Abstract

Color matches between two small patches were made in a display containing ten larger regions of different chromaticities. The spatial organization of the ten regions was varied while keeping constant the immediate surround of each patch as well as the space-average chromaticity of the entire stimulus. Different spatial arrangements were designed to alter the perceptual organization inferred by the observer without changing the ensemble of chromaticities actually in view. For example, one arrangement of the ten regions was consistent with five surfaces under two distinct illuminations, with one edge within the display (an “apparent illumination edge”) dividing the stimulus into two areas, one under illuminant A and the other under illuminant C. Another spatial arrangement had the ten regions configured to induce an observer to infer ten surfaces under a single illumination. When the ten regions were arranged with an apparent illumination edge, the patch within the area of illuminant C was perceived as bluer than when the same patch and immediate surround were presented without an apparent illumination edge. The results are accounted for by positing that observers group together regions sharing the same inferred illumination, with a consequent effect on color perception: A fixed patch-within-surround shifts in hue and saturation toward the perceived illumination. We suggest that the change in color perception in a complex scene that results from a difference in real illumination may be caused by the inferred illumination at the perceptual level, not directly by the physical change in the light absorbed by photoreceptors.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Chevreul, The Principles of Harmony and Contrast of Colors and Their Applications to the Arts (Van Nostrand, New York, 1939; original English translation, 1854; republished, 1967).
  2. C. Ware, W. Cowan, “Changes in perceived color due to chromatic interactions,” Vision Res. 22, 1353–1362 (1982).
    [CrossRef] [PubMed]
  3. S. K. Shevell, “Processes mediating color contrast,” Farbe 34, 261–268 (1987).
  4. H. Uchikawa, K. Uchikawa, R. M. Boynton, “Influence of achromatic surrounds on categorical perception of surface colors,” Vision Res. 29, 881–890 (1989).
    [CrossRef] [PubMed]
  5. J. W. Jenness, S. K. Shevell, “Color appearance with sparse chromatic context,” Vision Res. 35, 797–805 (1995).
    [CrossRef] [PubMed]
  6. S. K. Shevell, J. Wei, “Chromatic induction: border contrast or adaptation to surrounding light?” Vision Res. 38, 1561–1566 (1998).
    [CrossRef] [PubMed]
  7. H. von Helmholtz, Treatise on Physiological Optics, Vol. III, edited and translated from the 3rd German edition by J. P. C. Southhall (Dover, New York, 1867; republished, 1962).
  8. E. Hering, Grundzuge der Lehre vom Lichtsinn (Gerolds Sohn, Vienna, 1878).
  9. D. B. Judd, “The definition of black and white,” Am. J. Psychol. 54, 289–294 (1941).
    [CrossRef]
  10. R. H. Thouless, “Phenomenal regression to the real object. II,” Br. J. Psychol. 22, 1–30 (1931).
  11. A. Logvinenko, G. Menshikova, “Trade-off between a chromatic color and perceived illumination as revealed by the use of pseudoscopic inversion of apparent depth,” Perception 23, 1007–1024 (1994).
    [CrossRef]
  12. A. D. Logvinenko, “Invariant relationship between achromatic colour, apparent illumination, and shape of surface: implications for the colour perception theories,” in John Dalton’s Colour Vision Legacy, C. M. Dickinson, I. J. Murray, D. Carden, eds. (Taylor & Francis, London, 1996).
  13. E. H. Adelson, “Perceptual organization and the judgment of brightness,” Science 262, 2042–2044 (1993).
    [CrossRef] [PubMed]
  14. J. Beck, “Stimulus correlates for the judged illumination of a surface,” J. Exp. Psychol. 58, 267–274 (1959).
    [CrossRef] [PubMed]
  15. J. Beck, “Judgment of surface illumination and lightness,” J. Exp. Psychol. 60, 368–375 (1961).
    [CrossRef]
  16. J. Beck, “Surface lightness and cues for the illuminant,” Am. J. Psychol. 84, 1–11 (1971).
    [CrossRef] [PubMed]
  17. T. P. Friden, “Whiteness constancy: inference or insensitivity?” Percept. Psychophys. 1, 81–89 (1973).
    [CrossRef]
  18. A. Kozaki, “Perception of lightness and brightness of achromatic surface color and impression of illumination,” Jpn. Psychol. Res. 15, 194–203 (1973).
  19. A. Kozaki, K. Noguchi, “The relationship between perceived surface-lightness and perceived illumination,” Psychol. Res. 39, 1–16 (1976).
    [CrossRef] [PubMed]
  20. T. Oyama, “Stimulus determinants of brightness constancy and the perception of illumination,” Jpn. Psychol. Res. 10, 146–155 (1968).
  21. Note that these studies do not measure perceived brightness. We have argued that brightness, not lightness, may be a better measure for understanding perceived illuminatio; see Ref. 22.
  22. J. A. Schirillo, S. K. Shevell, “An account of brightness in complex scenes based on inferred illumination,” Perception 26, 507–518 (1997).
    [CrossRef] [PubMed]
  23. W. Fuchs, “Experimentelle Untersuchungen uber die Anderung von Farben unter dem Einfluss von Gestalten (Angleichungserscheinungen), Z. Psychol. 92, 249–325 (1923), cited in G. Kanizsa, “Colour and organization: a response to King,” New Ideas Psychol. 6, 289–291 (1988).
    [CrossRef]
  24. J. R. Pomerantz, L. C. Sager, R. J. Stoever, “Perception of wholes and their component parts: some configural superiority effects,” J. Exp. Psychol. 3, 422–435 (1977).
  25. J. A. Schirillo, S. K. Shevell, “Lightness and brightness judgments of coplanar retinally noncontiguous surfaces,” J. Opt. Soc. Am. A 10, 2442–2452 (1993).
    [CrossRef]
  26. A. Gilchrist, S. Delman, A. Jocobsen, “The classification and integration of edges as critical to the perception of reflectance and illumination,” Percept. Psychophys. 33, 425–436 (1983).
    [CrossRef] [PubMed]
  27. S. S. Bergstrom, “Common and relative components of reflected light as information about the illumination, colour, and three-dimensional form of objects,” Scand. J. Psychol. 18, 180–186 (1977).
    [CrossRef] [PubMed]
  28. R. M. Boynton, “Color vision,” Annu. Rev. Psychol. 39, 69–100 (1988).
    [CrossRef] [PubMed]
  29. M. F. Wesner, S. K. Shevell, “Color perception within a chromatic context: changes in red/green equilibria caused by noncontiguous light,” Vision Res. 32, 1623–1634 (1992).
    [CrossRef] [PubMed]
  30. J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory: a comparison between theoretical predictions and observer responses to the ‘Color Mondrian’ experiments,” Vision Res. 16, 445–458 (1976).
    [CrossRef]
  31. L. Arend, A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986).
    [CrossRef] [PubMed]
  32. L. Arend, A. Reeves, J. Schirillo, R. Goldstein, “Simultaneous color constancy: patterns with diverse Munsell values,” J. Opt. Soc. Am. A 8, 661–672 (1991).
    [CrossRef] [PubMed]
  33. D. H. Brainard, B. A. Wandell, “Asymmetric color matching: how color appearance depends on the illuminant,” J. Opt. Soc. Am. A 9, 1433–1448 (1992).
    [CrossRef] [PubMed]
  34. D. H. Brainard, “Color constancy in the nearly natural image. 2. Achromatic loci,” J. Opt. Soc. Am. A 15, 307–325 (1998).
    [CrossRef]
  35. As Beck (Ref. 14) demonstrated, a CRT simulation produces results very similar to those obtained by using real papers and reflected illumination; see Refs. 26 and 36.
  36. M. R. Luo, X. W. Gao, S. A. R. Scrivener, “Quantifying colour appearance: Part V. Simultaneous contrast,” Color Res. Appl. 20, 18–28 (1995).
    [CrossRef]
  37. D. Jameson, L. M. Hurvich, “Theory of brightness and color contrast in human vision,” Vision Res. 4, 135–154 (1964).
    [CrossRef] [PubMed]
  38. A. Valberg, B. Lange-Malecki, “‘Color constancy’ in Mondrian patterns: a partial cancellation of physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990).
    [CrossRef]
  39. L. T. Maloney, B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986).
    [CrossRef] [PubMed]
  40. G. E. Schneider, “Two visual systems: brain mechanisms for localization and discrimination are dissociated by tectal and cortical lesions,” Science 163, 895–902 (1969).
    [CrossRef] [PubMed]
  41. M. Mishkin, L. G. Ungerleider, K. A. Macko, “Object vision and spatial vision: two cortical pathways,” Trends Neurosci. 6, 414–417 (1983).
    [CrossRef]
  42. B. Gillam, “The status of perceptual grouping 70 years after Wertheimer,” Aust. J. Psychol. 44, 157–162 (1992).
    [CrossRef]
  43. M. D’Zmura, P. Lennie, “Mechanisms of color constancy,” J. Opt. Soc. Am. A 3, 1662–1672 (1986).
    [CrossRef] [PubMed]
  44. E. Thompson, A. Palacios, F. J. Varela, “Ways of coloring: comparative color vision as a case study for cognitive science,” Behav. Brain Sci. 15, 1–74 (1992).
    [CrossRef]
  45. K. Bauml, “Color appearance: effects of illuminant changes under different surface collections,” J. Opt. Soc. Am. A 11, 531–542 (1994).
    [CrossRef]
  46. K. Bauml, “Illuminant changes under different surface collections: examining some principles of color appearance,” J. Opt. Soc. Am. A 12, 261–271 (1995).
    [CrossRef]
  47. D. H. Brainard, B. A. Wandell, “A bilinear model of the illuminant’s effect on color appearance,” in Computational Models of Visual Processing, M. S. Landy, J. A. Movshon, eds. (MIT Press, Cambridge, Mass., 1991), pp. 171–186.
  48. G. Buchsbaum, “A spatial processor model for object colour perception,” J. Franklin Inst. 310, 1–26 (1980).
    [CrossRef]
  49. H. G. Barrow, J. M. Tenenbaum, “Recovering intrinsic scene characteristics from images,” in Computer Vision Systems, A. R. Riseman, E. M. Riseman, eds. (Academic, New York, 1978), pp. 61–78.
  50. H. G. Barrow, J. M. Tenenbaum, “Computational vision,” Proc. IEEE 69, 572–595 (1981).
    [CrossRef]
  51. A. Gilchrist, “The perception of surface blacks and whites,” Sci. Am. 24, 88–97 (1979).
  52. E. H. Adelson, A. P. Pentland, “The perception of shading and reflectance,” in Channels in the Visual Nervous System: Neurophysiology, Psychophysics and Models, B. Blum, ed. (Freund, London, 1991), pp. 195–208.
  53. L. Arend, “Surface colors, illumination, and surface geometry: intrinsic-image models of human color perception,” in Lightness, Brightness, and Transparency, A. Gilchrist, ed. (Erlbaum, Hillsdale, N.J., 1994), pp. 159–213.
  54. S. M. Zeki, “The representation of colours in the cerebral cortex,” Nature (London) 284, 412–418 (1980).
    [CrossRef]
  55. S. M. Zeki, “Colour coding in the cerebral cortex: the reaction of cells in monkey visual cortex to wavelengths and colours,” Neuroscience 9, 741–765 (1983).
    [CrossRef] [PubMed]
  56. S. M. Zeki, “Colour coding in the cerebral cortex: the responses of wavelength-selective and colour-coded cells in monkey visual cortex to changes in wavelength composition,” Neuroscience 9, 767–781 (1983).
    [CrossRef] [PubMed]
  57. L. E. Arend, “How much does illumination color affect unattributed colors?” J. Opt. Soc. Am. A 10, 2134–2147 (1993).
    [CrossRef]
  58. K. T. Blackwell, G. Bushbaum, “Quantitative studies of color constancy,” J. Opt. Soc. Am. A 5, 1772–1780 (1988).
    [CrossRef] [PubMed]
  59. A. Ben-Zeev, “What is a perceptual mistake?” J. Mind Behav. 5, 261–278 (1984).

1998 (2)

S. K. Shevell, J. Wei, “Chromatic induction: border contrast or adaptation to surrounding light?” Vision Res. 38, 1561–1566 (1998).
[CrossRef] [PubMed]

D. H. Brainard, “Color constancy in the nearly natural image. 2. Achromatic loci,” J. Opt. Soc. Am. A 15, 307–325 (1998).
[CrossRef]

1997 (1)

J. A. Schirillo, S. K. Shevell, “An account of brightness in complex scenes based on inferred illumination,” Perception 26, 507–518 (1997).
[CrossRef] [PubMed]

1995 (3)

J. W. Jenness, S. K. Shevell, “Color appearance with sparse chromatic context,” Vision Res. 35, 797–805 (1995).
[CrossRef] [PubMed]

M. R. Luo, X. W. Gao, S. A. R. Scrivener, “Quantifying colour appearance: Part V. Simultaneous contrast,” Color Res. Appl. 20, 18–28 (1995).
[CrossRef]

K. Bauml, “Illuminant changes under different surface collections: examining some principles of color appearance,” J. Opt. Soc. Am. A 12, 261–271 (1995).
[CrossRef]

1994 (2)

K. Bauml, “Color appearance: effects of illuminant changes under different surface collections,” J. Opt. Soc. Am. A 11, 531–542 (1994).
[CrossRef]

A. Logvinenko, G. Menshikova, “Trade-off between a chromatic color and perceived illumination as revealed by the use of pseudoscopic inversion of apparent depth,” Perception 23, 1007–1024 (1994).
[CrossRef]

1993 (3)

1992 (4)

D. H. Brainard, B. A. Wandell, “Asymmetric color matching: how color appearance depends on the illuminant,” J. Opt. Soc. Am. A 9, 1433–1448 (1992).
[CrossRef] [PubMed]

E. Thompson, A. Palacios, F. J. Varela, “Ways of coloring: comparative color vision as a case study for cognitive science,” Behav. Brain Sci. 15, 1–74 (1992).
[CrossRef]

M. F. Wesner, S. K. Shevell, “Color perception within a chromatic context: changes in red/green equilibria caused by noncontiguous light,” Vision Res. 32, 1623–1634 (1992).
[CrossRef] [PubMed]

B. Gillam, “The status of perceptual grouping 70 years after Wertheimer,” Aust. J. Psychol. 44, 157–162 (1992).
[CrossRef]

1991 (1)

1990 (1)

A. Valberg, B. Lange-Malecki, “‘Color constancy’ in Mondrian patterns: a partial cancellation of physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990).
[CrossRef]

1989 (1)

H. Uchikawa, K. Uchikawa, R. M. Boynton, “Influence of achromatic surrounds on categorical perception of surface colors,” Vision Res. 29, 881–890 (1989).
[CrossRef] [PubMed]

1988 (2)

1987 (1)

S. K. Shevell, “Processes mediating color contrast,” Farbe 34, 261–268 (1987).

1986 (3)

1984 (1)

A. Ben-Zeev, “What is a perceptual mistake?” J. Mind Behav. 5, 261–278 (1984).

1983 (4)

S. M. Zeki, “Colour coding in the cerebral cortex: the reaction of cells in monkey visual cortex to wavelengths and colours,” Neuroscience 9, 741–765 (1983).
[CrossRef] [PubMed]

S. M. Zeki, “Colour coding in the cerebral cortex: the responses of wavelength-selective and colour-coded cells in monkey visual cortex to changes in wavelength composition,” Neuroscience 9, 767–781 (1983).
[CrossRef] [PubMed]

A. Gilchrist, S. Delman, A. Jocobsen, “The classification and integration of edges as critical to the perception of reflectance and illumination,” Percept. Psychophys. 33, 425–436 (1983).
[CrossRef] [PubMed]

M. Mishkin, L. G. Ungerleider, K. A. Macko, “Object vision and spatial vision: two cortical pathways,” Trends Neurosci. 6, 414–417 (1983).
[CrossRef]

1982 (1)

C. Ware, W. Cowan, “Changes in perceived color due to chromatic interactions,” Vision Res. 22, 1353–1362 (1982).
[CrossRef] [PubMed]

1981 (1)

H. G. Barrow, J. M. Tenenbaum, “Computational vision,” Proc. IEEE 69, 572–595 (1981).
[CrossRef]

1980 (2)

S. M. Zeki, “The representation of colours in the cerebral cortex,” Nature (London) 284, 412–418 (1980).
[CrossRef]

G. Buchsbaum, “A spatial processor model for object colour perception,” J. Franklin Inst. 310, 1–26 (1980).
[CrossRef]

1979 (1)

A. Gilchrist, “The perception of surface blacks and whites,” Sci. Am. 24, 88–97 (1979).

1977 (2)

S. S. Bergstrom, “Common and relative components of reflected light as information about the illumination, colour, and three-dimensional form of objects,” Scand. J. Psychol. 18, 180–186 (1977).
[CrossRef] [PubMed]

J. R. Pomerantz, L. C. Sager, R. J. Stoever, “Perception of wholes and their component parts: some configural superiority effects,” J. Exp. Psychol. 3, 422–435 (1977).

1976 (2)

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory: a comparison between theoretical predictions and observer responses to the ‘Color Mondrian’ experiments,” Vision Res. 16, 445–458 (1976).
[CrossRef]

A. Kozaki, K. Noguchi, “The relationship between perceived surface-lightness and perceived illumination,” Psychol. Res. 39, 1–16 (1976).
[CrossRef] [PubMed]

1973 (2)

T. P. Friden, “Whiteness constancy: inference or insensitivity?” Percept. Psychophys. 1, 81–89 (1973).
[CrossRef]

A. Kozaki, “Perception of lightness and brightness of achromatic surface color and impression of illumination,” Jpn. Psychol. Res. 15, 194–203 (1973).

1971 (1)

J. Beck, “Surface lightness and cues for the illuminant,” Am. J. Psychol. 84, 1–11 (1971).
[CrossRef] [PubMed]

1969 (1)

G. E. Schneider, “Two visual systems: brain mechanisms for localization and discrimination are dissociated by tectal and cortical lesions,” Science 163, 895–902 (1969).
[CrossRef] [PubMed]

1968 (1)

T. Oyama, “Stimulus determinants of brightness constancy and the perception of illumination,” Jpn. Psychol. Res. 10, 146–155 (1968).

1964 (1)

D. Jameson, L. M. Hurvich, “Theory of brightness and color contrast in human vision,” Vision Res. 4, 135–154 (1964).
[CrossRef] [PubMed]

1961 (1)

J. Beck, “Judgment of surface illumination and lightness,” J. Exp. Psychol. 60, 368–375 (1961).
[CrossRef]

1959 (1)

J. Beck, “Stimulus correlates for the judged illumination of a surface,” J. Exp. Psychol. 58, 267–274 (1959).
[CrossRef] [PubMed]

1941 (1)

D. B. Judd, “The definition of black and white,” Am. J. Psychol. 54, 289–294 (1941).
[CrossRef]

1931 (1)

R. H. Thouless, “Phenomenal regression to the real object. II,” Br. J. Psychol. 22, 1–30 (1931).

1923 (1)

W. Fuchs, “Experimentelle Untersuchungen uber die Anderung von Farben unter dem Einfluss von Gestalten (Angleichungserscheinungen), Z. Psychol. 92, 249–325 (1923), cited in G. Kanizsa, “Colour and organization: a response to King,” New Ideas Psychol. 6, 289–291 (1988).
[CrossRef]

Adelson, E. H.

E. H. Adelson, “Perceptual organization and the judgment of brightness,” Science 262, 2042–2044 (1993).
[CrossRef] [PubMed]

E. H. Adelson, A. P. Pentland, “The perception of shading and reflectance,” in Channels in the Visual Nervous System: Neurophysiology, Psychophysics and Models, B. Blum, ed. (Freund, London, 1991), pp. 195–208.

Arend, L.

L. Arend, A. Reeves, J. Schirillo, R. Goldstein, “Simultaneous color constancy: patterns with diverse Munsell values,” J. Opt. Soc. Am. A 8, 661–672 (1991).
[CrossRef] [PubMed]

L. Arend, A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986).
[CrossRef] [PubMed]

L. Arend, “Surface colors, illumination, and surface geometry: intrinsic-image models of human color perception,” in Lightness, Brightness, and Transparency, A. Gilchrist, ed. (Erlbaum, Hillsdale, N.J., 1994), pp. 159–213.

Arend, L. E.

Barrow, H. G.

H. G. Barrow, J. M. Tenenbaum, “Computational vision,” Proc. IEEE 69, 572–595 (1981).
[CrossRef]

H. G. Barrow, J. M. Tenenbaum, “Recovering intrinsic scene characteristics from images,” in Computer Vision Systems, A. R. Riseman, E. M. Riseman, eds. (Academic, New York, 1978), pp. 61–78.

Bauml, K.

Beck, J.

J. Beck, “Surface lightness and cues for the illuminant,” Am. J. Psychol. 84, 1–11 (1971).
[CrossRef] [PubMed]

J. Beck, “Judgment of surface illumination and lightness,” J. Exp. Psychol. 60, 368–375 (1961).
[CrossRef]

J. Beck, “Stimulus correlates for the judged illumination of a surface,” J. Exp. Psychol. 58, 267–274 (1959).
[CrossRef] [PubMed]

Ben-Zeev, A.

A. Ben-Zeev, “What is a perceptual mistake?” J. Mind Behav. 5, 261–278 (1984).

Bergstrom, S. S.

S. S. Bergstrom, “Common and relative components of reflected light as information about the illumination, colour, and three-dimensional form of objects,” Scand. J. Psychol. 18, 180–186 (1977).
[CrossRef] [PubMed]

Blackwell, K. T.

Boynton, R. M.

H. Uchikawa, K. Uchikawa, R. M. Boynton, “Influence of achromatic surrounds on categorical perception of surface colors,” Vision Res. 29, 881–890 (1989).
[CrossRef] [PubMed]

R. M. Boynton, “Color vision,” Annu. Rev. Psychol. 39, 69–100 (1988).
[CrossRef] [PubMed]

Brainard, D. H.

D. H. Brainard, “Color constancy in the nearly natural image. 2. Achromatic loci,” J. Opt. Soc. Am. A 15, 307–325 (1998).
[CrossRef]

D. H. Brainard, B. A. Wandell, “Asymmetric color matching: how color appearance depends on the illuminant,” J. Opt. Soc. Am. A 9, 1433–1448 (1992).
[CrossRef] [PubMed]

D. H. Brainard, B. A. Wandell, “A bilinear model of the illuminant’s effect on color appearance,” in Computational Models of Visual Processing, M. S. Landy, J. A. Movshon, eds. (MIT Press, Cambridge, Mass., 1991), pp. 171–186.

Buchsbaum, G.

G. Buchsbaum, “A spatial processor model for object colour perception,” J. Franklin Inst. 310, 1–26 (1980).
[CrossRef]

Bushbaum, G.

Chevreul, M. E.

M. E. Chevreul, The Principles of Harmony and Contrast of Colors and Their Applications to the Arts (Van Nostrand, New York, 1939; original English translation, 1854; republished, 1967).

Cowan, W.

C. Ware, W. Cowan, “Changes in perceived color due to chromatic interactions,” Vision Res. 22, 1353–1362 (1982).
[CrossRef] [PubMed]

D’Zmura, M.

Delman, S.

A. Gilchrist, S. Delman, A. Jocobsen, “The classification and integration of edges as critical to the perception of reflectance and illumination,” Percept. Psychophys. 33, 425–436 (1983).
[CrossRef] [PubMed]

Friden, T. P.

T. P. Friden, “Whiteness constancy: inference or insensitivity?” Percept. Psychophys. 1, 81–89 (1973).
[CrossRef]

Fuchs, W.

W. Fuchs, “Experimentelle Untersuchungen uber die Anderung von Farben unter dem Einfluss von Gestalten (Angleichungserscheinungen), Z. Psychol. 92, 249–325 (1923), cited in G. Kanizsa, “Colour and organization: a response to King,” New Ideas Psychol. 6, 289–291 (1988).
[CrossRef]

Gao, X. W.

M. R. Luo, X. W. Gao, S. A. R. Scrivener, “Quantifying colour appearance: Part V. Simultaneous contrast,” Color Res. Appl. 20, 18–28 (1995).
[CrossRef]

Gilchrist, A.

A. Gilchrist, S. Delman, A. Jocobsen, “The classification and integration of edges as critical to the perception of reflectance and illumination,” Percept. Psychophys. 33, 425–436 (1983).
[CrossRef] [PubMed]

A. Gilchrist, “The perception of surface blacks and whites,” Sci. Am. 24, 88–97 (1979).

Gillam, B.

B. Gillam, “The status of perceptual grouping 70 years after Wertheimer,” Aust. J. Psychol. 44, 157–162 (1992).
[CrossRef]

Goldstein, R.

Hering, E.

E. Hering, Grundzuge der Lehre vom Lichtsinn (Gerolds Sohn, Vienna, 1878).

Hurvich, L. M.

D. Jameson, L. M. Hurvich, “Theory of brightness and color contrast in human vision,” Vision Res. 4, 135–154 (1964).
[CrossRef] [PubMed]

Jameson, D.

D. Jameson, L. M. Hurvich, “Theory of brightness and color contrast in human vision,” Vision Res. 4, 135–154 (1964).
[CrossRef] [PubMed]

Jenness, J. W.

J. W. Jenness, S. K. Shevell, “Color appearance with sparse chromatic context,” Vision Res. 35, 797–805 (1995).
[CrossRef] [PubMed]

Jocobsen, A.

A. Gilchrist, S. Delman, A. Jocobsen, “The classification and integration of edges as critical to the perception of reflectance and illumination,” Percept. Psychophys. 33, 425–436 (1983).
[CrossRef] [PubMed]

Judd, D. B.

D. B. Judd, “The definition of black and white,” Am. J. Psychol. 54, 289–294 (1941).
[CrossRef]

Kozaki, A.

A. Kozaki, K. Noguchi, “The relationship between perceived surface-lightness and perceived illumination,” Psychol. Res. 39, 1–16 (1976).
[CrossRef] [PubMed]

A. Kozaki, “Perception of lightness and brightness of achromatic surface color and impression of illumination,” Jpn. Psychol. Res. 15, 194–203 (1973).

Lange-Malecki, B.

A. Valberg, B. Lange-Malecki, “‘Color constancy’ in Mondrian patterns: a partial cancellation of physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990).
[CrossRef]

Lennie, P.

Logvinenko, A.

A. Logvinenko, G. Menshikova, “Trade-off between a chromatic color and perceived illumination as revealed by the use of pseudoscopic inversion of apparent depth,” Perception 23, 1007–1024 (1994).
[CrossRef]

Logvinenko, A. D.

A. D. Logvinenko, “Invariant relationship between achromatic colour, apparent illumination, and shape of surface: implications for the colour perception theories,” in John Dalton’s Colour Vision Legacy, C. M. Dickinson, I. J. Murray, D. Carden, eds. (Taylor & Francis, London, 1996).

Luo, M. R.

M. R. Luo, X. W. Gao, S. A. R. Scrivener, “Quantifying colour appearance: Part V. Simultaneous contrast,” Color Res. Appl. 20, 18–28 (1995).
[CrossRef]

Macko, K. A.

M. Mishkin, L. G. Ungerleider, K. A. Macko, “Object vision and spatial vision: two cortical pathways,” Trends Neurosci. 6, 414–417 (1983).
[CrossRef]

Maloney, L. T.

McCann, J. J.

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory: a comparison between theoretical predictions and observer responses to the ‘Color Mondrian’ experiments,” Vision Res. 16, 445–458 (1976).
[CrossRef]

McKee, S. P.

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory: a comparison between theoretical predictions and observer responses to the ‘Color Mondrian’ experiments,” Vision Res. 16, 445–458 (1976).
[CrossRef]

Menshikova, G.

A. Logvinenko, G. Menshikova, “Trade-off between a chromatic color and perceived illumination as revealed by the use of pseudoscopic inversion of apparent depth,” Perception 23, 1007–1024 (1994).
[CrossRef]

Mishkin, M.

M. Mishkin, L. G. Ungerleider, K. A. Macko, “Object vision and spatial vision: two cortical pathways,” Trends Neurosci. 6, 414–417 (1983).
[CrossRef]

Noguchi, K.

A. Kozaki, K. Noguchi, “The relationship between perceived surface-lightness and perceived illumination,” Psychol. Res. 39, 1–16 (1976).
[CrossRef] [PubMed]

Oyama, T.

T. Oyama, “Stimulus determinants of brightness constancy and the perception of illumination,” Jpn. Psychol. Res. 10, 146–155 (1968).

Palacios, A.

E. Thompson, A. Palacios, F. J. Varela, “Ways of coloring: comparative color vision as a case study for cognitive science,” Behav. Brain Sci. 15, 1–74 (1992).
[CrossRef]

Pentland, A. P.

E. H. Adelson, A. P. Pentland, “The perception of shading and reflectance,” in Channels in the Visual Nervous System: Neurophysiology, Psychophysics and Models, B. Blum, ed. (Freund, London, 1991), pp. 195–208.

Pomerantz, J. R.

J. R. Pomerantz, L. C. Sager, R. J. Stoever, “Perception of wholes and their component parts: some configural superiority effects,” J. Exp. Psychol. 3, 422–435 (1977).

Reeves, A.

Sager, L. C.

J. R. Pomerantz, L. C. Sager, R. J. Stoever, “Perception of wholes and their component parts: some configural superiority effects,” J. Exp. Psychol. 3, 422–435 (1977).

Schirillo, J.

Schirillo, J. A.

J. A. Schirillo, S. K. Shevell, “An account of brightness in complex scenes based on inferred illumination,” Perception 26, 507–518 (1997).
[CrossRef] [PubMed]

J. A. Schirillo, S. K. Shevell, “Lightness and brightness judgments of coplanar retinally noncontiguous surfaces,” J. Opt. Soc. Am. A 10, 2442–2452 (1993).
[CrossRef]

Schneider, G. E.

G. E. Schneider, “Two visual systems: brain mechanisms for localization and discrimination are dissociated by tectal and cortical lesions,” Science 163, 895–902 (1969).
[CrossRef] [PubMed]

Scrivener, S. A. R.

M. R. Luo, X. W. Gao, S. A. R. Scrivener, “Quantifying colour appearance: Part V. Simultaneous contrast,” Color Res. Appl. 20, 18–28 (1995).
[CrossRef]

Shevell, S. K.

S. K. Shevell, J. Wei, “Chromatic induction: border contrast or adaptation to surrounding light?” Vision Res. 38, 1561–1566 (1998).
[CrossRef] [PubMed]

J. A. Schirillo, S. K. Shevell, “An account of brightness in complex scenes based on inferred illumination,” Perception 26, 507–518 (1997).
[CrossRef] [PubMed]

J. W. Jenness, S. K. Shevell, “Color appearance with sparse chromatic context,” Vision Res. 35, 797–805 (1995).
[CrossRef] [PubMed]

J. A. Schirillo, S. K. Shevell, “Lightness and brightness judgments of coplanar retinally noncontiguous surfaces,” J. Opt. Soc. Am. A 10, 2442–2452 (1993).
[CrossRef]

M. F. Wesner, S. K. Shevell, “Color perception within a chromatic context: changes in red/green equilibria caused by noncontiguous light,” Vision Res. 32, 1623–1634 (1992).
[CrossRef] [PubMed]

S. K. Shevell, “Processes mediating color contrast,” Farbe 34, 261–268 (1987).

Stoever, R. J.

J. R. Pomerantz, L. C. Sager, R. J. Stoever, “Perception of wholes and their component parts: some configural superiority effects,” J. Exp. Psychol. 3, 422–435 (1977).

Taylor, T. H.

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory: a comparison between theoretical predictions and observer responses to the ‘Color Mondrian’ experiments,” Vision Res. 16, 445–458 (1976).
[CrossRef]

Tenenbaum, J. M.

H. G. Barrow, J. M. Tenenbaum, “Computational vision,” Proc. IEEE 69, 572–595 (1981).
[CrossRef]

H. G. Barrow, J. M. Tenenbaum, “Recovering intrinsic scene characteristics from images,” in Computer Vision Systems, A. R. Riseman, E. M. Riseman, eds. (Academic, New York, 1978), pp. 61–78.

Thompson, E.

E. Thompson, A. Palacios, F. J. Varela, “Ways of coloring: comparative color vision as a case study for cognitive science,” Behav. Brain Sci. 15, 1–74 (1992).
[CrossRef]

Thouless, R. H.

R. H. Thouless, “Phenomenal regression to the real object. II,” Br. J. Psychol. 22, 1–30 (1931).

Uchikawa, H.

H. Uchikawa, K. Uchikawa, R. M. Boynton, “Influence of achromatic surrounds on categorical perception of surface colors,” Vision Res. 29, 881–890 (1989).
[CrossRef] [PubMed]

Uchikawa, K.

H. Uchikawa, K. Uchikawa, R. M. Boynton, “Influence of achromatic surrounds on categorical perception of surface colors,” Vision Res. 29, 881–890 (1989).
[CrossRef] [PubMed]

Ungerleider, L. G.

M. Mishkin, L. G. Ungerleider, K. A. Macko, “Object vision and spatial vision: two cortical pathways,” Trends Neurosci. 6, 414–417 (1983).
[CrossRef]

Valberg, A.

A. Valberg, B. Lange-Malecki, “‘Color constancy’ in Mondrian patterns: a partial cancellation of physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990).
[CrossRef]

Varela, F. J.

E. Thompson, A. Palacios, F. J. Varela, “Ways of coloring: comparative color vision as a case study for cognitive science,” Behav. Brain Sci. 15, 1–74 (1992).
[CrossRef]

von Helmholtz, H.

H. von Helmholtz, Treatise on Physiological Optics, Vol. III, edited and translated from the 3rd German edition by J. P. C. Southhall (Dover, New York, 1867; republished, 1962).

Wandell, B. A.

D. H. Brainard, B. A. Wandell, “Asymmetric color matching: how color appearance depends on the illuminant,” J. Opt. Soc. Am. A 9, 1433–1448 (1992).
[CrossRef] [PubMed]

L. T. Maloney, B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986).
[CrossRef] [PubMed]

D. H. Brainard, B. A. Wandell, “A bilinear model of the illuminant’s effect on color appearance,” in Computational Models of Visual Processing, M. S. Landy, J. A. Movshon, eds. (MIT Press, Cambridge, Mass., 1991), pp. 171–186.

Ware, C.

C. Ware, W. Cowan, “Changes in perceived color due to chromatic interactions,” Vision Res. 22, 1353–1362 (1982).
[CrossRef] [PubMed]

Wei, J.

S. K. Shevell, J. Wei, “Chromatic induction: border contrast or adaptation to surrounding light?” Vision Res. 38, 1561–1566 (1998).
[CrossRef] [PubMed]

Wesner, M. F.

M. F. Wesner, S. K. Shevell, “Color perception within a chromatic context: changes in red/green equilibria caused by noncontiguous light,” Vision Res. 32, 1623–1634 (1992).
[CrossRef] [PubMed]

Zeki, S. M.

S. M. Zeki, “Colour coding in the cerebral cortex: the reaction of cells in monkey visual cortex to wavelengths and colours,” Neuroscience 9, 741–765 (1983).
[CrossRef] [PubMed]

S. M. Zeki, “Colour coding in the cerebral cortex: the responses of wavelength-selective and colour-coded cells in monkey visual cortex to changes in wavelength composition,” Neuroscience 9, 767–781 (1983).
[CrossRef] [PubMed]

S. M. Zeki, “The representation of colours in the cerebral cortex,” Nature (London) 284, 412–418 (1980).
[CrossRef]

Am. J. Psychol. (2)

D. B. Judd, “The definition of black and white,” Am. J. Psychol. 54, 289–294 (1941).
[CrossRef]

J. Beck, “Surface lightness and cues for the illuminant,” Am. J. Psychol. 84, 1–11 (1971).
[CrossRef] [PubMed]

Annu. Rev. Psychol. (1)

R. M. Boynton, “Color vision,” Annu. Rev. Psychol. 39, 69–100 (1988).
[CrossRef] [PubMed]

Aust. J. Psychol. (1)

B. Gillam, “The status of perceptual grouping 70 years after Wertheimer,” Aust. J. Psychol. 44, 157–162 (1992).
[CrossRef]

Behav. Brain Sci. (1)

E. Thompson, A. Palacios, F. J. Varela, “Ways of coloring: comparative color vision as a case study for cognitive science,” Behav. Brain Sci. 15, 1–74 (1992).
[CrossRef]

Br. J. Psychol. (1)

R. H. Thouless, “Phenomenal regression to the real object. II,” Br. J. Psychol. 22, 1–30 (1931).

Color Res. Appl. (1)

M. R. Luo, X. W. Gao, S. A. R. Scrivener, “Quantifying colour appearance: Part V. Simultaneous contrast,” Color Res. Appl. 20, 18–28 (1995).
[CrossRef]

Farbe (1)

S. K. Shevell, “Processes mediating color contrast,” Farbe 34, 261–268 (1987).

J. Exp. Psychol. (3)

J. Beck, “Stimulus correlates for the judged illumination of a surface,” J. Exp. Psychol. 58, 267–274 (1959).
[CrossRef] [PubMed]

J. Beck, “Judgment of surface illumination and lightness,” J. Exp. Psychol. 60, 368–375 (1961).
[CrossRef]

J. R. Pomerantz, L. C. Sager, R. J. Stoever, “Perception of wholes and their component parts: some configural superiority effects,” J. Exp. Psychol. 3, 422–435 (1977).

J. Franklin Inst. (1)

G. Buchsbaum, “A spatial processor model for object colour perception,” J. Franklin Inst. 310, 1–26 (1980).
[CrossRef]

J. Mind Behav. (1)

A. Ben-Zeev, “What is a perceptual mistake?” J. Mind Behav. 5, 261–278 (1984).

J. Opt. Soc. Am. A (11)

K. Bauml, “Color appearance: effects of illuminant changes under different surface collections,” J. Opt. Soc. Am. A 11, 531–542 (1994).
[CrossRef]

D. H. Brainard, “Color constancy in the nearly natural image. 2. Achromatic loci,” J. Opt. Soc. Am. A 15, 307–325 (1998).
[CrossRef]

L. T. Maloney, B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986).
[CrossRef] [PubMed]

M. D’Zmura, P. Lennie, “Mechanisms of color constancy,” J. Opt. Soc. Am. A 3, 1662–1672 (1986).
[CrossRef] [PubMed]

L. Arend, A. Reeves, “Simultaneous color constancy,” J. Opt. Soc. Am. A 3, 1743–1751 (1986).
[CrossRef] [PubMed]

K. T. Blackwell, G. Bushbaum, “Quantitative studies of color constancy,” J. Opt. Soc. Am. A 5, 1772–1780 (1988).
[CrossRef] [PubMed]

L. Arend, A. Reeves, J. Schirillo, R. Goldstein, “Simultaneous color constancy: patterns with diverse Munsell values,” J. Opt. Soc. Am. A 8, 661–672 (1991).
[CrossRef] [PubMed]

D. H. Brainard, B. A. Wandell, “Asymmetric color matching: how color appearance depends on the illuminant,” J. Opt. Soc. Am. A 9, 1433–1448 (1992).
[CrossRef] [PubMed]

L. E. Arend, “How much does illumination color affect unattributed colors?” J. Opt. Soc. Am. A 10, 2134–2147 (1993).
[CrossRef]

J. A. Schirillo, S. K. Shevell, “Lightness and brightness judgments of coplanar retinally noncontiguous surfaces,” J. Opt. Soc. Am. A 10, 2442–2452 (1993).
[CrossRef]

K. Bauml, “Illuminant changes under different surface collections: examining some principles of color appearance,” J. Opt. Soc. Am. A 12, 261–271 (1995).
[CrossRef]

Jpn. Psychol. Res. (2)

T. Oyama, “Stimulus determinants of brightness constancy and the perception of illumination,” Jpn. Psychol. Res. 10, 146–155 (1968).

A. Kozaki, “Perception of lightness and brightness of achromatic surface color and impression of illumination,” Jpn. Psychol. Res. 15, 194–203 (1973).

Nature (London) (1)

S. M. Zeki, “The representation of colours in the cerebral cortex,” Nature (London) 284, 412–418 (1980).
[CrossRef]

Neuroscience (2)

S. M. Zeki, “Colour coding in the cerebral cortex: the reaction of cells in monkey visual cortex to wavelengths and colours,” Neuroscience 9, 741–765 (1983).
[CrossRef] [PubMed]

S. M. Zeki, “Colour coding in the cerebral cortex: the responses of wavelength-selective and colour-coded cells in monkey visual cortex to changes in wavelength composition,” Neuroscience 9, 767–781 (1983).
[CrossRef] [PubMed]

Percept. Psychophys. (2)

T. P. Friden, “Whiteness constancy: inference or insensitivity?” Percept. Psychophys. 1, 81–89 (1973).
[CrossRef]

A. Gilchrist, S. Delman, A. Jocobsen, “The classification and integration of edges as critical to the perception of reflectance and illumination,” Percept. Psychophys. 33, 425–436 (1983).
[CrossRef] [PubMed]

Perception (2)

J. A. Schirillo, S. K. Shevell, “An account of brightness in complex scenes based on inferred illumination,” Perception 26, 507–518 (1997).
[CrossRef] [PubMed]

A. Logvinenko, G. Menshikova, “Trade-off between a chromatic color and perceived illumination as revealed by the use of pseudoscopic inversion of apparent depth,” Perception 23, 1007–1024 (1994).
[CrossRef]

Proc. IEEE (1)

H. G. Barrow, J. M. Tenenbaum, “Computational vision,” Proc. IEEE 69, 572–595 (1981).
[CrossRef]

Psychol. Res. (1)

A. Kozaki, K. Noguchi, “The relationship between perceived surface-lightness and perceived illumination,” Psychol. Res. 39, 1–16 (1976).
[CrossRef] [PubMed]

Scand. J. Psychol. (1)

S. S. Bergstrom, “Common and relative components of reflected light as information about the illumination, colour, and three-dimensional form of objects,” Scand. J. Psychol. 18, 180–186 (1977).
[CrossRef] [PubMed]

Sci. Am. (1)

A. Gilchrist, “The perception of surface blacks and whites,” Sci. Am. 24, 88–97 (1979).

Science (2)

E. H. Adelson, “Perceptual organization and the judgment of brightness,” Science 262, 2042–2044 (1993).
[CrossRef] [PubMed]

G. E. Schneider, “Two visual systems: brain mechanisms for localization and discrimination are dissociated by tectal and cortical lesions,” Science 163, 895–902 (1969).
[CrossRef] [PubMed]

Trends Neurosci. (1)

M. Mishkin, L. G. Ungerleider, K. A. Macko, “Object vision and spatial vision: two cortical pathways,” Trends Neurosci. 6, 414–417 (1983).
[CrossRef]

Vision Res. (8)

D. Jameson, L. M. Hurvich, “Theory of brightness and color contrast in human vision,” Vision Res. 4, 135–154 (1964).
[CrossRef] [PubMed]

A. Valberg, B. Lange-Malecki, “‘Color constancy’ in Mondrian patterns: a partial cancellation of physical chromaticity shifts by simultaneous contrast,” Vision Res. 30, 371–380 (1990).
[CrossRef]

M. F. Wesner, S. K. Shevell, “Color perception within a chromatic context: changes in red/green equilibria caused by noncontiguous light,” Vision Res. 32, 1623–1634 (1992).
[CrossRef] [PubMed]

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory: a comparison between theoretical predictions and observer responses to the ‘Color Mondrian’ experiments,” Vision Res. 16, 445–458 (1976).
[CrossRef]

C. Ware, W. Cowan, “Changes in perceived color due to chromatic interactions,” Vision Res. 22, 1353–1362 (1982).
[CrossRef] [PubMed]

H. Uchikawa, K. Uchikawa, R. M. Boynton, “Influence of achromatic surrounds on categorical perception of surface colors,” Vision Res. 29, 881–890 (1989).
[CrossRef] [PubMed]

J. W. Jenness, S. K. Shevell, “Color appearance with sparse chromatic context,” Vision Res. 35, 797–805 (1995).
[CrossRef] [PubMed]

S. K. Shevell, J. Wei, “Chromatic induction: border contrast or adaptation to surrounding light?” Vision Res. 38, 1561–1566 (1998).
[CrossRef] [PubMed]

Z. Psychol. (1)

W. Fuchs, “Experimentelle Untersuchungen uber die Anderung von Farben unter dem Einfluss von Gestalten (Angleichungserscheinungen), Z. Psychol. 92, 249–325 (1923), cited in G. Kanizsa, “Colour and organization: a response to King,” New Ideas Psychol. 6, 289–291 (1988).
[CrossRef]

Other (10)

Note that these studies do not measure perceived brightness. We have argued that brightness, not lightness, may be a better measure for understanding perceived illuminatio; see Ref. 22.

As Beck (Ref. 14) demonstrated, a CRT simulation produces results very similar to those obtained by using real papers and reflected illumination; see Refs. 26 and 36.

D. H. Brainard, B. A. Wandell, “A bilinear model of the illuminant’s effect on color appearance,” in Computational Models of Visual Processing, M. S. Landy, J. A. Movshon, eds. (MIT Press, Cambridge, Mass., 1991), pp. 171–186.

H. von Helmholtz, Treatise on Physiological Optics, Vol. III, edited and translated from the 3rd German edition by J. P. C. Southhall (Dover, New York, 1867; republished, 1962).

E. Hering, Grundzuge der Lehre vom Lichtsinn (Gerolds Sohn, Vienna, 1878).

A. D. Logvinenko, “Invariant relationship between achromatic colour, apparent illumination, and shape of surface: implications for the colour perception theories,” in John Dalton’s Colour Vision Legacy, C. M. Dickinson, I. J. Murray, D. Carden, eds. (Taylor & Francis, London, 1996).

M. E. Chevreul, The Principles of Harmony and Contrast of Colors and Their Applications to the Arts (Van Nostrand, New York, 1939; original English translation, 1854; republished, 1967).

E. H. Adelson, A. P. Pentland, “The perception of shading and reflectance,” in Channels in the Visual Nervous System: Neurophysiology, Psychophysics and Models, B. Blum, ed. (Freund, London, 1991), pp. 195–208.

L. Arend, “Surface colors, illumination, and surface geometry: intrinsic-image models of human color perception,” in Lightness, Brightness, and Transparency, A. Gilchrist, ed. (Erlbaum, Hillsdale, N.J., 1994), pp. 159–213.

H. G. Barrow, J. M. Tenenbaum, “Recovering intrinsic scene characteristics from images,” in Computer Vision Systems, A. R. Riseman, E. M. Riseman, eds. (Academic, New York, 1978), pp. 61–78.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Two abutting uniform 10.5°×10.5° surrounds. The left-hand test surround is Munsell B 5/2 under illuminant C, and the right-hand comparison surround is Munsell B 5/2 under illuminant A. The test and comparison patches are 1.25° squares. (b) Two abutting horizontal 2.1°×10.5° stripe surrounds [identical in chromaticity with the test and comparison surrounds of (a)]. (c) Two vertical 2.1°×10.5° stripe surrounds [identical in chromaticity with the test and comparison surrounds of (a)]. (d) Ten vertical 2.1°×10.5° stripes (chromaticities shown in Fig. 2). The stripes appear as ten different surface colors graded from blues through grays through yellows. (e) Ten vertical 2.1°×10.5° stripes as in (d) grouped into right and left halves and separated by a 2° dark gap. (f) Ten stripes from (d) rotated 90° clockwise around the test and comparison centers as pivot points (see the text). (g) Ten vertical 2.1°×10.5° stripes as in (d) grouped into right and left halves but reversed in sequence (see the text).

Fig. 2
Fig. 2

Chromaticities of the ten 2.1°×10.5° stripes. The chromaticities are derived from five Munsell papers under illuminant C (circles) and illuminant A (squares): 10B 5/6 (xC=0.232, yC=0.264; xA=0.353, yA=0.392), 10B 5/4 (xC=0.254, yC=0.280; xA=0.383, yA=0.401), B 5/2 (xC=0.274, yC=0.305; xA=0.405, yA=0.413, BG 8/2 (xC=0.300, yC=0.337; xA=0.428, yA=0.427), and GY 5/2 (xC=0.331, yC=0.367; xA=0.454, yA=0.437). Judd spectral loci are represented by small dots, and the monitor gamut is enclosed by the triangle.

Fig. 3
Fig. 3

Hue and saturation matches (in Judd space) between test T (circles) and the eight comparison patches C (squares with cross) with use of the two large uniform surrounds. Here and in the subsequent figures, the plots from top to bottom correspond to observers JS, AL, and BD.

Fig. 4
Fig. 4

Hue and saturation matches (in Judd space) for two large uniform surrounds (circles), the two-row uniform horizontal surrounds (diamonds), and the two-column uniform vertical surrounds (triangles).

Fig. 5
Fig. 5

Hue and saturation matches (in Judd space) for the two-column uniform vertical surrounds (triangles) and the ten-column vertical surrounds (filled squares).

Fig. 6
Fig. 6

Hue and saturation matches (in Judd space) for the two-column uniform vertical surrounds (triangles) and the ten-column vertical surround with a 2° dark gap (circles).

Fig. 7
Fig. 7

Hue and saturation matches (in Judd space) for the ten-column vertical surround (filled squares) and the ten-row horizontal surround (circles).

Fig. 8
Fig. 8

Hue and saturation matches (in Judd space) for the ten-column vertical surround (filled squares) and the ten-column vertical-reversed surround (triangles).

Metrics