Abstract

The purpose of the study was to determine whether visual search can be mediated by an achromatic, or luminance, mechanism in which signals are independent of the chromaticity of the stimuli. Experiments were designed to determine whether variability in the chromaticity of distractor stimuli made it more difficult to search for a target that differed from the distractor stimuli in luminance. Variability in the chromaticity of the distractors had little or no effect on search times when the target stimulus was white. Variability in the chromaticity of the distractors increased search times when the target was a reddish or bluish chromaticity. Results obtained with white targets suggest that these searches are mediated by an achromatic mechanism in which the signals are independent of the chromaticity of the stimuli. Results obtained with reddish and bluish targets suggest that searches for those targets may be mediated by mechanisms tuned to both chromaticity and luminance. Further experiments in which observers searched for targets that differed from distractors in both chromaticity and luminance provided additional support for the second conclusion.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Lennie, M. D’Zmura, “Mechanisms of color vision,” Crit. Rev. Neurobiol. 3, 333–400 (1988).
    [PubMed]
  2. P. Lennie, J. Pokorny, V. C. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283–1293 (1993).
    [CrossRef] [PubMed]
  3. P. K. Kaiser, R. M. Boynton, Human Color Vision (Optical Society of America, Washington, D.C., 1996).
  4. R. L. DeValois, D. M. Snodderly, E. W. Yund, N. K. Hepler, “Responses of macaque lateral geniculate cells to luminance and color figures,” Sensory Process. 1, 244–259 (1977).
  5. C. R. Ingling, E. Martinez, “The relationship between spectral sensitivity and spatial sensitivity for the primate r–g X-channel,” Vision Res. 23, 1495–1500 (1983).
    [CrossRef]
  6. C. R. Ingling, E. Martinez-Uriegas, “The spatio-temporal properties of the r–g X-cell channel,” Vision Res. 25, 33–38 (1985).
    [CrossRef]
  7. A. M. J. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).
  8. G. R. Cole, T. Hine, W. McIlhagga, “Detection mechanisms in the L-, M-, and S-contrast space,” J. Opt. Soc. Am. A 10, 38–51 (1993).
    [CrossRef] [PubMed]
  9. A. Chaparro, C. F. Stromeyer, G. Chen, R. E. Kronauer, “Human cones appear to adapt at low light levels: measurements on the red–green detection mechanism,” Vision Res. 35, 3103–3118 (1995).
    [CrossRef] [PubMed]
  10. K. T. Mullen, S. J. Cropper, M. A. Losada, “Absence of linear subthreshold summation between red–green and luminance mechanisms over a wide range of spatio-temporal conditions,” Vision Res. 37, 1157–1165 (1997).
    [CrossRef] [PubMed]
  11. J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
    [CrossRef] [PubMed]
  12. A. Bradley, E. Switkes, K. K. DeValois, “Orientation and spatial frequency selectivity of adaptation to colour and luminance gratings,” Vision Res. 28, 841–856 (1988).
    [CrossRef]
  13. E. Switkes, A. Bradley, K. K. DeValois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162 (1988).
    [CrossRef] [PubMed]
  14. K. K. DeValois, E. Switkes, “Simultaneous masking interactions between chromatic and luminance gratings,” J. Opt. Soc. Am. 73, 11–18 (1983).
    [CrossRef]
  15. G. R. Cole, C. F. Stromeyer, R. E. Kronauer, “Visual interactions with luminance and chromatic stimuli,” J. Opt. Soc. Am. A 7, 128–140 (1990).
    [CrossRef] [PubMed]
  16. K. Gegenfurtner, D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880–1888 (1992).
    [CrossRef] [PubMed]
  17. K. T. Mullen, M. A. Losada, “Evidence for separate pathways for color and luminance detection mechanisms,” J. Opt. Soc. Am. A 11, 3136–3151 (1994).
    [CrossRef]
  18. A. Li, P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vision Res. 37, 83–97 (1997).
    [CrossRef] [PubMed]
  19. F. G. Giulianini, R. T. Eskew, “Chromatic masking in the (DL/L, DM/M) plane of the cone contrast space reveals only two detection mechanisms,” Vision Res. 38, 3913–3926 (1998).
    [CrossRef]
  20. M. J. Sankeralli, K. T. Mullen, “Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space,” J. Opt. Soc. Am. A 14, 2633–2646 (1997).
    [CrossRef]
  21. C. F. Stromeyer, R. Thabet, A. Chaparro, R. E. Kronauer, “Spatial masking does not reveal mechanisms selective to combined luminance and red–green color,” Vision Res. 39, 2099–2112 (1999).
    [CrossRef] [PubMed]
  22. M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
    [CrossRef] [PubMed]
  23. J. Palmer, D. Y. Teller, “Color codes in visual search: the effects of target and distractor heterogeneity on search accuracy thresholds,” Invest. Ophthalmol. Visual Sci. 34 (Suppl.), 1289 (1993).
  24. B. Bauer, P. Jolicoeur, W. B. Cowan, “Visual search for color targets that are or are not linearly separable from distractors,” Vision Res. 36, 1439–1466 (1996); B. Bauer, P. Jolicoeur, W. B. Cowan, “Convex hull test of the linear separability hypothesis in visual search,” Vision Res. 39, 2681–2696 (1999).
    [CrossRef] [PubMed]
  25. J. M. Wolfe, “Guided search 2.0: a revised model of visual search,” Psychon. Bull. Rev. 1, 202–238 (1994).
    [CrossRef] [PubMed]
  26. A. L. Nagy, “Interactions between achromatic and chromatic mechanisms in visual search,” Vision Res. 39, 3253–3266 (1999).
    [CrossRef]
  27. D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
    [CrossRef] [PubMed]
  28. N. Graham, Visual Pattern Analyzers (Oxford U. Press., New York, 1989).
  29. For discussions of the effects of distractor heterogeneity in visual search, see J. Duncan, G. W. Humphreys, “Visual search and stimulus similarity,” Psychol. Rev. 96, 433–458 (1989); J. Palmer, P. Verghese, M. Pavel, “The psychophysics of visual search,” Vision Res. (to be published); R. Rosenholtz, “A simple saliency model predicts a number of motion popout phenomena,” Vision Res. 39, 3157–3163 (1999).
    [CrossRef] [PubMed]
  30. M. D’Zmura, K. Knobloch, “Spectral bandwidths for the detection of color,” Vision Res. 38, 3117–3128 (1998).
    [CrossRef]
  31. A. Stockman, D. I. A. MacLeod, D. D. Depriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
    [CrossRef] [PubMed]
  32. H. von Helmholtz, Treatise on Physiological Optics II (Optical Society of America, New York, 1924); D. M. Purdy, “On the saturations and chromatic thresholds of the spectral colors,” Br. J. Psychol. 21, 283–313 (1931); D. M. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541–559 (1931).
    [CrossRef]
  33. M. D’Zmura, “Color in visual search,” Vision Res. 31, 951–966 (1991).
    [CrossRef] [PubMed]
  34. A. L. Nagy, R. R. Sanchez, T. C. Hughes, “Visual search for color differences with foveal and peripheral vision,” J. Opt. Soc. Am. A 7, 1995–2001 (1990).
    [CrossRef] [PubMed]
  35. A. L. Nagy, R. R. Sanchez, “Chromaticity and luminance as coding dimensions in visual search,” Hum. Factors 34, 601–614 (1992).
    [PubMed]

1999

C. F. Stromeyer, R. Thabet, A. Chaparro, R. E. Kronauer, “Spatial masking does not reveal mechanisms selective to combined luminance and red–green color,” Vision Res. 39, 2099–2112 (1999).
[CrossRef] [PubMed]

A. L. Nagy, “Interactions between achromatic and chromatic mechanisms in visual search,” Vision Res. 39, 3253–3266 (1999).
[CrossRef]

1998

F. G. Giulianini, R. T. Eskew, “Chromatic masking in the (DL/L, DM/M) plane of the cone contrast space reveals only two detection mechanisms,” Vision Res. 38, 3913–3926 (1998).
[CrossRef]

M. D’Zmura, K. Knobloch, “Spectral bandwidths for the detection of color,” Vision Res. 38, 3117–3128 (1998).
[CrossRef]

1997

M. J. Sankeralli, K. T. Mullen, “Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space,” J. Opt. Soc. Am. A 14, 2633–2646 (1997).
[CrossRef]

K. T. Mullen, S. J. Cropper, M. A. Losada, “Absence of linear subthreshold summation between red–green and luminance mechanisms over a wide range of spatio-temporal conditions,” Vision Res. 37, 1157–1165 (1997).
[CrossRef] [PubMed]

A. Li, P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vision Res. 37, 83–97 (1997).
[CrossRef] [PubMed]

1996

B. Bauer, P. Jolicoeur, W. B. Cowan, “Visual search for color targets that are or are not linearly separable from distractors,” Vision Res. 36, 1439–1466 (1996); B. Bauer, P. Jolicoeur, W. B. Cowan, “Convex hull test of the linear separability hypothesis in visual search,” Vision Res. 39, 2681–2696 (1999).
[CrossRef] [PubMed]

1995

A. Chaparro, C. F. Stromeyer, G. Chen, R. E. Kronauer, “Human cones appear to adapt at low light levels: measurements on the red–green detection mechanism,” Vision Res. 35, 3103–3118 (1995).
[CrossRef] [PubMed]

1994

K. T. Mullen, M. A. Losada, “Evidence for separate pathways for color and luminance detection mechanisms,” J. Opt. Soc. Am. A 11, 3136–3151 (1994).
[CrossRef]

J. M. Wolfe, “Guided search 2.0: a revised model of visual search,” Psychon. Bull. Rev. 1, 202–238 (1994).
[CrossRef] [PubMed]

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
[CrossRef] [PubMed]

1993

J. Palmer, D. Y. Teller, “Color codes in visual search: the effects of target and distractor heterogeneity on search accuracy thresholds,” Invest. Ophthalmol. Visual Sci. 34 (Suppl.), 1289 (1993).

G. R. Cole, T. Hine, W. McIlhagga, “Detection mechanisms in the L-, M-, and S-contrast space,” J. Opt. Soc. Am. A 10, 38–51 (1993).
[CrossRef] [PubMed]

P. Lennie, J. Pokorny, V. C. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283–1293 (1993).
[CrossRef] [PubMed]

1992

K. Gegenfurtner, D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880–1888 (1992).
[CrossRef] [PubMed]

A. L. Nagy, R. R. Sanchez, “Chromaticity and luminance as coding dimensions in visual search,” Hum. Factors 34, 601–614 (1992).
[PubMed]

1991

A. Stockman, D. I. A. MacLeod, D. D. Depriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

M. D’Zmura, “Color in visual search,” Vision Res. 31, 951–966 (1991).
[CrossRef] [PubMed]

1990

1989

For discussions of the effects of distractor heterogeneity in visual search, see J. Duncan, G. W. Humphreys, “Visual search and stimulus similarity,” Psychol. Rev. 96, 433–458 (1989); J. Palmer, P. Verghese, M. Pavel, “The psychophysics of visual search,” Vision Res. (to be published); R. Rosenholtz, “A simple saliency model predicts a number of motion popout phenomena,” Vision Res. 39, 3157–3163 (1999).
[CrossRef] [PubMed]

1988

A. Bradley, E. Switkes, K. K. DeValois, “Orientation and spatial frequency selectivity of adaptation to colour and luminance gratings,” Vision Res. 28, 841–856 (1988).
[CrossRef]

E. Switkes, A. Bradley, K. K. DeValois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162 (1988).
[CrossRef] [PubMed]

P. Lennie, M. D’Zmura, “Mechanisms of color vision,” Crit. Rev. Neurobiol. 3, 333–400 (1988).
[PubMed]

1985

C. R. Ingling, E. Martinez-Uriegas, “The spatio-temporal properties of the r–g X-cell channel,” Vision Res. 25, 33–38 (1985).
[CrossRef]

1984

A. M. J. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

1983

C. R. Ingling, E. Martinez, “The relationship between spectral sensitivity and spatial sensitivity for the primate r–g X-channel,” Vision Res. 23, 1495–1500 (1983).
[CrossRef]

K. K. DeValois, E. Switkes, “Simultaneous masking interactions between chromatic and luminance gratings,” J. Opt. Soc. Am. 73, 11–18 (1983).
[CrossRef]

1982

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

1979

1977

R. L. DeValois, D. M. Snodderly, E. W. Yund, N. K. Hepler, “Responses of macaque lateral geniculate cells to luminance and color figures,” Sensory Process. 1, 244–259 (1977).

Bauer, B.

B. Bauer, P. Jolicoeur, W. B. Cowan, “Visual search for color targets that are or are not linearly separable from distractors,” Vision Res. 36, 1439–1466 (1996); B. Bauer, P. Jolicoeur, W. B. Cowan, “Convex hull test of the linear separability hypothesis in visual search,” Vision Res. 39, 2681–2696 (1999).
[CrossRef] [PubMed]

Boynton, R. M.

Bradley, A.

A. Bradley, E. Switkes, K. K. DeValois, “Orientation and spatial frequency selectivity of adaptation to colour and luminance gratings,” Vision Res. 28, 841–856 (1988).
[CrossRef]

E. Switkes, A. Bradley, K. K. DeValois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162 (1988).
[CrossRef] [PubMed]

Chaparro, A.

C. F. Stromeyer, R. Thabet, A. Chaparro, R. E. Kronauer, “Spatial masking does not reveal mechanisms selective to combined luminance and red–green color,” Vision Res. 39, 2099–2112 (1999).
[CrossRef] [PubMed]

A. Chaparro, C. F. Stromeyer, G. Chen, R. E. Kronauer, “Human cones appear to adapt at low light levels: measurements on the red–green detection mechanism,” Vision Res. 35, 3103–3118 (1995).
[CrossRef] [PubMed]

Chen, G.

A. Chaparro, C. F. Stromeyer, G. Chen, R. E. Kronauer, “Human cones appear to adapt at low light levels: measurements on the red–green detection mechanism,” Vision Res. 35, 3103–3118 (1995).
[CrossRef] [PubMed]

Cole, G. R.

Cowan, W. B.

B. Bauer, P. Jolicoeur, W. B. Cowan, “Visual search for color targets that are or are not linearly separable from distractors,” Vision Res. 36, 1439–1466 (1996); B. Bauer, P. Jolicoeur, W. B. Cowan, “Convex hull test of the linear separability hypothesis in visual search,” Vision Res. 39, 2681–2696 (1999).
[CrossRef] [PubMed]

Cropper, S. J.

K. T. Mullen, S. J. Cropper, M. A. Losada, “Absence of linear subthreshold summation between red–green and luminance mechanisms over a wide range of spatio-temporal conditions,” Vision Res. 37, 1157–1165 (1997).
[CrossRef] [PubMed]

D’Zmura, M.

M. D’Zmura, K. Knobloch, “Spectral bandwidths for the detection of color,” Vision Res. 38, 3117–3128 (1998).
[CrossRef]

M. D’Zmura, “Color in visual search,” Vision Res. 31, 951–966 (1991).
[CrossRef] [PubMed]

P. Lennie, M. D’Zmura, “Mechanisms of color vision,” Crit. Rev. Neurobiol. 3, 333–400 (1988).
[PubMed]

Depriest, D. D.

A. Stockman, D. I. A. MacLeod, D. D. Depriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

Derrington, A. M. J.

A. M. J. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

DeValois, K. K.

DeValois, R. L.

R. L. DeValois, D. M. Snodderly, E. W. Yund, N. K. Hepler, “Responses of macaque lateral geniculate cells to luminance and color figures,” Sensory Process. 1, 244–259 (1977).

Duncan, J.

For discussions of the effects of distractor heterogeneity in visual search, see J. Duncan, G. W. Humphreys, “Visual search and stimulus similarity,” Psychol. Rev. 96, 433–458 (1989); J. Palmer, P. Verghese, M. Pavel, “The psychophysics of visual search,” Vision Res. (to be published); R. Rosenholtz, “A simple saliency model predicts a number of motion popout phenomena,” Vision Res. 39, 3157–3163 (1999).
[CrossRef] [PubMed]

Eskew, R. T.

F. G. Giulianini, R. T. Eskew, “Chromatic masking in the (DL/L, DM/M) plane of the cone contrast space reveals only two detection mechanisms,” Vision Res. 38, 3913–3926 (1998).
[CrossRef]

Gegenfurtner, K.

Giulianini, F. G.

F. G. Giulianini, R. T. Eskew, “Chromatic masking in the (DL/L, DM/M) plane of the cone contrast space reveals only two detection mechanisms,” Vision Res. 38, 3913–3926 (1998).
[CrossRef]

Graham, N.

N. Graham, Visual Pattern Analyzers (Oxford U. Press., New York, 1989).

Heeley, D. W.

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

Hepler, N. K.

R. L. DeValois, D. M. Snodderly, E. W. Yund, N. K. Hepler, “Responses of macaque lateral geniculate cells to luminance and color figures,” Sensory Process. 1, 244–259 (1977).

Hine, T.

Hughes, T. C.

Humphreys, G. W.

For discussions of the effects of distractor heterogeneity in visual search, see J. Duncan, G. W. Humphreys, “Visual search and stimulus similarity,” Psychol. Rev. 96, 433–458 (1989); J. Palmer, P. Verghese, M. Pavel, “The psychophysics of visual search,” Vision Res. (to be published); R. Rosenholtz, “A simple saliency model predicts a number of motion popout phenomena,” Vision Res. 39, 3157–3163 (1999).
[CrossRef] [PubMed]

Ingling, C. R.

C. R. Ingling, E. Martinez-Uriegas, “The spatio-temporal properties of the r–g X-cell channel,” Vision Res. 25, 33–38 (1985).
[CrossRef]

C. R. Ingling, E. Martinez, “The relationship between spectral sensitivity and spatial sensitivity for the primate r–g X-channel,” Vision Res. 23, 1495–1500 (1983).
[CrossRef]

Jolicoeur, P.

B. Bauer, P. Jolicoeur, W. B. Cowan, “Visual search for color targets that are or are not linearly separable from distractors,” Vision Res. 36, 1439–1466 (1996); B. Bauer, P. Jolicoeur, W. B. Cowan, “Convex hull test of the linear separability hypothesis in visual search,” Vision Res. 39, 2681–2696 (1999).
[CrossRef] [PubMed]

Kaiser, P. K.

P. K. Kaiser, R. M. Boynton, Human Color Vision (Optical Society of America, Washington, D.C., 1996).

Kiper, D. C.

Knobloch, K.

M. D’Zmura, K. Knobloch, “Spectral bandwidths for the detection of color,” Vision Res. 38, 3117–3128 (1998).
[CrossRef]

Krauskopf, J.

A. M. J. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

Kronauer, R. E.

C. F. Stromeyer, R. Thabet, A. Chaparro, R. E. Kronauer, “Spatial masking does not reveal mechanisms selective to combined luminance and red–green color,” Vision Res. 39, 2099–2112 (1999).
[CrossRef] [PubMed]

A. Chaparro, C. F. Stromeyer, G. Chen, R. E. Kronauer, “Human cones appear to adapt at low light levels: measurements on the red–green detection mechanism,” Vision Res. 35, 3103–3118 (1995).
[CrossRef] [PubMed]

G. R. Cole, C. F. Stromeyer, R. E. Kronauer, “Visual interactions with luminance and chromatic stimuli,” J. Opt. Soc. Am. A 7, 128–140 (1990).
[CrossRef] [PubMed]

Lennie, P.

A. Li, P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vision Res. 37, 83–97 (1997).
[CrossRef] [PubMed]

P. Lennie, J. Pokorny, V. C. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283–1293 (1993).
[CrossRef] [PubMed]

P. Lennie, M. D’Zmura, “Mechanisms of color vision,” Crit. Rev. Neurobiol. 3, 333–400 (1988).
[PubMed]

A. M. J. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

Li, A.

A. Li, P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vision Res. 37, 83–97 (1997).
[CrossRef] [PubMed]

Losada, M. A.

K. T. Mullen, S. J. Cropper, M. A. Losada, “Absence of linear subthreshold summation between red–green and luminance mechanisms over a wide range of spatio-temporal conditions,” Vision Res. 37, 1157–1165 (1997).
[CrossRef] [PubMed]

K. T. Mullen, M. A. Losada, “Evidence for separate pathways for color and luminance detection mechanisms,” J. Opt. Soc. Am. A 11, 3136–3151 (1994).
[CrossRef]

MacLeod, D. I. A.

A. Stockman, D. I. A. MacLeod, D. D. Depriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

D. I. A. MacLeod, R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979).
[CrossRef] [PubMed]

Martinez, E.

C. R. Ingling, E. Martinez, “The relationship between spectral sensitivity and spatial sensitivity for the primate r–g X-channel,” Vision Res. 23, 1495–1500 (1983).
[CrossRef]

Martinez-Uriegas, E.

C. R. Ingling, E. Martinez-Uriegas, “The spatio-temporal properties of the r–g X-cell channel,” Vision Res. 25, 33–38 (1985).
[CrossRef]

McIlhagga, W.

Mollon, J. D.

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
[CrossRef] [PubMed]

Mullen, K. T.

Nagy, A. L.

A. L. Nagy, “Interactions between achromatic and chromatic mechanisms in visual search,” Vision Res. 39, 3253–3266 (1999).
[CrossRef]

A. L. Nagy, R. R. Sanchez, “Chromaticity and luminance as coding dimensions in visual search,” Hum. Factors 34, 601–614 (1992).
[PubMed]

A. L. Nagy, R. R. Sanchez, T. C. Hughes, “Visual search for color differences with foveal and peripheral vision,” J. Opt. Soc. Am. A 7, 1995–2001 (1990).
[CrossRef] [PubMed]

Palmer, J.

J. Palmer, D. Y. Teller, “Color codes in visual search: the effects of target and distractor heterogeneity on search accuracy thresholds,” Invest. Ophthalmol. Visual Sci. 34 (Suppl.), 1289 (1993).

Pokorny, J.

Sanchez, R. R.

A. L. Nagy, R. R. Sanchez, “Chromaticity and luminance as coding dimensions in visual search,” Hum. Factors 34, 601–614 (1992).
[PubMed]

A. L. Nagy, R. R. Sanchez, T. C. Hughes, “Visual search for color differences with foveal and peripheral vision,” J. Opt. Soc. Am. A 7, 1995–2001 (1990).
[CrossRef] [PubMed]

Sankeralli, M. J.

Smith, V. C.

Snodderly, D. M.

R. L. DeValois, D. M. Snodderly, E. W. Yund, N. K. Hepler, “Responses of macaque lateral geniculate cells to luminance and color figures,” Sensory Process. 1, 244–259 (1977).

Stockman, A.

A. Stockman, D. I. A. MacLeod, D. D. Depriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

Stromeyer, C. F.

C. F. Stromeyer, R. Thabet, A. Chaparro, R. E. Kronauer, “Spatial masking does not reveal mechanisms selective to combined luminance and red–green color,” Vision Res. 39, 2099–2112 (1999).
[CrossRef] [PubMed]

A. Chaparro, C. F. Stromeyer, G. Chen, R. E. Kronauer, “Human cones appear to adapt at low light levels: measurements on the red–green detection mechanism,” Vision Res. 35, 3103–3118 (1995).
[CrossRef] [PubMed]

G. R. Cole, C. F. Stromeyer, R. E. Kronauer, “Visual interactions with luminance and chromatic stimuli,” J. Opt. Soc. Am. A 7, 128–140 (1990).
[CrossRef] [PubMed]

Switkes, E.

Teller, D. Y.

J. Palmer, D. Y. Teller, “Color codes in visual search: the effects of target and distractor heterogeneity on search accuracy thresholds,” Invest. Ophthalmol. Visual Sci. 34 (Suppl.), 1289 (1993).

Thabet, R.

C. F. Stromeyer, R. Thabet, A. Chaparro, R. E. Kronauer, “Spatial masking does not reveal mechanisms selective to combined luminance and red–green color,” Vision Res. 39, 2099–2112 (1999).
[CrossRef] [PubMed]

von Helmholtz, H.

H. von Helmholtz, Treatise on Physiological Optics II (Optical Society of America, New York, 1924); D. M. Purdy, “On the saturations and chromatic thresholds of the spectral colors,” Br. J. Psychol. 21, 283–313 (1931); D. M. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541–559 (1931).
[CrossRef]

Webster, M. A.

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
[CrossRef] [PubMed]

Williams, D. R.

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

Wolfe, J. M.

J. M. Wolfe, “Guided search 2.0: a revised model of visual search,” Psychon. Bull. Rev. 1, 202–238 (1994).
[CrossRef] [PubMed]

Yund, E. W.

R. L. DeValois, D. M. Snodderly, E. W. Yund, N. K. Hepler, “Responses of macaque lateral geniculate cells to luminance and color figures,” Sensory Process. 1, 244–259 (1977).

Crit. Rev. Neurobiol.

P. Lennie, M. D’Zmura, “Mechanisms of color vision,” Crit. Rev. Neurobiol. 3, 333–400 (1988).
[PubMed]

Hum. Factors

A. L. Nagy, R. R. Sanchez, “Chromaticity and luminance as coding dimensions in visual search,” Hum. Factors 34, 601–614 (1992).
[PubMed]

Invest. Ophthalmol. Visual Sci.

J. Palmer, D. Y. Teller, “Color codes in visual search: the effects of target and distractor heterogeneity on search accuracy thresholds,” Invest. Ophthalmol. Visual Sci. 34 (Suppl.), 1289 (1993).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Physiol. (London)

A. M. J. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

Psychol. Rev.

For discussions of the effects of distractor heterogeneity in visual search, see J. Duncan, G. W. Humphreys, “Visual search and stimulus similarity,” Psychol. Rev. 96, 433–458 (1989); J. Palmer, P. Verghese, M. Pavel, “The psychophysics of visual search,” Vision Res. (to be published); R. Rosenholtz, “A simple saliency model predicts a number of motion popout phenomena,” Vision Res. 39, 3157–3163 (1999).
[CrossRef] [PubMed]

Psychon. Bull. Rev.

J. M. Wolfe, “Guided search 2.0: a revised model of visual search,” Psychon. Bull. Rev. 1, 202–238 (1994).
[CrossRef] [PubMed]

Sensory Process

R. L. DeValois, D. M. Snodderly, E. W. Yund, N. K. Hepler, “Responses of macaque lateral geniculate cells to luminance and color figures,” Sensory Process. 1, 244–259 (1977).

Vision Res.

C. R. Ingling, E. Martinez, “The relationship between spectral sensitivity and spatial sensitivity for the primate r–g X-channel,” Vision Res. 23, 1495–1500 (1983).
[CrossRef]

C. R. Ingling, E. Martinez-Uriegas, “The spatio-temporal properties of the r–g X-cell channel,” Vision Res. 25, 33–38 (1985).
[CrossRef]

C. F. Stromeyer, R. Thabet, A. Chaparro, R. E. Kronauer, “Spatial masking does not reveal mechanisms selective to combined luminance and red–green color,” Vision Res. 39, 2099–2112 (1999).
[CrossRef] [PubMed]

M. A. Webster, J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vision Res. 34, 1993–2020 (1994).
[CrossRef] [PubMed]

A. Chaparro, C. F. Stromeyer, G. Chen, R. E. Kronauer, “Human cones appear to adapt at low light levels: measurements on the red–green detection mechanism,” Vision Res. 35, 3103–3118 (1995).
[CrossRef] [PubMed]

K. T. Mullen, S. J. Cropper, M. A. Losada, “Absence of linear subthreshold summation between red–green and luminance mechanisms over a wide range of spatio-temporal conditions,” Vision Res. 37, 1157–1165 (1997).
[CrossRef] [PubMed]

J. Krauskopf, D. R. Williams, D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[CrossRef] [PubMed]

A. Bradley, E. Switkes, K. K. DeValois, “Orientation and spatial frequency selectivity of adaptation to colour and luminance gratings,” Vision Res. 28, 841–856 (1988).
[CrossRef]

A. L. Nagy, “Interactions between achromatic and chromatic mechanisms in visual search,” Vision Res. 39, 3253–3266 (1999).
[CrossRef]

B. Bauer, P. Jolicoeur, W. B. Cowan, “Visual search for color targets that are or are not linearly separable from distractors,” Vision Res. 36, 1439–1466 (1996); B. Bauer, P. Jolicoeur, W. B. Cowan, “Convex hull test of the linear separability hypothesis in visual search,” Vision Res. 39, 2681–2696 (1999).
[CrossRef] [PubMed]

M. D’Zmura, K. Knobloch, “Spectral bandwidths for the detection of color,” Vision Res. 38, 3117–3128 (1998).
[CrossRef]

A. Stockman, D. I. A. MacLeod, D. D. Depriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189–208 (1991).
[CrossRef] [PubMed]

M. D’Zmura, “Color in visual search,” Vision Res. 31, 951–966 (1991).
[CrossRef] [PubMed]

A. Li, P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vision Res. 37, 83–97 (1997).
[CrossRef] [PubMed]

F. G. Giulianini, R. T. Eskew, “Chromatic masking in the (DL/L, DM/M) plane of the cone contrast space reveals only two detection mechanisms,” Vision Res. 38, 3913–3926 (1998).
[CrossRef]

Other

P. K. Kaiser, R. M. Boynton, Human Color Vision (Optical Society of America, Washington, D.C., 1996).

H. von Helmholtz, Treatise on Physiological Optics II (Optical Society of America, New York, 1924); D. M. Purdy, “On the saturations and chromatic thresholds of the spectral colors,” Br. J. Psychol. 21, 283–313 (1931); D. M. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541–559 (1931).
[CrossRef]

N. Graham, Visual Pattern Analyzers (Oxford U. Press., New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experiment 1. Upper-left panel, stimuli: filled circles, targets; open square, chromaticity and luminance of the fixed white distractors; filled squares, L chromaticities of the variable distractors. In this and the remaining figures the other three panels show results from three observers: open squares, fixed-distractor condition; filled circles, variable-distractor condition.

Fig. 2
Fig. 2

Same as Fig. 1 except that distractors varied in S chromaticity.

Fig. 3
Fig. 3

Experiment 2. Upper-left panel, stimuli: filled circles, reddish targets; open square, fixed reddish distractors; filled squares, L chromaticities of the variable distractors. The other three panels are as in Fig. 1.

Fig. 4
Fig. 4

Experiment 2. Upper left panel, stimuli: filled circles, bluish targets; open square, fixed bluish distractors; filled squares, S chromaticities of the variable distractors. The other three panels are as in Fig. 1.

Fig. 5
Fig. 5

Experiment 3. Upper-left panel, stimuli used for observer MW: filled circles, bright-red targets; open square, white distractors; filled squares, distractors that vary from dim red to bright green in the variable-distractor condition. The other three panels show results from three observers. Symbols are as in Fig. 1.

Fig. 6
Fig. 6

Experiment 3. Upper-left panel, stimuli used for observer MW: filled circles, bright-blue targets; open square, fixed white distractors; filled squares, distractors that vary from dim blue to bright yellow in the variable-distractor condition. The other three panels show results from three observers. Symbols are as in Fig. 1.

Metrics