Abstract

Diffraction tomography (DT) is an inversion scheme used to reconstruct the spatially variant refractive-index distribution of a scattering object. We developed computationally efficient algorithms for image reconstruction in three-dimensional (3D) DT. A unique and important aspect of these algorithms is that they involve only a series of two-dimensional reconstructions and thus greatly reduce the prohibitively large computational load required by conventional 3D reconstruction algorithms. We also investigated the noise characteristics of these algorithms and developed strategies that exploit the statistically complementary information inherent in the measured data to achieve a bias-free reduction of the reconstructed image variance. We performed numerical studies that corroborate our theoretical assertions.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (41)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription