. Opt. Soc. Am. 64, 983–990 (1974).
    [CrossRef]
  7. P. L. Walraven, “A closer look at the tritanopic convergence point,” Vision Res. 14, 1339–1343 (1974).
    [CrossRef] [PubMed]
  8. C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
    [CrossRef] [PubMed]
  9. R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
    [CrossRef] [PubMed]
  10. J. Pokorny, V. C. Smith, M. F. Wesner, “Variability in cone populations and implications,” in From Pigments to Perception: Advances in Understanding Visual Processes, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 1–9.
  11. M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
    [CrossRef] [PubMed]
  12. J. Krauskopf, “On the relative effectiveness of L and M cones,” Invest. Ophthalmol. Visual Sci. Suppl. 38, 14 (1997).
  13. P. D. Gowdy, C. M. Cicerone, “The spatial arrangement of the L and M cones in the central fovea of the living human eye,” Vision Res. 38, 2575–2589 (1998).
    [CrossRef]
  14. W. A. Rushton, H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–85 (1964).
    [CrossRef] [PubMed]
  15. R. M. Shapley, S. E. Brodie, “Responses of human ERG to rapid color exchange: implications for M/L cone ratio,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 911 (1993).
  16. G. H. Jacobs, J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 107–112.
  17. G. H. Jacobs, J. Neitz, K. Krogh, “Electroretinogram flicker photometry and its applications,” J. Opt. Soc. Am. A 13, 641–648 (1996).
    [CrossRef]
  18. T. Meigen, M. Bach, J. Gerling, S. Schmid, “Electrophysiological correlates of colour vision defects,” in John Dalton’s Colour Vision Legacy, C. M. Dickinson, I. J. Murray, D. Carden, eds. (Taylor & Francis, Basingstoke, UK, 1995), pp. 325–333.
  19. T. Usui, J. Kremers, L. T. Sharpe, E. Zrenner, “Flicker cone electroretinogram in dichromats and trichromats,” Vision Res. 38, 3391–3396 (1998).
    [CrossRef]
  20. J. Kremers, T. Usui, H. P. N. Scholl, L. T. Sharpe, “Cone signal contributions to ERGs in dichromats and trichromats,” Invest. Ophthalmol. Visual Sci. 40, 920–930 (1999).
  21. J. K. Bowmaker, H. J. A. Dartnall, “Visual pigments of rods and cones in a human retina,” J. Physiol. (London) 298, 501–511 (1980).
  22. H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983).
    [CrossRef]
  23. S. Yamaguchi, A. G. Motulsky, S. S. Deeb, “Visual pigment gene structure and expression in human retinae,” Hum. Mol. Genet. 6, 981–990 (1997).
    [CrossRef] [PubMed]
  24. S. A. Hagstrom, J. Neitz, M. Neitz, “Ratio of M/L pigment gene expression decreases with retinal eccentricity,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 59–65.
  25. S. A. Hagstrom, J. Neitz, M. Neitz, “Variation in cone populations for red–green color vision examined by analysis of mRNA,” NeuroReport 9, 1963–1967 (1998).
    [CrossRef] [PubMed]
  26. J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  27. A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
    [CrossRef] [PubMed]
  28. D. R. Williams, A. Roorda, “The trichromatic cone mosaic in the human eye,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 1999), pp. 113–122.
  29. L. C. Diller, J. Verweij, D. R. Williams, D. M. Dacey, “L and M cone inputs to peripheral parasol and midget ganglion cells in primate retina,” Invest. Ophthalmol. Visual Sci. Suppl. 40, 817 (1999).
  30. J. Verweij, L. C. Diller, D. R. Williams, D. M. Dacey, “The relative strength of L and M cones inputs to H1 horizontal cells in primate retina,” Invest. Ophthalmol. Visual Sci. Suppl. 40, 240 (1999).
  31. Information is available from B. Wissinger, H.-J. Schmidt, H. Knau, L. T. Sharpe at the Department of Experimental Ophthalmology, University of Tübingen, 72076 Tübingen, Germany.
  32. T. Usui, J. Kremers, L. T. Sharpe, E. Zrenner, “Response phase of the flicker electroretinogram (ERG) is influenced by cone excitation strength,” Vision Res. 38, 3247–3251 (1998).
    [CrossRef]
  33. A. Stockman, D. I. A. MacLeod, N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
    [CrossRef]
  34. M. M. Taylor, C. D. Creelman, “PEST: efficient estimates on probability functions,” J. Acoust. Soc. Am. 41, 782–787 (1967).
    [CrossRef]
  35. L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, J. Nathans, “Red, green and red–green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically-measured spectral sensitivities,” J. Neurosci. 18, 10053–10069 (1998).
    [PubMed]
  36. L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, J. Nathans, “L-, M- and L-M-hybrid cone photopigments in man: deriving λmax’s from flicker photometric spectral sensitivities,” Vision Res. 39, 3513–3525 (1999).
    [CrossRef]
  37. Information is available from H. Jägle, H. Knau, L. Serey, L. T. Sharpe at the Department of Experimental Ophthalmology, University of Tübingen, 72076 Tübingen, Germany.
  38. A. Stockman, L. T. Sharpe, “Cone spectral sensitivities and color matching,” in Color Vision: From Genes to Perception, K. Gegenfurtner, L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 1999), pp. 53–88.
  39. A. Stockman, L. T. Sharpe, “New estimates of the spectral sensitivities of the middle- and long-wavelength sensitive cones,” Vision Res. (to be published).
  40. J. van de Kraats, T. T. J. M. Berendschot, D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36, 2229–2247 (1996).
    [CrossRef] [PubMed]
  41. D. van Norren, J. van der Kraats, “Retinal densitometer with the size of a fundus camera,” Vision Res. 29, 369–374 (1989).
    [CrossRef] [PubMed]
  42. G. J. van Blokland, D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485–494 (1986).
    [CrossRef] [PubMed]
  43. P. DeMarco, J. Pokorny, V. C. Smith, “Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats,” J. Opt. Soc. Am. A 9, 1465–1476 (1992).
    [CrossRef] [PubMed]
  44. D. H. Kelly, D. van Norren, “Two-band model of heterochromatic flicker,” J. Opt. Soc. Am. 67, 1081–1091 (1977).
    [CrossRef] [PubMed]
  45. J. Kremers, B. B. Lee, P. K. Kaiser, “Sensitivity of macaque retinal ganglion cells and human observers to combined luminance and chromatic modulation,” J. Opt. Soc. Am. A 9, 1477–1485 (1992).
    [CrossRef] [PubMed]
  46. G. Wagner, R. M. Boynton, “Comparison of four methods of heterochromatic photometry,” J. Opt. Soc. Am. 62, 1508–1515 (1972).
    [CrossRef] [PubMed]
  47. E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vision Res. 38, 601–612 (1998).
    [CrossRef] [PubMed]
  48. R. A. Crone, “Spectral sensitivity in color-defective subjects and heterozygous carriers,” Am. J. Ophthalmol. 48, 231–238 (1959).
    [PubMed]
  49. W. H. Swanson, “Chromatic adaptation alters spectral sensitivity at high temporal frequencies,” J. Opt. Soc. Am. A 10, 1294–1303 (1993).
    [CrossRef] [PubMed]
  50. C. A. Saito, H. Scholl, J. Kremers, “The influence of cone selective adaptation on L- and M-cone weightings: electroretinography and psychophysics,” Invest. Ophthalmol. Visual Sci. Suppl. 40, 13 (1999).
  51. G. H. Jacobs, I. J. S. Deegan, J. L. Moran, “ERG measurements of the spectral sensitivity of common chimpanzee (Pan troglodytes),” Vision Res. 36, 2587–2594 (1996).
    [CrossRef] [PubMed]
  52. G. H. Jacobs, J. Neitz, M. Neitz, “Genetic basis of polymorphism in the color vision of platyrrhine monkeys,” Vision Res. 33, 269–274 (1993).
    [CrossRef] [PubMed]
  53. G. H. Jacobs, J. Neitz, M. Crognale, “Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fuscicollis),” Vision Res. 27, 2089–2100 (1987).
    [CrossRef] [PubMed]
  54. G. H. Jacobs, M. Neitz, J. F. Deegan, J. Neitz, “Trichromatic colour vision in New World monkeys,” Nature (London) 382, 156–158 (1996).
    [CrossRef]
  55. G. H. Jacobs, J. F. Deegan, “Spectral sensitivity of macaque monkeys measured with ERG flicker photometry,” Visual Neurosci. 14, 921–928 (1997).
    [CrossRef]
  56. R. A. Bush, P. A. Sieving, “Inner retinal contributions to the primate photopic fast flicker electroretinogram,” J. Opt. Soc. Am. A 13, 557–565 (1996).
    [CrossRef]

1999 (6)

J. Kremers, T. Usui, H. P. N. Scholl, L. T. Sharpe, “Cone signal contributions to ERGs in dichromats and trichromats,” Invest. Ophthalmol. Visual Sci. 40, 920–930 (1999).

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

L. C. Diller, J. Verweij, D. R. Williams, D. M. Dacey, “L and M cone inputs to peripheral parasol and midget ganglion cells in primate retina,” Invest. Ophthalmol. Visual Sci. Suppl. 40, 817 (1999).

J. Verweij, L. C. Diller, D. R. Williams, D. M. Dacey, “The relative strength of L and M cones inputs to H1 horizontal cells in primate retina,” Invest. Ophthalmol. Visual Sci. Suppl. 40, 240 (1999).

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, J. Nathans, “L-, M- and L-M-hybrid cone photopigments in man: deriving λmax’s from flicker photometric spectral sensitivities,” Vision Res. 39, 3513–3525 (1999).
[CrossRef]

C. A. Saito, H. Scholl, J. Kremers, “The influence of cone selective adaptation on L- and M-cone weightings: electroretinography and psychophysics,” Invest. Ophthalmol. Visual Sci. Suppl. 40, 13 (1999).

1998 (6)

E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vision Res. 38, 601–612 (1998).
[CrossRef] [PubMed]

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, J. Nathans, “Red, green and red–green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically-measured spectral sensitivities,” J. Neurosci. 18, 10053–10069 (1998).
[PubMed]

S. A. Hagstrom, J. Neitz, M. Neitz, “Variation in cone populations for red–green color vision examined by analysis of mRNA,” NeuroReport 9, 1963–1967 (1998).
[CrossRef] [PubMed]

T. Usui, J. Kremers, L. T. Sharpe, E. Zrenner, “Response phase of the flicker electroretinogram (ERG) is influenced by cone excitation strength,” Vision Res. 38, 3247–3251 (1998).
[CrossRef]

P. D. Gowdy, C. M. Cicerone, “The spatial arrangement of the L and M cones in the central fovea of the living human eye,” Vision Res. 38, 2575–2589 (1998).
[CrossRef]

T. Usui, J. Kremers, L. T. Sharpe, E. Zrenner, “Flicker cone electroretinogram in dichromats and trichromats,” Vision Res. 38, 3391–3396 (1998).
[CrossRef]

1997 (4)

J. Krauskopf, “On the relative effectiveness of L and M cones,” Invest. Ophthalmol. Visual Sci. Suppl. 38, 14 (1997).

S. Yamaguchi, A. G. Motulsky, S. S. Deeb, “Visual pigment gene structure and expression in human retinae,” Hum. Mol. Genet. 6, 981–990 (1997).
[CrossRef] [PubMed]

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

G. H. Jacobs, J. F. Deegan, “Spectral sensitivity of macaque monkeys measured with ERG flicker photometry,” Visual Neurosci. 14, 921–928 (1997).
[CrossRef]

1996 (5)

R. A. Bush, P. A. Sieving, “Inner retinal contributions to the primate photopic fast flicker electroretinogram,” J. Opt. Soc. Am. A 13, 557–565 (1996).
[CrossRef]

G. H. Jacobs, M. Neitz, J. F. Deegan, J. Neitz, “Trichromatic colour vision in New World monkeys,” Nature (London) 382, 156–158 (1996).
[CrossRef]

G. H. Jacobs, I. J. S. Deegan, J. L. Moran, “ERG measurements of the spectral sensitivity of common chimpanzee (Pan troglodytes),” Vision Res. 36, 2587–2594 (1996).
[CrossRef] [PubMed]

J. van de Kraats, T. T. J. M. Berendschot, D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36, 2229–2247 (1996).
[CrossRef] [PubMed]

G. H. Jacobs, J. Neitz, K. Krogh, “Electroretinogram flicker photometry and its applications,” J. Opt. Soc. Am. A 13, 641–648 (1996).
[CrossRef]

1993 (4)

R. M. Shapley, S. E. Brodie, “Responses of human ERG to rapid color exchange: implications for M/L cone ratio,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 911 (1993).

A. Stockman, D. I. A. MacLeod, N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
[CrossRef]

G. H. Jacobs, J. Neitz, M. Neitz, “Genetic basis of polymorphism in the color vision of platyrrhine monkeys,” Vision Res. 33, 269–274 (1993).
[CrossRef] [PubMed]

W. H. Swanson, “Chromatic adaptation alters spectral sensitivity at high temporal frequencies,” J. Opt. Soc. Am. A 10, 1294–1303 (1993).
[CrossRef] [PubMed]

1992 (2)

1991 (1)

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

1989 (3)

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

D. van Norren, J. van der Kraats, “Retinal densitometer with the size of a fundus camera,” Vision Res. 29, 369–374 (1989).
[CrossRef] [PubMed]

1987 (1)

G. H. Jacobs, J. Neitz, M. Crognale, “Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fuscicollis),” Vision Res. 27, 2089–2100 (1987).
[CrossRef] [PubMed]

1986 (1)

G. J. van Blokland, D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485–494 (1986).
[CrossRef] [PubMed]

1983 (1)

H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983).
[CrossRef]

1980 (1)

J. K. Bowmaker, H. J. A. Dartnall, “Visual pigments of rods and cones in a human retina,” J. Physiol. (London) 298, 501–511 (1980).

1977 (1)

1975 (1)

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

1974 (2)

D. H. Kelly, “Spatio-temporal frequency characteristics of color-vision mechanisms,” J. Opt. Soc. Am. 64, 983–990 (1974).
[CrossRef]

P. L. Walraven, “A closer look at the tritanopic convergence point,” Vision Res. 14, 1339–1343 (1974).
[CrossRef] [PubMed]

1972 (1)

1971 (1)

J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[CrossRef] [PubMed]

1967 (1)

M. M. Taylor, C. D. Creelman, “PEST: efficient estimates on probability functions,” J. Acoust. Soc. Am. 41, 782–787 (1967).
[CrossRef]

1964 (1)

W. A. Rushton, H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–85 (1964).
[CrossRef] [PubMed]

1959 (1)

R. A. Crone, “Spectral sensitivity in color-defective subjects and heterozygous carriers,” Am. J. Ophthalmol. 48, 231–238 (1959).
[PubMed]

1954 (1)

G. S. Brindley, “The summation areas of human colour-receptive mechanisms at increment threshold,” J. Physiol. (London) 124, 400–408 (1954).

1948 (1)

H. L. de Vries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica (The Hague) 24, 199–212 (1948).

1946 (1)

H. L. de Vries, “Luminosity curve of trichromats,” Nature 157, 736–737 (1946).
[CrossRef] [PubMed]

Bach, M.

T. Meigen, M. Bach, J. Gerling, S. Schmid, “Electrophysiological correlates of colour vision defects,” in John Dalton’s Colour Vision Legacy, C. M. Dickinson, I. J. Murray, D. Carden, eds. (Taylor & Francis, Basingstoke, UK, 1995), pp. 325–333.

Baker, H. D.

W. A. Rushton, H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–85 (1964).
[CrossRef] [PubMed]

Baron, E.

E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vision Res. 38, 601–612 (1998).
[CrossRef] [PubMed]

Baron, R.

E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vision Res. 38, 601–612 (1998).
[CrossRef] [PubMed]

Berendschot, T. T. J. M.

J. van de Kraats, T. T. J. M. Berendschot, D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36, 2229–2247 (1996).
[CrossRef] [PubMed]

Bowmaker, J. K.

H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983).
[CrossRef]

J. K. Bowmaker, H. J. A. Dartnall, “Visual pigments of rods and cones in a human retina,” J. Physiol. (London) 298, 501–511 (1980).

Boynton, R. M.

Brindley, G. S.

G. S. Brindley, “The summation areas of human colour-receptive mechanisms at increment threshold,” J. Physiol. (London) 124, 400–408 (1954).

Brodie, S. E.

R. M. Shapley, S. E. Brodie, “Responses of human ERG to rapid color exchange: implications for M/L cone ratio,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 911 (1993).

Bush, R. A.

Cicerone, C. M.

P. D. Gowdy, C. M. Cicerone, “The spatial arrangement of the L and M cones in the central fovea of the living human eye,” Vision Res. 38, 2575–2589 (1998).
[CrossRef]

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

Creelman, C. D.

M. M. Taylor, C. D. Creelman, “PEST: efficient estimates on probability functions,” J. Acoust. Soc. Am. 41, 782–787 (1967).
[CrossRef]

Crognale, M.

G. H. Jacobs, J. Neitz, M. Crognale, “Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fuscicollis),” Vision Res. 27, 2089–2100 (1987).
[CrossRef] [PubMed]

Crone, R. A.

R. A. Crone, “Spectral sensitivity in color-defective subjects and heterozygous carriers,” Am. J. Ophthalmol. 48, 231–238 (1959).
[PubMed]

Dacey, D. M.

J. Verweij, L. C. Diller, D. R. Williams, D. M. Dacey, “The relative strength of L and M cones inputs to H1 horizontal cells in primate retina,” Invest. Ophthalmol. Visual Sci. Suppl. 40, 240 (1999).

L. C. Diller, J. Verweij, D. R. Williams, D. M. Dacey, “L and M cone inputs to peripheral parasol and midget ganglion cells in primate retina,” Invest. Ophthalmol. Visual Sci. Suppl. 40, 817 (1999).

Dartnall, H. J. A.

H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983).
[CrossRef]

J. K. Bowmaker, H. J. A. Dartnall, “Visual pigments of rods and cones in a human retina,” J. Physiol. (London) 298, 501–511 (1980).

de Vries, H. L.

H. L. de Vries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica (The Hague) 24, 199–212 (1948).

H. L. de Vries, “Luminosity curve of trichromats,” Nature 157, 736–737 (1946).
[CrossRef] [PubMed]

Deeb, S. S.

S. Yamaguchi, A. G. Motulsky, S. S. Deeb, “Visual pigment gene structure and expression in human retinae,” Hum. Mol. Genet. 6, 981–990 (1997).
[CrossRef] [PubMed]

Deegan, I. J. S.

G. H. Jacobs, I. J. S. Deegan, J. L. Moran, “ERG measurements of the spectral sensitivity of common chimpanzee (Pan troglodytes),” Vision Res. 36, 2587–2594 (1996).
[CrossRef] [PubMed]

Deegan, J. F.

G. H. Jacobs, J. F. Deegan, “Spectral sensitivity of macaque monkeys measured with ERG flicker photometry,” Visual Neurosci. 14, 921–928 (1997).
[CrossRef]

G. H. Jacobs, M. Neitz, J. F. Deegan, J. Neitz, “Trichromatic colour vision in New World monkeys,” Nature (London) 382, 156–158 (1996).
[CrossRef]

DeMarco, P.

Diller, L. C.

J. Verweij, L. C. Diller, D. R. Williams, D. M. Dacey, “The relative strength of L and M cones inputs to H1 horizontal cells in primate retina,” Invest. Ophthalmol. Visual Sci. Suppl. 40, 240 (1999).

L. C. Diller, J. Verweij, D. R. Williams, D. M. Dacey, “L and M cone inputs to peripheral parasol and midget ganglion cells in primate retina,” Invest. Ophthalmol. Visual Sci. Suppl. 40, 817 (1999).

Gerling, J.

T. Meigen, M. Bach, J. Gerling, S. Schmid, “Electrophysiological correlates of colour vision defects,” in John Dalton’s Colour Vision Legacy, C. M. Dickinson, I. J. Murray, D. Carden, eds. (Taylor & Francis, Basingstoke, UK, 1995), pp. 325–333.

Gowdy, P. D.

P. D. Gowdy, C. M. Cicerone, “The spatial arrangement of the L and M cones in the central fovea of the living human eye,” Vision Res. 38, 2575–2589 (1998).
[CrossRef]

Hagstrom, S. A.

S. A. Hagstrom, J. Neitz, M. Neitz, “Variation in cone populations for red–green color vision examined by analysis of mRNA,” NeuroReport 9, 1963–1967 (1998).
[CrossRef] [PubMed]

S. A. Hagstrom, J. Neitz, M. Neitz, “Ratio of M/L pigment gene expression decreases with retinal eccentricity,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 59–65.

Jacobs, G. H.

G. H. Jacobs, J. F. Deegan, “Spectral sensitivity of macaque monkeys measured with ERG flicker photometry,” Visual Neurosci. 14, 921–928 (1997).
[CrossRef]

G. H. Jacobs, M. Neitz, J. F. Deegan, J. Neitz, “Trichromatic colour vision in New World monkeys,” Nature (London) 382, 156–158 (1996).
[CrossRef]

G. H. Jacobs, I. J. S. Deegan, J. L. Moran, “ERG measurements of the spectral sensitivity of common chimpanzee (Pan troglodytes),” Vision Res. 36, 2587–2594 (1996).
[CrossRef] [PubMed]

G. H. Jacobs, J. Neitz, K. Krogh, “Electroretinogram flicker photometry and its applications,” J. Opt. Soc. Am. A 13, 641–648 (1996).
[CrossRef]

G. H. Jacobs, J. Neitz, M. Neitz, “Genetic basis of polymorphism in the color vision of platyrrhine monkeys,” Vision Res. 33, 269–274 (1993).
[CrossRef] [PubMed]

G. H. Jacobs, J. Neitz, M. Crognale, “Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fuscicollis),” Vision Res. 27, 2089–2100 (1987).
[CrossRef] [PubMed]

G. H. Jacobs, J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 107–112.

Jägle, H.

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, J. Nathans, “L-, M- and L-M-hybrid cone photopigments in man: deriving λmax’s from flicker photometric spectral sensitivities,” Vision Res. 39, 3513–3525 (1999).
[CrossRef]

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, J. Nathans, “Red, green and red–green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically-measured spectral sensitivities,” J. Neurosci. 18, 10053–10069 (1998).
[PubMed]

Johnson, N. E.

Kaiser, P. K.

Kelly, D. H.

Klausen, G.

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, J. Nathans, “Red, green and red–green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically-measured spectral sensitivities,” J. Neurosci. 18, 10053–10069 (1998).
[PubMed]

Knau, H.

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, J. Nathans, “L-, M- and L-M-hybrid cone photopigments in man: deriving λmax’s from flicker photometric spectral sensitivities,” Vision Res. 39, 3513–3525 (1999).
[CrossRef]

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, J. Nathans, “Red, green and red–green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically-measured spectral sensitivities,” J. Neurosci. 18, 10053–10069 (1998).
[PubMed]

Krauskopf, J.

J. Krauskopf, “On the relative effectiveness of L and M cones,” Invest. Ophthalmol. Visual Sci. Suppl. 38, 14 (1997).

Kremers, J.

J. Kremers, T. Usui, H. P. N. Scholl, L. T. Sharpe, “Cone signal contributions to ERGs in dichromats and trichromats,” Invest. Ophthalmol. Visual Sci. 40, 920–930 (1999).

C. A. Saito, H. Scholl, J. Kremers, “The influence of cone selective adaptation on L- and M-cone weightings: electroretinography and psychophysics,” Invest. Ophthalmol. Visual Sci. Suppl. 40, 13 (1999).

T. Usui, J. Kremers, L. T. Sharpe, E. Zrenner, “Response phase of the flicker electroretinogram (ERG) is influenced by cone excitation strength,” Vision Res. 38, 3247–3251 (1998).
[CrossRef]

T. Usui, J. Kremers, L. T. Sharpe, E. Zrenner, “Flicker cone electroretinogram in dichromats and trichromats,” Vision Res. 38, 3391–3396 (1998).
[CrossRef]

J. Kremers, B. B. Lee, P. K. Kaiser, “Sensitivity of macaque retinal ganglion cells and human observers to combined luminance and chromatic modulation,” J. Opt. Soc. Am. A 9, 1477–1485 (1992).
[CrossRef] [PubMed]

Krogh, K.

Lee, B. B.

Liang, J.

MacLeod, D. I. A.

Meigen, T.

T. Meigen, M. Bach, J. Gerling, S. Schmid, “Electrophysiological correlates of colour vision defects,” in John Dalton’s Colour Vision Legacy, C. M. Dickinson, I. J. Murray, D. Carden, eds. (Taylor & Francis, Basingstoke, UK, 1995), pp. 325–333.

Miller, D. T.

Miyahara, E.

E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vision Res. 38, 601–612 (1998).
[CrossRef] [PubMed]

Mollon, J. D.

H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983).
[CrossRef]

Moran, J. L.

G. H. Jacobs, I. J. S. Deegan, J. L. Moran, “ERG measurements of the spectral sensitivity of common chimpanzee (Pan troglodytes),” Vision Res. 36, 2587–2594 (1996).
[CrossRef] [PubMed]

Motulsky, A. G.

S. Yamaguchi, A. G. Motulsky, S. S. Deeb, “Visual pigment gene structure and expression in human retinae,” Hum. Mol. Genet. 6, 981–990 (1997).
[CrossRef] [PubMed]

Nathans, J.

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, J. Nathans, “L-, M- and L-M-hybrid cone photopigments in man: deriving λmax’s from flicker photometric spectral sensitivities,” Vision Res. 39, 3513–3525 (1999).
[CrossRef]

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, J. Nathans, “Red, green and red–green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically-measured spectral sensitivities,” J. Neurosci. 18, 10053–10069 (1998).
[PubMed]

Neitz, J.

S. A. Hagstrom, J. Neitz, M. Neitz, “Variation in cone populations for red–green color vision examined by analysis of mRNA,” NeuroReport 9, 1963–1967 (1998).
[CrossRef] [PubMed]

G. H. Jacobs, J. Neitz, K. Krogh, “Electroretinogram flicker photometry and its applications,” J. Opt. Soc. Am. A 13, 641–648 (1996).
[CrossRef]

G. H. Jacobs, M. Neitz, J. F. Deegan, J. Neitz, “Trichromatic colour vision in New World monkeys,” Nature (London) 382, 156–158 (1996).
[CrossRef]

G. H. Jacobs, J. Neitz, M. Neitz, “Genetic basis of polymorphism in the color vision of platyrrhine monkeys,” Vision Res. 33, 269–274 (1993).
[CrossRef] [PubMed]

G. H. Jacobs, J. Neitz, M. Crognale, “Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fuscicollis),” Vision Res. 27, 2089–2100 (1987).
[CrossRef] [PubMed]

G. H. Jacobs, J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 107–112.

S. A. Hagstrom, J. Neitz, M. Neitz, “Ratio of M/L pigment gene expression decreases with retinal eccentricity,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 59–65.

Neitz, M.

S. A. Hagstrom, J. Neitz, M. Neitz, “Variation in cone populations for red–green color vision examined by analysis of mRNA,” NeuroReport 9, 1963–1967 (1998).
[CrossRef] [PubMed]

G. H. Jacobs, M. Neitz, J. F. Deegan, J. Neitz, “Trichromatic colour vision in New World monkeys,” Nature (London) 382, 156–158 (1996).
[CrossRef]

G. H. Jacobs, J. Neitz, M. Neitz, “Genetic basis of polymorphism in the color vision of platyrrhine monkeys,” Vision Res. 33, 269–274 (1993).
[CrossRef] [PubMed]

S. A. Hagstrom, J. Neitz, M. Neitz, “Ratio of M/L pigment gene expression decreases with retinal eccentricity,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 59–65.

Nerger, J. L.

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

Pokorny, J.

E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vision Res. 38, 601–612 (1998).
[CrossRef] [PubMed]

P. DeMarco, J. Pokorny, V. C. Smith, “Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats,” J. Opt. Soc. Am. A 9, 1465–1476 (1992).
[CrossRef] [PubMed]

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, M. F. Wesner, “Variability in cone populations and implications,” in From Pigments to Perception: Advances in Understanding Visual Processes, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 1–9.

Reitner, A.

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, J. Nathans, “Red, green and red–green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically-measured spectral sensitivities,” J. Neurosci. 18, 10053–10069 (1998).
[PubMed]

Roorda, A.

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

D. R. Williams, A. Roorda, “The trichromatic cone mosaic in the human eye,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 1999), pp. 113–122.

Rushton, W. A.

W. A. Rushton, H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–85 (1964).
[CrossRef] [PubMed]

Saito, C. A.

C. A. Saito, H. Scholl, J. Kremers, “The influence of cone selective adaptation on L- and M-cone weightings: electroretinography and psychophysics,” Invest. Ophthalmol. Visual Sci. Suppl. 40, 13 (1999).

Schmid, S.

T. Meigen, M. Bach, J. Gerling, S. Schmid, “Electrophysiological correlates of colour vision defects,” in John Dalton’s Colour Vision Legacy, C. M. Dickinson, I. J. Murray, D. Carden, eds. (Taylor & Francis, Basingstoke, UK, 1995), pp. 325–333.

Scholl, H.

C. A. Saito, H. Scholl, J. Kremers, “The influence of cone selective adaptation on L- and M-cone weightings: electroretinography and psychophysics,” Invest. Ophthalmol. Visual Sci. Suppl. 40, 13 (1999).

Scholl, H. P. N.

J. Kremers, T. Usui, H. P. N. Scholl, L. T. Sharpe, “Cone signal contributions to ERGs in dichromats and trichromats,” Invest. Ophthalmol. Visual Sci. 40, 920–930 (1999).

Shapley, R. M.

R. M. Shapley, S. E. Brodie, “Responses of human ERG to rapid color exchange: implications for M/L cone ratio,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 911 (1993).

Sharpe, L. T.

J. Kremers, T. Usui, H. P. N. Scholl, L. T. Sharpe, “Cone signal contributions to ERGs in dichromats and trichromats,” Invest. Ophthalmol. Visual Sci. 40, 920–930 (1999).

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, J. Nathans, “L-, M- and L-M-hybrid cone photopigments in man: deriving λmax’s from flicker photometric spectral sensitivities,” Vision Res. 39, 3513–3525 (1999).
[CrossRef]

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, J. Nathans, “Red, green and red–green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically-measured spectral sensitivities,” J. Neurosci. 18, 10053–10069 (1998).
[PubMed]

T. Usui, J. Kremers, L. T. Sharpe, E. Zrenner, “Response phase of the flicker electroretinogram (ERG) is influenced by cone excitation strength,” Vision Res. 38, 3247–3251 (1998).
[CrossRef]

T. Usui, J. Kremers, L. T. Sharpe, E. Zrenner, “Flicker cone electroretinogram in dichromats and trichromats,” Vision Res. 38, 3391–3396 (1998).
[CrossRef]

A. Stockman, L. T. Sharpe, “Cone spectral sensitivities and color matching,” in Color Vision: From Genes to Perception, K. Gegenfurtner, L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 1999), pp. 53–88.

A. Stockman, L. T. Sharpe, “New estimates of the spectral sensitivities of the middle- and long-wavelength sensitive cones,” Vision Res. (to be published).

Shevell, S. K.

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

Sieving, P. A.

Smith, V. C.

E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vision Res. 38, 601–612 (1998).
[CrossRef] [PubMed]

P. DeMarco, J. Pokorny, V. C. Smith, “Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats,” J. Opt. Soc. Am. A 9, 1465–1476 (1992).
[CrossRef] [PubMed]

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, M. F. Wesner, “Variability in cone populations and implications,” in From Pigments to Perception: Advances in Understanding Visual Processes, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 1–9.

Stockman, A.

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, J. Nathans, “L-, M- and L-M-hybrid cone photopigments in man: deriving λmax’s from flicker photometric spectral sensitivities,” Vision Res. 39, 3513–3525 (1999).
[CrossRef]

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, J. Nathans, “Red, green and red–green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically-measured spectral sensitivities,” J. Neurosci. 18, 10053–10069 (1998).
[PubMed]

A. Stockman, D. I. A. MacLeod, N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993).
[CrossRef]

A. Stockman, L. T. Sharpe, “New estimates of the spectral sensitivities of the middle- and long-wavelength sensitive cones,” Vision Res. (to be published).

A. Stockman, L. T. Sharpe, “Cone spectral sensitivities and color matching,” in Color Vision: From Genes to Perception, K. Gegenfurtner, L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 1999), pp. 53–88.

Swanson, W. H.

Taylor, M. M.

M. M. Taylor, C. D. Creelman, “PEST: efficient estimates on probability functions,” J. Acoust. Soc. Am. 41, 782–787 (1967).
[CrossRef]

Usui, T.

J. Kremers, T. Usui, H. P. N. Scholl, L. T. Sharpe, “Cone signal contributions to ERGs in dichromats and trichromats,” Invest. Ophthalmol. Visual Sci. 40, 920–930 (1999).

T. Usui, J. Kremers, L. T. Sharpe, E. Zrenner, “Flicker cone electroretinogram in dichromats and trichromats,” Vision Res. 38, 3391–3396 (1998).
[CrossRef]

T. Usui, J. Kremers, L. T. Sharpe, E. Zrenner, “Response phase of the flicker electroretinogram (ERG) is influenced by cone excitation strength,” Vision Res. 38, 3247–3251 (1998).
[CrossRef]

van Blokland, G. J.

G. J. van Blokland, D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485–494 (1986).
[CrossRef] [PubMed]

van de Kraats, J.

J. van de Kraats, T. T. J. M. Berendschot, D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36, 2229–2247 (1996).
[CrossRef] [PubMed]

van der Kraats, J.

D. van Norren, J. van der Kraats, “Retinal densitometer with the size of a fundus camera,” Vision Res. 29, 369–374 (1989).
[CrossRef] [PubMed]

van Norren, D.

J. van de Kraats, T. T. J. M. Berendschot, D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36, 2229–2247 (1996).
[CrossRef] [PubMed]

D. van Norren, J. van der Kraats, “Retinal densitometer with the size of a fundus camera,” Vision Res. 29, 369–374 (1989).
[CrossRef] [PubMed]

G. J. van Blokland, D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485–494 (1986).
[CrossRef] [PubMed]

D. H. Kelly, D. van Norren, “Two-band model of heterochromatic flicker,” J. Opt. Soc. Am. 67, 1081–1091 (1977).
[CrossRef] [PubMed]

Verweij, J.

L. C. Diller, J. Verweij, D. R. Williams, D. M. Dacey, “L and M cone inputs to peripheral parasol and midget ganglion cells in primate retina,” Invest. Ophthalmol. Visual Sci. Suppl. 40, 817 (1999).

J. Verweij, L. C. Diller, D. R. Williams, D. M. Dacey, “The relative strength of L and M cones inputs to H1 horizontal cells in primate retina,” Invest. Ophthalmol. Visual Sci. Suppl. 40, 240 (1999).

Vimal, R. L. P.

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

Vos, J. J.

J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[CrossRef] [PubMed]

Wagner, G.

Walraven, P. L.

P. L. Walraven, “A closer look at the tritanopic convergence point,” Vision Res. 14, 1339–1343 (1974).
[CrossRef] [PubMed]

J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[CrossRef] [PubMed]

Wesner, M. F.

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

J. Pokorny, V. C. Smith, M. F. Wesner, “Variability in cone populations and implications,” in From Pigments to Perception: Advances in Understanding Visual Processes, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 1–9.

Williams, D. R.

J. Verweij, L. C. Diller, D. R. Williams, D. M. Dacey, “The relative strength of L and M cones inputs to H1 horizontal cells in primate retina,” Invest. Ophthalmol. Visual Sci. Suppl. 40, 240 (1999).

L. C. Diller, J. Verweij, D. R. Williams, D. M. Dacey, “L and M cone inputs to peripheral parasol and midget ganglion cells in primate retina,” Invest. Ophthalmol. Visual Sci. Suppl. 40, 817 (1999).

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

D. R. Williams, A. Roorda, “The trichromatic cone mosaic in the human eye,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 1999), pp. 113–122.

Yamaguchi, S.

S. Yamaguchi, A. G. Motulsky, S. S. Deeb, “Visual pigment gene structure and expression in human retinae,” Hum. Mol. Genet. 6, 981–990 (1997).
[CrossRef] [PubMed]

Zrenner, E.

T. Usui, J. Kremers, L. T. Sharpe, E. Zrenner, “Flicker cone electroretinogram in dichromats and trichromats,” Vision Res. 38, 3391–3396 (1998).
[CrossRef]

T. Usui, J. Kremers, L. T. Sharpe, E. Zrenner, “Response phase of the flicker electroretinogram (ERG) is influenced by cone excitation strength,” Vision Res. 38, 3247–3251 (1998).
[CrossRef]

Am. J. Ophthalmol. (1)

R. A. Crone, “Spectral sensitivity in color-defective subjects and heterozygous carriers,” Am. J. Ophthalmol. 48, 231–238 (1959).
[PubMed]

Genetica (The Hague) (1)

H. L. de Vries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica (The Hague) 24, 199–212 (1948).

Hum. Mol. Genet. (1)

S. Yamaguchi, A. G. Motulsky, S. S. Deeb, “Visual pigment gene structure and expression in human retinae,” Hum. Mol. Genet. 6, 981–990 (1997).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci. (1)

J. Kremers, T. Usui, H. P. N. Scholl, L. T. Sharpe, “Cone signal contributions to ERGs in dichromats and trichromats,” Invest. Ophthalmol. Visual Sci. 40, 920–930 (1999).

Invest. Ophthalmol. Visual Sci. Suppl. (5)

L. C. Diller, J. Verweij, D. R. Williams, D. M. Dacey, “L and M cone inputs to peripheral parasol and midget ganglion cells in primate retina,” Invest. Ophthalmol. Visual Sci. Suppl. 40, 817 (1999).

J. Verweij, L. C. Diller, D. R. Williams, D. M. Dacey, “The relative strength of L and M cones inputs to H1 horizontal cells in primate retina,” Invest. Ophthalmol. Visual Sci. Suppl. 40, 240 (1999).

J. Krauskopf, “On the relative effectiveness of L and M cones,” Invest. Ophthalmol. Visual Sci. Suppl. 38, 14 (1997).

R. M. Shapley, S. E. Brodie, “Responses of human ERG to rapid color exchange: implications for M/L cone ratio,” Invest. Ophthalmol. Visual Sci. Suppl. 34, 911 (1993).

C. A. Saito, H. Scholl, J. Kremers, “The influence of cone selective adaptation on L- and M-cone weightings: electroretinography and psychophysics,” Invest. Ophthalmol. Visual Sci. Suppl. 40, 13 (1999).

J. Acoust. Soc. Am. (1)

M. M. Taylor, C. D. Creelman, “PEST: efficient estimates on probability functions,” J. Acoust. Soc. Am. 41, 782–787 (1967).
[CrossRef]

J. Neurosci. (1)

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, J. Nathans, “Red, green and red–green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically-measured spectral sensitivities,” J. Neurosci. 18, 10053–10069 (1998).
[PubMed]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (7)

J. Physiol. (London) (2)

J. K. Bowmaker, H. J. A. Dartnall, “Visual pigments of rods and cones in a human retina,” J. Physiol. (London) 298, 501–511 (1980).

G. S. Brindley, “The summation areas of human colour-receptive mechanisms at increment threshold,” J. Physiol. (London) 124, 400–408 (1954).

Nature (2)

H. L. de Vries, “Luminosity curve of trichromats,” Nature 157, 736–737 (1946).
[CrossRef] [PubMed]

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef] [PubMed]

Nature (London) (1)

G. H. Jacobs, M. Neitz, J. F. Deegan, J. Neitz, “Trichromatic colour vision in New World monkeys,” Nature (London) 382, 156–158 (1996).
[CrossRef]

NeuroReport (1)

S. A. Hagstrom, J. Neitz, M. Neitz, “Variation in cone populations for red–green color vision examined by analysis of mRNA,” NeuroReport 9, 1963–1967 (1998).
[CrossRef] [PubMed]

Proc. R. Soc. London Ser. B (1)

H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. London Ser. B 220, 115–130 (1983).
[CrossRef]

Vision Res. (18)

T. Usui, J. Kremers, L. T. Sharpe, E. Zrenner, “Response phase of the flicker electroretinogram (ERG) is influenced by cone excitation strength,” Vision Res. 38, 3247–3251 (1998).
[CrossRef]

J. van de Kraats, T. T. J. M. Berendschot, D. van Norren, “The pathways of light measured in fundus reflectometry,” Vision Res. 36, 2229–2247 (1996).
[CrossRef] [PubMed]

D. van Norren, J. van der Kraats, “Retinal densitometer with the size of a fundus camera,” Vision Res. 29, 369–374 (1989).
[CrossRef] [PubMed]

G. J. van Blokland, D. van Norren, “Intensity and polarization of light scattered at small angles from the human fovea,” Vision Res. 26, 485–494 (1986).
[CrossRef] [PubMed]

L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, J. Nathans, “L-, M- and L-M-hybrid cone photopigments in man: deriving λmax’s from flicker photometric spectral sensitivities,” Vision Res. 39, 3513–3525 (1999).
[CrossRef]

J. J. Vos, P. L. Walraven, “On the derivation of the foveal receptor primaries,” Vision Res. 11, 799–818 (1971).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

P. L. Walraven, “A closer look at the tritanopic convergence point,” Vision Res. 14, 1339–1343 (1974).
[CrossRef] [PubMed]

C. M. Cicerone, J. L. Nerger, “The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis,” Vision Res. 29, 115–128 (1989).
[CrossRef] [PubMed]

R. L. P. Vimal, J. Pokorny, V. C. Smith, S. K. Shevell, “Foveal cone thresholds,” Vision Res. 29, 61–78 (1989).
[CrossRef] [PubMed]

M. F. Wesner, J. Pokorny, S. K. Shevell, V. C. Smith, “Foveal cone detection statistics in color-normals and dichromats,” Vision Res. 31, 1021–1037 (1991).
[CrossRef] [PubMed]

T. Usui, J. Kremers, L. T. Sharpe, E. Zrenner, “Flicker cone electroretinogram in dichromats and trichromats,” Vision Res. 38, 3391–3396 (1998).
[CrossRef]

P. D. Gowdy, C. M. Cicerone, “The spatial arrangement of the L and M cones in the central fovea of the living human eye,” Vision Res. 38, 2575–2589 (1998).
[CrossRef]

W. A. Rushton, H. D. Baker, “Red/green sensitivity in normal vision,” Vision Res. 4, 75–85 (1964).
[CrossRef] [PubMed]

G. H. Jacobs, I. J. S. Deegan, J. L. Moran, “ERG measurements of the spectral sensitivity of common chimpanzee (Pan troglodytes),” Vision Res. 36, 2587–2594 (1996).
[CrossRef] [PubMed]

G. H. Jacobs, J. Neitz, M. Neitz, “Genetic basis of polymorphism in the color vision of platyrrhine monkeys,” Vision Res. 33, 269–274 (1993).
[CrossRef] [PubMed]

G. H. Jacobs, J. Neitz, M. Crognale, “Color vision polymorphism and its photopigment basis in a callitrichid monkey (Saguinus fuscicollis),” Vision Res. 27, 2089–2100 (1987).
[CrossRef] [PubMed]

E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vision Res. 38, 601–612 (1998).
[CrossRef] [PubMed]

Visual Neurosci. (1)

G. H. Jacobs, J. F. Deegan, “Spectral sensitivity of macaque monkeys measured with ERG flicker photometry,” Visual Neurosci. 14, 921–928 (1997).
[CrossRef]

Other (9)

G. H. Jacobs, J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1993), pp. 107–112.

T. Meigen, M. Bach, J. Gerling, S. Schmid, “Electrophysiological correlates of colour vision defects,” in John Dalton’s Colour Vision Legacy, C. M. Dickinson, I. J. Murray, D. Carden, eds. (Taylor & Francis, Basingstoke, UK, 1995), pp. 325–333.

J. Pokorny, V. C. Smith, M. F. Wesner, “Variability in cone populations and implications,” in From Pigments to Perception: Advances in Understanding Visual Processes, A. Valberg, B. B. Lee, eds. (Plenum, New York, 1991), pp. 1–9.

Information is available from H. Jägle, H. Knau, L. Serey, L. T. Sharpe at the Department of Experimental Ophthalmology, University of Tübingen, 72076 Tübingen, Germany.

A. Stockman, L. T. Sharpe, “Cone spectral sensitivities and color matching,” in Color Vision: From Genes to Perception, K. Gegenfurtner, L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 1999), pp. 53–88.

A. Stockman, L. T. Sharpe, “New estimates of the spectral sensitivities of the middle- and long-wavelength sensitive cones,” Vision Res. (to be published).

S. A. Hagstrom, J. Neitz, M. Neitz, “Ratio of M/L pigment gene expression decreases with retinal eccentricity,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1997), pp. 59–65.

D. R. Williams, A. Roorda, “The trichromatic cone mosaic in the human eye,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner, L. T. Sharpe, eds. (Cambridge U. Press, Cambridge, UK, 1999), pp. 113–122.

Information is available from B. Wissinger, H.-J. Schmidt, H. Knau, L. T. Sharpe at the Department of Experimental Ophthalmology, University of Tübingen, 72076 Tübingen, Germany.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

L-cone (open circles, dashed curves) and M-cone (filled circles, solid curves) contrast sensitivities obtained as a function of temporal frequency. The contrast sensitivities are expressed as 100/(threshold cone contrast). They were measured under silent substitution conditions in a test field 4° in diameter. Representative data are shown for three observers: (a) HK, who is much more sensitive to L- than to M-cone modulation; (b) JK, who is only slightly more sensitive to L- than to M-cone modulation; and (c) JB, presumably a carrier of protanopia, who is more sensitive to M- than to L-cone modulation.

Fig. 2
Fig. 2

L/M cone ratios derived from the cone modulation thresholds for 29 observers, plotted as a function of temporal frequency (for representative examples, see Fig. 1). The mean (filled circles) and one standard deviation (s.d.) about the mean (solid curves) are shown. At low temporal frequencies the ratios for all the observers are close to unity, but at high temporal frequencies they are more variable and typically larger. Also depicted are the L/M cone ratios obtained from two female observers: JB (open circles), a presumed carrier of protanopia [her sensitivity data are depicted in Fig. 1(c)]; and CH (triangles), a presumed carrier of deuteranopia.

Fig. 3
Fig. 3

L/M cone ratios estimated by minimal flicker perception (15 Hz) and cone modulation thresholds (target, 4° in diameter) for 17 observers, plotted against each other. The open symbol in this and the subsequent figures represents the L/M cone ratios measured in the carrier of protanopia. The solid lines (with slopes of 1) indicate perfect agreement between the two types of estimates. The L/M cone ratios derived from the cone contrast sensitivities (ordinate) are averages of the ratios determined at (a) 1, 2, and 4 Hz and at (b) 15, 20, and 30 Hz for each observer. The regression lines in (a) and (b) have slopes of -0.03 (r2=0.03) and 0.55 (r2=0.77), respectively. Excluding the datum of the carrier of protanopia reduces the slope in (b) to 0.42 (r2=0.63).

Fig. 4
Fig. 4

L/M cone ratios derived from the cone contrast sensitivities (determined at 15, 20, and 30 Hz), plotted against estimates determined from HFP thresholds measured on a neutral white [(a) 15 observers] and on a bright violet [(b) 7 observers] adaptation field. The target in the HFP measurements was 2° in diameter and was centrally fixated. The regression lines in (a) and (b) have slopes of 0.62 (r2=0.71) and 0.71 (r2=0.89), respectively. Excluding the datum of the carrier of protanopia (open symbol) reduces the slope to 0.35 (r2=0.37) and to 0.66 (r2=0.54) in (a) and (b), respectively.

Fig. 5
Fig. 5

L/M cone ratios derived from the cone contrast sensitivities (determined at 15, 20, and 30 Hz), plotted against estimates determined from the 30-Hz ERG recordings for 19 observers. The stimulus field in the ERG recordings was 108° in height×124° in width. It was centrally fixated. The regression line has a slope of 0.72 (r2=0.75). Excluding the datum of the carrier of protanopia (open symbol) reduces the slope to 0.60 (r2=0.59).

Fig. 6
Fig. 6

L/M cone ratios derived from HFP thresholds measured on a neutral white [(a) 7 observers] or on a bright violet [(b) 6 observers] adaptation field, plotted against estimates determined from the 30-Hz ERG recordings. The regression lines in (a) and (b) have slopes of 0.73 (r2=0.84) and 1.01 (r2=0.98), respectively. Excluding the datum of the carrier of protanopia (open symbol) reduces the slope to 0.55 (r2=0.61) and to 0.79 (r2=0.99) in (a) and (b), respectively.

Fig. 7
Fig. 7

L/M cone ratios derived from the cone contrast sensitivities (determined at 15, 20, and 30 Hz), plotted against estimates determined from retinal densitometry for eight observers. The densitometric measurements were made with a centrally fixated field that was 1.6° in diameter. The regression line has a slope of 0.62 (r2=0.87). Excluding the datum of the carrier of protanopia (open symbol) reduces the slope to 0.55 (r2=0.45).

Metrics