Abstract

A model of foveal achromatic and chromatic sensitivity [Vision Res. 36, 1597 (1996)] was extended to the peripheral visual field. Threshold-versus-illuminance functions were analyzed to determine effects of eccentricity on absolute thresholds and gain constants of chromatic and luminance mechanisms. The resulting peripheral model successfully predicted peripheral contrast sensitivity as a function of wavelength, for both white and 500-nm backgrounds. We conclude that the short-wavelength-sensitive cone opponent mechanism may mediate thresholds in Sloan’s notch in the normal periphery and that interpretation of reduced chromatic sensitivity in the periphery requires an explicit model of how eccentricity affects both the gain constant and the absolute threshold.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Miyahara, J. Pokorny, V. C. Smith, “Increment threshold and purity discrimination spectral sensitivities of X-chromosome-linked color-defective observers,” Vision Res. 36, 1597–1613 (1996).
    [CrossRef] [PubMed]
  2. T. Yeh, J. Pokorny, V. C. Smith, “S-cone discrimination sensitivity and performance on arrangement tests,” Doc. Ophthalmol. Proc. Series. 56, 293–302 (1993).
    [CrossRef]
  3. V. Smith, J. Pokorny, T. Yeh, “Pigment tests evaluated by a model of chromatic discrimination,” J. Opt. Soc. Am. A 10, 1773–1784 (1993).
    [CrossRef]
  4. V. Smith, J. Pokorny, T. Yeh, “The Farnsworth–Munsell 100-hue test in cone excitation space,” in Colour Vision Deficiencies XI, B. Drum, ed., Vol. 56 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Boston, Mass., 1993), pp. 281–291.
    [CrossRef]
  5. T. Yeh, J. Pokorny, V. C. Smith, “Chromatic discrimination with variation in chromaticity and luminance: data and theory,” Vision Res. 33, 1835–1845 (1993).
    [CrossRef] [PubMed]
  6. E. Miyahara, V. Smith, J. Pokorny, “How surrounds affect chromaticity discrimination,” J. Opt. Soc. Am. A 10, 545–553 (1993).
    [CrossRef] [PubMed]
  7. C. Johnson, “Early losses of visual function in glaucoma,” Optom. Vision Sci. 72, 359–370 (1995).
    [CrossRef]
  8. C. A. Johnson, A. J. Adams, E. J. Casson, J. D. Brandt, “Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss,” Arch. Ophthalmol. 111, 645–650 (1993).
    [CrossRef] [PubMed]
  9. S. Alvarez, G. Pierce, A. Vingrys, S. Benes, P. Weber, P. King-Smith, “Comparison of red–green, blue–yellow and achromatic losses in glaucoma,” Vision Res. 37, 2295–2301 (1997).
    [CrossRef] [PubMed]
  10. P. A. Sample, M. E. Madrid, R. N. Weinreb, “Evidence for a variety of functional defects in glaucoma-suspect eyes,” J. Glaucoma 3 (suppl. 1), S5–S18 (1994).
    [CrossRef] [PubMed]
  11. P. A. Sample, G. A. Martinez, R. N. Weinreb, “Color visual fields: a five-year prospective study in suspect eye and eyes with primary open angle glaucoma,” in Perimetry Update 1992/1993, R. P. Mills, ed. (Kugler, Amsterdam, 1993), pp. 473–476.
  12. G. Verriest, A. Uvijls, “Spectral increment thresholds on a white background in different age groups of normal subjects and in acquired ocular diseases,” Doc. Ophthalmol. 43, 217–248 (1977).
    [CrossRef] [PubMed]
  13. J. Thornton, E. Pugh, “Relationship of opponent-colours cancellation measures to cone-antagonistic signals deduced from increment threshold data,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 361–373.
  14. J. E. Thornton, E. N. J. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
    [CrossRef] [PubMed]
  15. H. G. Sperling, R. S. Harwerth, “Red–green cone interaction in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
    [CrossRef] [PubMed]
  16. M. Kalloniatis, R. Harwerth, “Spectral sensitivity and adaptation characteristics of cone mechanisms under white-light adaptation,” J. Opt. Soc. Am. A 7, 1912–1928 (1990).
    [CrossRef] [PubMed]
  17. M. Kalloniatis, R. Harwerth, “Effects of chromatic adaptation on opponent interactions in monkey increment-threshold spectral-sensitivity functions,” J. Opt. Soc. Am. A 8, 1818–1831 (1991).
    [CrossRef] [PubMed]
  18. R. M. Boynton, N. Kambe, “Chromatic difference steps of moderate size measured along theoretically critical axes,” Color Res. Appl. 5, 13–23 (1980).
    [CrossRef]
  19. T. Yeh, V. C. Smith, J. Pokorny, “The effect of background luminance on cone sensitivity functions,” IOVS 30, 2077–2086 (1989).
  20. D. Calkins, J. Thornton, E. Pugh, “Monochromatism determined at a long-wavelength/middle-wavelength cone-antagonistic locus,” Vision Res. 32, 2349–2367 (1992).
    [CrossRef] [PubMed]
  21. D. Foster, R. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour processes?” Vision Res. 23, 787–797 (1983).
    [CrossRef] [PubMed]
  22. M. J. Sankeralli, K. T. Mullen, “Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space,” J. Opt. Soc. Am. A 14, 2633–2646 (1997).
    [CrossRef]
  23. A. Nagy, S. Wolf, “Red–green color discrimination in peripheral vision,” Vision Res. 33, 235–242 (1993).
    [CrossRef] [PubMed]
  24. S. Anderson, K. Mullen, R. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors,” J. Physiol. (London) 442, 47–64 (1994).
  25. M. Johnson, “Color vision in the peripheral retina,” Am. J. Optom. Physiol. Opt. 63, 97–103 (1986).
    [CrossRef] [PubMed]
  26. J. G. Robson, N. Graham, “Probability summation and regional variation in contrast sensitivity across the visual field,” Vision Res. 21, 409–418 (1981).
    [CrossRef] [PubMed]
  27. C. Noorlander, J. J. Koenderink, R. J. den Ouden, B. W. Edens, “Sensitivity to spatiotemporal colour contrast in the peripheral visual field,” Vision Res. 23, 1–11 (1983).
    [CrossRef] [PubMed]
  28. J. Rovamo, V. Virsu, R. Nasanen, “Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision,” Nature 271, 54–56 (1978).
    [CrossRef] [PubMed]
  29. A. B. Watson, “Estimation of local spatial scale,” J. Opt. Soc. Am. A 4, 1579–1582 (1987).
    [CrossRef] [PubMed]
  30. J. Pointer, R. Hess, “The contrast sensitivity gradient across the human visual field: with emphasis on the low spatial frequency range,” Vision Res. 29, 1133–1151 (1989).
    [CrossRef] [PubMed]
  31. K. Mullen, “Colour vision as a post-receptoral specialization of the central visual field,” Vision Res. 31, 119–130 (1991).
    [CrossRef] [PubMed]
  32. K. Mullen, F. Kingdom, “Losses in peripheral colour sensitivity predicted from ‘hit and miss’ post-receptoral cone connections,” Vision Res. 36, 1995–2000 (1996).
    [CrossRef] [PubMed]
  33. C. Stromeyer, J. Lee, R. Eskew, “Peripheral sensitivity for flashes: a post-receptoral red–green aymmetry,” Vision Res. 32, 1865–1873 (1992).
    [CrossRef] [PubMed]
  34. J. v. Esch, E. Koldenhof, A. van Doorn, J. Koenderink, “Spectral sensitivity and wavelength discrimination of the human peripheral visual field,” J. Opt. Soc. Am. A 1, 443–450 (1984).
    [CrossRef] [PubMed]
  35. R. S. Harwerth, E. L. Smith, L. DeSantis, “Mechanisms mediating visual detection in static perimetry,” Invest. Ophthalmol. Visual Sci. 34, 3011–3023 (1993).
  36. V. C. Greenstein, D. C. Hood, “The effects of light adaptation on L-cone sensitivity in retinal disease,” Clin. Vision Sci. 7, 1–7 (1992).
  37. P. E. King-Smith, D. Carden, “Luminance and opponent color contributions to visual detection and adaptation and to temporal spatial integration,” J. Opt. Soc. Am. 66, 709–717 (1976).
    [CrossRef] [PubMed]
  38. T. Ueno, J. Pokorny, V. C. Smith, “Reaction times to chromatic stimuli,” Vision Res. 25, 1623–1627 (1985).
    [CrossRef] [PubMed]
  39. H. Levitt, “Transformed up–down methods in psychophysics,” J. Acoust. Soc. Am. 49, 467–477 (1971).
    [CrossRef]
  40. W. H. Swanson, E. E. Birch, “Extracting thresholds from noisy psychophysical data,” Percept. Psychophy. 51, 409–422 (1992).
    [CrossRef]
  41. Y. LeGrand, Light, Color and Vision (Chapman & Hall, London, 1968).
  42. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [CrossRef] [PubMed]
  43. D. Judd, Colorimetry and Artificial Daylight, , Proceedings of the Twelfth Session of the CIE, Stockholm, 1951, pp. 1–60.
  44. V. Smith, J. Pokorny, “The design and use of a cone chromaticity space: a tutorial,” Color Res. Appl. 21, 375–383 (1996).
    [CrossRef]
  45. G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).
  46. E. Miyahara, “Spectral sensitivity functions of X-chromosome-linked color defective observers,” Ph.D. dissertation (University of Chicago, Chicago, Ill., 1993).
  47. H. Krastel, W. Jaeger, S. Zimmerman, B. Heckman, M. Krystek, “Systematics of human photopic spectral sensitivity,” Doc. Ophthalmol. Proc. Ser. 54, 323–339 (1991).
    [CrossRef]
  48. C. Hudson, J. M. Wild, “The influence of pre-receptoral absorption on blue/yellow automated perimetry,” in Perimetry Update 1992/1993, R. P. Mills, ed. (Kugler, Amsterdam, 1993), pp. 451–457.
  49. P. Sample, G. Martinez, R. Weinreb, “Short-wavelength automated perimetry without lens density testing,” Am. J. Ophthalmol. 118, 632–641 (1994).
    [PubMed]
  50. M. Kalloniatis, R. S. Harwerth, “Differential adaptation of cone mechanisms explains the preferential loss of short-wavelength cone sensitivity in retinal disease,” in Colour Vision Deficiencies IX, B. Drum, G. Verriest, eds., Vol. 52 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1989), pp. 353–364.
    [CrossRef]
  51. A. Chaparro, C. F. Stromeyer, G. Chen, R. E. Kronauer, “Human cones appear to adapt at low light levels: measurements on the red–green detection mechanism,” Vision Res. 22, 3103–3118 (1995).
    [CrossRef]
  52. D. C. Hood, V. Greenstein, “Models of the normal and abnormal rod system,” Vision Res. 30, 51–68 (1990).
    [CrossRef] [PubMed]
  53. T. M. Nork, S. A. McCormick, G. M. Chao, J. V. Odom, “Distribution of carbonic anhydrase among human photoreceptors,” Invest. Ophthalmol. Visual Sci. 31, 145–1457 (1990).
  54. C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
    [CrossRef] [PubMed]
  55. A. Nagy, J. Doyal, “Red–green color discrimination as a function of stimulus field size in peripheral vision,” J. Opt. Soc. Am. A 10, 1147–1156 (1993).
    [CrossRef] [PubMed]
  56. T. Kuyk, “Spectral sensitivity of the peripheral retina to large and small stimuli,” Vision Res. 22, 1293–1297 (1982).
    [CrossRef] [PubMed]
  57. J. Felius, W. H. Swanson, R. L. Fellman, J. R. Lynn, R. J. Starita, “Spatial summation for selected ganglion cell mosaics in patients with glaucoma,” in Perimetry Update 1996/1997M. Wall, ed. (Kugler, Amsterdam, 1997), pp. 213–221.
  58. B. B. Lee, “Receptive field structure in the primate retina,” Vision Res. 36, 631–644 (1996).
    [CrossRef] [PubMed]
  59. D. M. Dacey, B. B. Lee, “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature 24, 731–735 (1994).
    [CrossRef]
  60. P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536–1541 (1997).
    [CrossRef] [PubMed]
  61. S. L. Guth, H. R. Lodge, “Heterochromatic additivity, foveal spectral sensitivity, and a new color model,” J. Opt. Soc. Am. 63, 450–462 (1973).
    [CrossRef] [PubMed]
  62. K. Kranda, P. E. King-Smith, “Detection of coloured stimuli by independent linear systems,” Vision Res. 19, 733–745 (1979).
    [CrossRef] [PubMed]
  63. L. L. Sloan, “The effect of intensity of light, state of adaptation of the eye, and size of photometric field on the visibility curve,” Psychol. Mon. 38, 1–87 (1928).
  64. C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
    [CrossRef]
  65. C. F. Stromeyer, P. D. Gowdy, A. Chaparro, R. E. Kronauer, “Second-site adaptation in the red–green detection pathway: only elicited by low-spatial-frequency test stimuli,” Vision Res. 39, 3011–3023 (1999).
    [CrossRef]
  66. A. Shapiro, Q. Zaidi, D. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vision Res. 32, 1297–1318 (1992).
    [CrossRef] [PubMed]
  67. G. R. Cole, C. F. Stromeyer, R. E. Kronauer, “Visual interactions with luminance and chromatic stimuli,” J. Opt. Soc. Am. A 7, 128–140 (1990).
    [CrossRef] [PubMed]

1999

C. F. Stromeyer, P. D. Gowdy, A. Chaparro, R. E. Kronauer, “Second-site adaptation in the red–green detection pathway: only elicited by low-spatial-frequency test stimuli,” Vision Res. 39, 3011–3023 (1999).
[CrossRef]

1997

P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536–1541 (1997).
[CrossRef] [PubMed]

S. Alvarez, G. Pierce, A. Vingrys, S. Benes, P. Weber, P. King-Smith, “Comparison of red–green, blue–yellow and achromatic losses in glaucoma,” Vision Res. 37, 2295–2301 (1997).
[CrossRef] [PubMed]

M. J. Sankeralli, K. T. Mullen, “Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space,” J. Opt. Soc. Am. A 14, 2633–2646 (1997).
[CrossRef]

1996

K. Mullen, F. Kingdom, “Losses in peripheral colour sensitivity predicted from ‘hit and miss’ post-receptoral cone connections,” Vision Res. 36, 1995–2000 (1996).
[CrossRef] [PubMed]

E. Miyahara, J. Pokorny, V. C. Smith, “Increment threshold and purity discrimination spectral sensitivities of X-chromosome-linked color-defective observers,” Vision Res. 36, 1597–1613 (1996).
[CrossRef] [PubMed]

B. B. Lee, “Receptive field structure in the primate retina,” Vision Res. 36, 631–644 (1996).
[CrossRef] [PubMed]

V. Smith, J. Pokorny, “The design and use of a cone chromaticity space: a tutorial,” Color Res. Appl. 21, 375–383 (1996).
[CrossRef]

1995

A. Chaparro, C. F. Stromeyer, G. Chen, R. E. Kronauer, “Human cones appear to adapt at low light levels: measurements on the red–green detection mechanism,” Vision Res. 22, 3103–3118 (1995).
[CrossRef]

C. Johnson, “Early losses of visual function in glaucoma,” Optom. Vision Sci. 72, 359–370 (1995).
[CrossRef]

1994

P. A. Sample, M. E. Madrid, R. N. Weinreb, “Evidence for a variety of functional defects in glaucoma-suspect eyes,” J. Glaucoma 3 (suppl. 1), S5–S18 (1994).
[CrossRef] [PubMed]

S. Anderson, K. Mullen, R. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors,” J. Physiol. (London) 442, 47–64 (1994).

P. Sample, G. Martinez, R. Weinreb, “Short-wavelength automated perimetry without lens density testing,” Am. J. Ophthalmol. 118, 632–641 (1994).
[PubMed]

D. M. Dacey, B. B. Lee, “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature 24, 731–735 (1994).
[CrossRef]

1993

A. Nagy, J. Doyal, “Red–green color discrimination as a function of stimulus field size in peripheral vision,” J. Opt. Soc. Am. A 10, 1147–1156 (1993).
[CrossRef] [PubMed]

A. Nagy, S. Wolf, “Red–green color discrimination in peripheral vision,” Vision Res. 33, 235–242 (1993).
[CrossRef] [PubMed]

R. S. Harwerth, E. L. Smith, L. DeSantis, “Mechanisms mediating visual detection in static perimetry,” Invest. Ophthalmol. Visual Sci. 34, 3011–3023 (1993).

C. A. Johnson, A. J. Adams, E. J. Casson, J. D. Brandt, “Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss,” Arch. Ophthalmol. 111, 645–650 (1993).
[CrossRef] [PubMed]

T. Yeh, J. Pokorny, V. C. Smith, “S-cone discrimination sensitivity and performance on arrangement tests,” Doc. Ophthalmol. Proc. Series. 56, 293–302 (1993).
[CrossRef]

V. Smith, J. Pokorny, T. Yeh, “Pigment tests evaluated by a model of chromatic discrimination,” J. Opt. Soc. Am. A 10, 1773–1784 (1993).
[CrossRef]

T. Yeh, J. Pokorny, V. C. Smith, “Chromatic discrimination with variation in chromaticity and luminance: data and theory,” Vision Res. 33, 1835–1845 (1993).
[CrossRef] [PubMed]

E. Miyahara, V. Smith, J. Pokorny, “How surrounds affect chromaticity discrimination,” J. Opt. Soc. Am. A 10, 545–553 (1993).
[CrossRef] [PubMed]

1992

D. Calkins, J. Thornton, E. Pugh, “Monochromatism determined at a long-wavelength/middle-wavelength cone-antagonistic locus,” Vision Res. 32, 2349–2367 (1992).
[CrossRef] [PubMed]

V. C. Greenstein, D. C. Hood, “The effects of light adaptation on L-cone sensitivity in retinal disease,” Clin. Vision Sci. 7, 1–7 (1992).

C. Stromeyer, J. Lee, R. Eskew, “Peripheral sensitivity for flashes: a post-receptoral red–green aymmetry,” Vision Res. 32, 1865–1873 (1992).
[CrossRef] [PubMed]

W. H. Swanson, E. E. Birch, “Extracting thresholds from noisy psychophysical data,” Percept. Psychophy. 51, 409–422 (1992).
[CrossRef]

A. Shapiro, Q. Zaidi, D. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vision Res. 32, 1297–1318 (1992).
[CrossRef] [PubMed]

1991

K. Mullen, “Colour vision as a post-receptoral specialization of the central visual field,” Vision Res. 31, 119–130 (1991).
[CrossRef] [PubMed]

H. Krastel, W. Jaeger, S. Zimmerman, B. Heckman, M. Krystek, “Systematics of human photopic spectral sensitivity,” Doc. Ophthalmol. Proc. Ser. 54, 323–339 (1991).
[CrossRef]

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

M. Kalloniatis, R. Harwerth, “Effects of chromatic adaptation on opponent interactions in monkey increment-threshold spectral-sensitivity functions,” J. Opt. Soc. Am. A 8, 1818–1831 (1991).
[CrossRef] [PubMed]

1990

M. Kalloniatis, R. Harwerth, “Spectral sensitivity and adaptation characteristics of cone mechanisms under white-light adaptation,” J. Opt. Soc. Am. A 7, 1912–1928 (1990).
[CrossRef] [PubMed]

D. C. Hood, V. Greenstein, “Models of the normal and abnormal rod system,” Vision Res. 30, 51–68 (1990).
[CrossRef] [PubMed]

T. M. Nork, S. A. McCormick, G. M. Chao, J. V. Odom, “Distribution of carbonic anhydrase among human photoreceptors,” Invest. Ophthalmol. Visual Sci. 31, 145–1457 (1990).

G. R. Cole, C. F. Stromeyer, R. E. Kronauer, “Visual interactions with luminance and chromatic stimuli,” J. Opt. Soc. Am. A 7, 128–140 (1990).
[CrossRef] [PubMed]

1989

T. Yeh, V. C. Smith, J. Pokorny, “The effect of background luminance on cone sensitivity functions,” IOVS 30, 2077–2086 (1989).

J. Pointer, R. Hess, “The contrast sensitivity gradient across the human visual field: with emphasis on the low spatial frequency range,” Vision Res. 29, 1133–1151 (1989).
[CrossRef] [PubMed]

1987

1986

M. Johnson, “Color vision in the peripheral retina,” Am. J. Optom. Physiol. Opt. 63, 97–103 (1986).
[CrossRef] [PubMed]

1985

T. Ueno, J. Pokorny, V. C. Smith, “Reaction times to chromatic stimuli,” Vision Res. 25, 1623–1627 (1985).
[CrossRef] [PubMed]

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[CrossRef]

1984

1983

C. Noorlander, J. J. Koenderink, R. J. den Ouden, B. W. Edens, “Sensitivity to spatiotemporal colour contrast in the peripheral visual field,” Vision Res. 23, 1–11 (1983).
[CrossRef] [PubMed]

D. Foster, R. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour processes?” Vision Res. 23, 787–797 (1983).
[CrossRef] [PubMed]

J. E. Thornton, E. N. J. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[CrossRef] [PubMed]

1982

T. Kuyk, “Spectral sensitivity of the peripheral retina to large and small stimuli,” Vision Res. 22, 1293–1297 (1982).
[CrossRef] [PubMed]

1981

J. G. Robson, N. Graham, “Probability summation and regional variation in contrast sensitivity across the visual field,” Vision Res. 21, 409–418 (1981).
[CrossRef] [PubMed]

1980

R. M. Boynton, N. Kambe, “Chromatic difference steps of moderate size measured along theoretically critical axes,” Color Res. Appl. 5, 13–23 (1980).
[CrossRef]

1979

K. Kranda, P. E. King-Smith, “Detection of coloured stimuli by independent linear systems,” Vision Res. 19, 733–745 (1979).
[CrossRef] [PubMed]

1978

J. Rovamo, V. Virsu, R. Nasanen, “Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision,” Nature 271, 54–56 (1978).
[CrossRef] [PubMed]

1977

G. Verriest, A. Uvijls, “Spectral increment thresholds on a white background in different age groups of normal subjects and in acquired ocular diseases,” Doc. Ophthalmol. 43, 217–248 (1977).
[CrossRef] [PubMed]

1976

1975

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

1973

1971

H. Levitt, “Transformed up–down methods in psychophysics,” J. Acoust. Soc. Am. 49, 467–477 (1971).
[CrossRef]

H. G. Sperling, R. S. Harwerth, “Red–green cone interaction in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

1928

L. L. Sloan, “The effect of intensity of light, state of adaptation of the eye, and size of photometric field on the visibility curve,” Psychol. Mon. 38, 1–87 (1928).

Adams, A. J.

C. A. Johnson, A. J. Adams, E. J. Casson, J. D. Brandt, “Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss,” Arch. Ophthalmol. 111, 645–650 (1993).
[CrossRef] [PubMed]

Allen, K. A.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Alvarez, S.

S. Alvarez, G. Pierce, A. Vingrys, S. Benes, P. Weber, P. King-Smith, “Comparison of red–green, blue–yellow and achromatic losses in glaucoma,” Vision Res. 37, 2295–2301 (1997).
[CrossRef] [PubMed]

Anderson, S.

S. Anderson, K. Mullen, R. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors,” J. Physiol. (London) 442, 47–64 (1994).

Benes, S.

S. Alvarez, G. Pierce, A. Vingrys, S. Benes, P. Weber, P. King-Smith, “Comparison of red–green, blue–yellow and achromatic losses in glaucoma,” Vision Res. 37, 2295–2301 (1997).
[CrossRef] [PubMed]

Birch, E. E.

W. H. Swanson, E. E. Birch, “Extracting thresholds from noisy psychophysical data,” Percept. Psychophy. 51, 409–422 (1992).
[CrossRef]

Boynton, R. M.

R. M. Boynton, N. Kambe, “Chromatic difference steps of moderate size measured along theoretically critical axes,” Color Res. Appl. 5, 13–23 (1980).
[CrossRef]

Brandt, J. D.

C. A. Johnson, A. J. Adams, E. J. Casson, J. D. Brandt, “Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss,” Arch. Ophthalmol. 111, 645–650 (1993).
[CrossRef] [PubMed]

Calkins, D.

D. Calkins, J. Thornton, E. Pugh, “Monochromatism determined at a long-wavelength/middle-wavelength cone-antagonistic locus,” Vision Res. 32, 2349–2367 (1992).
[CrossRef] [PubMed]

Carden, D.

Casson, E. J.

C. A. Johnson, A. J. Adams, E. J. Casson, J. D. Brandt, “Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss,” Arch. Ophthalmol. 111, 645–650 (1993).
[CrossRef] [PubMed]

Chao, G. M.

T. M. Nork, S. A. McCormick, G. M. Chao, J. V. Odom, “Distribution of carbonic anhydrase among human photoreceptors,” Invest. Ophthalmol. Visual Sci. 31, 145–1457 (1990).

Chaparro, A.

C. F. Stromeyer, P. D. Gowdy, A. Chaparro, R. E. Kronauer, “Second-site adaptation in the red–green detection pathway: only elicited by low-spatial-frequency test stimuli,” Vision Res. 39, 3011–3023 (1999).
[CrossRef]

A. Chaparro, C. F. Stromeyer, G. Chen, R. E. Kronauer, “Human cones appear to adapt at low light levels: measurements on the red–green detection mechanism,” Vision Res. 22, 3103–3118 (1995).
[CrossRef]

Chen, G.

A. Chaparro, C. F. Stromeyer, G. Chen, R. E. Kronauer, “Human cones appear to adapt at low light levels: measurements on the red–green detection mechanism,” Vision Res. 22, 3103–3118 (1995).
[CrossRef]

Cole, G. R.

G. R. Cole, C. F. Stromeyer, R. E. Kronauer, “Visual interactions with luminance and chromatic stimuli,” J. Opt. Soc. Am. A 7, 128–140 (1990).
[CrossRef] [PubMed]

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[CrossRef]

Curcio, C. A.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Dacey, D. M.

D. M. Dacey, B. B. Lee, “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature 24, 731–735 (1994).
[CrossRef]

DeSantis, L.

R. S. Harwerth, E. L. Smith, L. DeSantis, “Mechanisms mediating visual detection in static perimetry,” Invest. Ophthalmol. Visual Sci. 34, 3011–3023 (1993).

Doyal, J.

Edens, B. W.

C. Noorlander, J. J. Koenderink, R. J. den Ouden, B. W. Edens, “Sensitivity to spatiotemporal colour contrast in the peripheral visual field,” Vision Res. 23, 1–11 (1983).
[CrossRef] [PubMed]

Esch, J. v.

Eskew, R.

C. Stromeyer, J. Lee, R. Eskew, “Peripheral sensitivity for flashes: a post-receptoral red–green aymmetry,” Vision Res. 32, 1865–1873 (1992).
[CrossRef] [PubMed]

Felius, J.

J. Felius, W. H. Swanson, R. L. Fellman, J. R. Lynn, R. J. Starita, “Spatial summation for selected ganglion cell mosaics in patients with glaucoma,” in Perimetry Update 1996/1997M. Wall, ed. (Kugler, Amsterdam, 1997), pp. 213–221.

Fellman, R. L.

J. Felius, W. H. Swanson, R. L. Fellman, J. R. Lynn, R. J. Starita, “Spatial summation for selected ganglion cell mosaics in patients with glaucoma,” in Perimetry Update 1996/1997M. Wall, ed. (Kugler, Amsterdam, 1997), pp. 213–221.

Foster, D.

D. Foster, R. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour processes?” Vision Res. 23, 787–797 (1983).
[CrossRef] [PubMed]

Goodchild, A. K.

P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536–1541 (1997).
[CrossRef] [PubMed]

Gowdy, P. D.

C. F. Stromeyer, P. D. Gowdy, A. Chaparro, R. E. Kronauer, “Second-site adaptation in the red–green detection pathway: only elicited by low-spatial-frequency test stimuli,” Vision Res. 39, 3011–3023 (1999).
[CrossRef]

Graham, N.

J. G. Robson, N. Graham, “Probability summation and regional variation in contrast sensitivity across the visual field,” Vision Res. 21, 409–418 (1981).
[CrossRef] [PubMed]

Greenstein, V.

D. C. Hood, V. Greenstein, “Models of the normal and abnormal rod system,” Vision Res. 30, 51–68 (1990).
[CrossRef] [PubMed]

Greenstein, V. C.

V. C. Greenstein, D. C. Hood, “The effects of light adaptation on L-cone sensitivity in retinal disease,” Clin. Vision Sci. 7, 1–7 (1992).

Guth, S. L.

Harwerth, R.

Harwerth, R. S.

R. S. Harwerth, E. L. Smith, L. DeSantis, “Mechanisms mediating visual detection in static perimetry,” Invest. Ophthalmol. Visual Sci. 34, 3011–3023 (1993).

H. G. Sperling, R. S. Harwerth, “Red–green cone interaction in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

M. Kalloniatis, R. S. Harwerth, “Differential adaptation of cone mechanisms explains the preferential loss of short-wavelength cone sensitivity in retinal disease,” in Colour Vision Deficiencies IX, B. Drum, G. Verriest, eds., Vol. 52 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1989), pp. 353–364.
[CrossRef]

Heckman, B.

H. Krastel, W. Jaeger, S. Zimmerman, B. Heckman, M. Krystek, “Systematics of human photopic spectral sensitivity,” Doc. Ophthalmol. Proc. Ser. 54, 323–339 (1991).
[CrossRef]

Hess, R.

S. Anderson, K. Mullen, R. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors,” J. Physiol. (London) 442, 47–64 (1994).

J. Pointer, R. Hess, “The contrast sensitivity gradient across the human visual field: with emphasis on the low spatial frequency range,” Vision Res. 29, 1133–1151 (1989).
[CrossRef] [PubMed]

Hood, D.

A. Shapiro, Q. Zaidi, D. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vision Res. 32, 1297–1318 (1992).
[CrossRef] [PubMed]

Hood, D. C.

V. C. Greenstein, D. C. Hood, “The effects of light adaptation on L-cone sensitivity in retinal disease,” Clin. Vision Sci. 7, 1–7 (1992).

D. C. Hood, V. Greenstein, “Models of the normal and abnormal rod system,” Vision Res. 30, 51–68 (1990).
[CrossRef] [PubMed]

Hudson, C.

C. Hudson, J. M. Wild, “The influence of pre-receptoral absorption on blue/yellow automated perimetry,” in Perimetry Update 1992/1993, R. P. Mills, ed. (Kugler, Amsterdam, 1993), pp. 451–457.

Hurley, J. B.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Jaeger, W.

H. Krastel, W. Jaeger, S. Zimmerman, B. Heckman, M. Krystek, “Systematics of human photopic spectral sensitivity,” Doc. Ophthalmol. Proc. Ser. 54, 323–339 (1991).
[CrossRef]

Johnson, C.

C. Johnson, “Early losses of visual function in glaucoma,” Optom. Vision Sci. 72, 359–370 (1995).
[CrossRef]

Johnson, C. A.

C. A. Johnson, A. J. Adams, E. J. Casson, J. D. Brandt, “Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss,” Arch. Ophthalmol. 111, 645–650 (1993).
[CrossRef] [PubMed]

Johnson, M.

M. Johnson, “Color vision in the peripheral retina,” Am. J. Optom. Physiol. Opt. 63, 97–103 (1986).
[CrossRef] [PubMed]

Judd, D.

D. Judd, Colorimetry and Artificial Daylight, , Proceedings of the Twelfth Session of the CIE, Stockholm, 1951, pp. 1–60.

Kalloniatis, M.

M. Kalloniatis, R. Harwerth, “Effects of chromatic adaptation on opponent interactions in monkey increment-threshold spectral-sensitivity functions,” J. Opt. Soc. Am. A 8, 1818–1831 (1991).
[CrossRef] [PubMed]

M. Kalloniatis, R. Harwerth, “Spectral sensitivity and adaptation characteristics of cone mechanisms under white-light adaptation,” J. Opt. Soc. Am. A 7, 1912–1928 (1990).
[CrossRef] [PubMed]

M. Kalloniatis, R. S. Harwerth, “Differential adaptation of cone mechanisms explains the preferential loss of short-wavelength cone sensitivity in retinal disease,” in Colour Vision Deficiencies IX, B. Drum, G. Verriest, eds., Vol. 52 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1989), pp. 353–364.
[CrossRef]

Kambe, N.

R. M. Boynton, N. Kambe, “Chromatic difference steps of moderate size measured along theoretically critical axes,” Color Res. Appl. 5, 13–23 (1980).
[CrossRef]

Kingdom, F.

K. Mullen, F. Kingdom, “Losses in peripheral colour sensitivity predicted from ‘hit and miss’ post-receptoral cone connections,” Vision Res. 36, 1995–2000 (1996).
[CrossRef] [PubMed]

King-Smith, P.

S. Alvarez, G. Pierce, A. Vingrys, S. Benes, P. Weber, P. King-Smith, “Comparison of red–green, blue–yellow and achromatic losses in glaucoma,” Vision Res. 37, 2295–2301 (1997).
[CrossRef] [PubMed]

King-Smith, P. E.

Klock, I. B.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Koenderink, J.

Koenderink, J. J.

C. Noorlander, J. J. Koenderink, R. J. den Ouden, B. W. Edens, “Sensitivity to spatiotemporal colour contrast in the peripheral visual field,” Vision Res. 23, 1–11 (1983).
[CrossRef] [PubMed]

Koldenhof, E.

Kranda, K.

K. Kranda, P. E. King-Smith, “Detection of coloured stimuli by independent linear systems,” Vision Res. 19, 733–745 (1979).
[CrossRef] [PubMed]

Krastel, H.

H. Krastel, W. Jaeger, S. Zimmerman, B. Heckman, M. Krystek, “Systematics of human photopic spectral sensitivity,” Doc. Ophthalmol. Proc. Ser. 54, 323–339 (1991).
[CrossRef]

Kronauer, R. E.

C. F. Stromeyer, P. D. Gowdy, A. Chaparro, R. E. Kronauer, “Second-site adaptation in the red–green detection pathway: only elicited by low-spatial-frequency test stimuli,” Vision Res. 39, 3011–3023 (1999).
[CrossRef]

A. Chaparro, C. F. Stromeyer, G. Chen, R. E. Kronauer, “Human cones appear to adapt at low light levels: measurements on the red–green detection mechanism,” Vision Res. 22, 3103–3118 (1995).
[CrossRef]

G. R. Cole, C. F. Stromeyer, R. E. Kronauer, “Visual interactions with luminance and chromatic stimuli,” J. Opt. Soc. Am. A 7, 128–140 (1990).
[CrossRef] [PubMed]

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[CrossRef]

Krystek, M.

H. Krastel, W. Jaeger, S. Zimmerman, B. Heckman, M. Krystek, “Systematics of human photopic spectral sensitivity,” Doc. Ophthalmol. Proc. Ser. 54, 323–339 (1991).
[CrossRef]

Kuyk, T.

T. Kuyk, “Spectral sensitivity of the peripheral retina to large and small stimuli,” Vision Res. 22, 1293–1297 (1982).
[CrossRef] [PubMed]

Lee, B. B.

B. B. Lee, “Receptive field structure in the primate retina,” Vision Res. 36, 631–644 (1996).
[CrossRef] [PubMed]

D. M. Dacey, B. B. Lee, “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature 24, 731–735 (1994).
[CrossRef]

Lee, J.

C. Stromeyer, J. Lee, R. Eskew, “Peripheral sensitivity for flashes: a post-receptoral red–green aymmetry,” Vision Res. 32, 1865–1873 (1992).
[CrossRef] [PubMed]

LeGrand, Y.

Y. LeGrand, Light, Color and Vision (Chapman & Hall, London, 1968).

Lerea, C. L.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Levitt, H.

H. Levitt, “Transformed up–down methods in psychophysics,” J. Acoust. Soc. Am. 49, 467–477 (1971).
[CrossRef]

Lodge, H. R.

Lynn, J. R.

J. Felius, W. H. Swanson, R. L. Fellman, J. R. Lynn, R. J. Starita, “Spatial summation for selected ganglion cell mosaics in patients with glaucoma,” in Perimetry Update 1996/1997M. Wall, ed. (Kugler, Amsterdam, 1997), pp. 213–221.

Madrid, M. E.

P. A. Sample, M. E. Madrid, R. N. Weinreb, “Evidence for a variety of functional defects in glaucoma-suspect eyes,” J. Glaucoma 3 (suppl. 1), S5–S18 (1994).
[CrossRef] [PubMed]

Martin, P. R.

P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536–1541 (1997).
[CrossRef] [PubMed]

Martinez, G.

P. Sample, G. Martinez, R. Weinreb, “Short-wavelength automated perimetry without lens density testing,” Am. J. Ophthalmol. 118, 632–641 (1994).
[PubMed]

Martinez, G. A.

P. A. Sample, G. A. Martinez, R. N. Weinreb, “Color visual fields: a five-year prospective study in suspect eye and eyes with primary open angle glaucoma,” in Perimetry Update 1992/1993, R. P. Mills, ed. (Kugler, Amsterdam, 1993), pp. 473–476.

McCormick, S. A.

T. M. Nork, S. A. McCormick, G. M. Chao, J. V. Odom, “Distribution of carbonic anhydrase among human photoreceptors,” Invest. Ophthalmol. Visual Sci. 31, 145–1457 (1990).

Milam, A. H.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Miyahara, E.

E. Miyahara, J. Pokorny, V. C. Smith, “Increment threshold and purity discrimination spectral sensitivities of X-chromosome-linked color-defective observers,” Vision Res. 36, 1597–1613 (1996).
[CrossRef] [PubMed]

E. Miyahara, V. Smith, J. Pokorny, “How surrounds affect chromaticity discrimination,” J. Opt. Soc. Am. A 10, 545–553 (1993).
[CrossRef] [PubMed]

E. Miyahara, “Spectral sensitivity functions of X-chromosome-linked color defective observers,” Ph.D. dissertation (University of Chicago, Chicago, Ill., 1993).

Mullen, K.

K. Mullen, F. Kingdom, “Losses in peripheral colour sensitivity predicted from ‘hit and miss’ post-receptoral cone connections,” Vision Res. 36, 1995–2000 (1996).
[CrossRef] [PubMed]

S. Anderson, K. Mullen, R. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors,” J. Physiol. (London) 442, 47–64 (1994).

K. Mullen, “Colour vision as a post-receptoral specialization of the central visual field,” Vision Res. 31, 119–130 (1991).
[CrossRef] [PubMed]

Mullen, K. T.

Nagy, A.

Nasanen, R.

J. Rovamo, V. Virsu, R. Nasanen, “Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision,” Nature 271, 54–56 (1978).
[CrossRef] [PubMed]

Noorlander, C.

C. Noorlander, J. J. Koenderink, R. J. den Ouden, B. W. Edens, “Sensitivity to spatiotemporal colour contrast in the peripheral visual field,” Vision Res. 23, 1–11 (1983).
[CrossRef] [PubMed]

Nork, T. M.

T. M. Nork, S. A. McCormick, G. M. Chao, J. V. Odom, “Distribution of carbonic anhydrase among human photoreceptors,” Invest. Ophthalmol. Visual Sci. 31, 145–1457 (1990).

Odom, J. V.

T. M. Nork, S. A. McCormick, G. M. Chao, J. V. Odom, “Distribution of carbonic anhydrase among human photoreceptors,” Invest. Ophthalmol. Visual Sci. 31, 145–1457 (1990).

Ouden, R. J. den

C. Noorlander, J. J. Koenderink, R. J. den Ouden, B. W. Edens, “Sensitivity to spatiotemporal colour contrast in the peripheral visual field,” Vision Res. 23, 1–11 (1983).
[CrossRef] [PubMed]

Pierce, G.

S. Alvarez, G. Pierce, A. Vingrys, S. Benes, P. Weber, P. King-Smith, “Comparison of red–green, blue–yellow and achromatic losses in glaucoma,” Vision Res. 37, 2295–2301 (1997).
[CrossRef] [PubMed]

Pointer, J.

J. Pointer, R. Hess, “The contrast sensitivity gradient across the human visual field: with emphasis on the low spatial frequency range,” Vision Res. 29, 1133–1151 (1989).
[CrossRef] [PubMed]

Pokorny, J.

V. Smith, J. Pokorny, “The design and use of a cone chromaticity space: a tutorial,” Color Res. Appl. 21, 375–383 (1996).
[CrossRef]

E. Miyahara, J. Pokorny, V. C. Smith, “Increment threshold and purity discrimination spectral sensitivities of X-chromosome-linked color-defective observers,” Vision Res. 36, 1597–1613 (1996).
[CrossRef] [PubMed]

T. Yeh, J. Pokorny, V. C. Smith, “S-cone discrimination sensitivity and performance on arrangement tests,” Doc. Ophthalmol. Proc. Series. 56, 293–302 (1993).
[CrossRef]

V. Smith, J. Pokorny, T. Yeh, “Pigment tests evaluated by a model of chromatic discrimination,” J. Opt. Soc. Am. A 10, 1773–1784 (1993).
[CrossRef]

T. Yeh, J. Pokorny, V. C. Smith, “Chromatic discrimination with variation in chromaticity and luminance: data and theory,” Vision Res. 33, 1835–1845 (1993).
[CrossRef] [PubMed]

E. Miyahara, V. Smith, J. Pokorny, “How surrounds affect chromaticity discrimination,” J. Opt. Soc. Am. A 10, 545–553 (1993).
[CrossRef] [PubMed]

T. Yeh, V. C. Smith, J. Pokorny, “The effect of background luminance on cone sensitivity functions,” IOVS 30, 2077–2086 (1989).

T. Ueno, J. Pokorny, V. C. Smith, “Reaction times to chromatic stimuli,” Vision Res. 25, 1623–1627 (1985).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

V. Smith, J. Pokorny, T. Yeh, “The Farnsworth–Munsell 100-hue test in cone excitation space,” in Colour Vision Deficiencies XI, B. Drum, ed., Vol. 56 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Boston, Mass., 1993), pp. 281–291.
[CrossRef]

Pugh, E.

D. Calkins, J. Thornton, E. Pugh, “Monochromatism determined at a long-wavelength/middle-wavelength cone-antagonistic locus,” Vision Res. 32, 2349–2367 (1992).
[CrossRef] [PubMed]

J. Thornton, E. Pugh, “Relationship of opponent-colours cancellation measures to cone-antagonistic signals deduced from increment threshold data,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 361–373.

Pugh, E. N. J.

J. E. Thornton, E. N. J. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[CrossRef] [PubMed]

Robson, J. G.

J. G. Robson, N. Graham, “Probability summation and regional variation in contrast sensitivity across the visual field,” Vision Res. 21, 409–418 (1981).
[CrossRef] [PubMed]

Rovamo, J.

J. Rovamo, V. Virsu, R. Nasanen, “Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision,” Nature 271, 54–56 (1978).
[CrossRef] [PubMed]

Sample, P.

P. Sample, G. Martinez, R. Weinreb, “Short-wavelength automated perimetry without lens density testing,” Am. J. Ophthalmol. 118, 632–641 (1994).
[PubMed]

Sample, P. A.

P. A. Sample, M. E. Madrid, R. N. Weinreb, “Evidence for a variety of functional defects in glaucoma-suspect eyes,” J. Glaucoma 3 (suppl. 1), S5–S18 (1994).
[CrossRef] [PubMed]

P. A. Sample, G. A. Martinez, R. N. Weinreb, “Color visual fields: a five-year prospective study in suspect eye and eyes with primary open angle glaucoma,” in Perimetry Update 1992/1993, R. P. Mills, ed. (Kugler, Amsterdam, 1993), pp. 473–476.

Sankeralli, M. J.

Sefton, A. E.

P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536–1541 (1997).
[CrossRef] [PubMed]

Shapiro, A.

A. Shapiro, Q. Zaidi, D. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vision Res. 32, 1297–1318 (1992).
[CrossRef] [PubMed]

Sloan, K. R.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

Sloan, L. L.

L. L. Sloan, “The effect of intensity of light, state of adaptation of the eye, and size of photometric field on the visibility curve,” Psychol. Mon. 38, 1–87 (1928).

Smith, E. L.

R. S. Harwerth, E. L. Smith, L. DeSantis, “Mechanisms mediating visual detection in static perimetry,” Invest. Ophthalmol. Visual Sci. 34, 3011–3023 (1993).

Smith, V.

V. Smith, J. Pokorny, “The design and use of a cone chromaticity space: a tutorial,” Color Res. Appl. 21, 375–383 (1996).
[CrossRef]

V. Smith, J. Pokorny, T. Yeh, “Pigment tests evaluated by a model of chromatic discrimination,” J. Opt. Soc. Am. A 10, 1773–1784 (1993).
[CrossRef]

E. Miyahara, V. Smith, J. Pokorny, “How surrounds affect chromaticity discrimination,” J. Opt. Soc. Am. A 10, 545–553 (1993).
[CrossRef] [PubMed]

V. Smith, J. Pokorny, T. Yeh, “The Farnsworth–Munsell 100-hue test in cone excitation space,” in Colour Vision Deficiencies XI, B. Drum, ed., Vol. 56 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Boston, Mass., 1993), pp. 281–291.
[CrossRef]

Smith, V. C.

E. Miyahara, J. Pokorny, V. C. Smith, “Increment threshold and purity discrimination spectral sensitivities of X-chromosome-linked color-defective observers,” Vision Res. 36, 1597–1613 (1996).
[CrossRef] [PubMed]

T. Yeh, J. Pokorny, V. C. Smith, “S-cone discrimination sensitivity and performance on arrangement tests,” Doc. Ophthalmol. Proc. Series. 56, 293–302 (1993).
[CrossRef]

T. Yeh, J. Pokorny, V. C. Smith, “Chromatic discrimination with variation in chromaticity and luminance: data and theory,” Vision Res. 33, 1835–1845 (1993).
[CrossRef] [PubMed]

T. Yeh, V. C. Smith, J. Pokorny, “The effect of background luminance on cone sensitivity functions,” IOVS 30, 2077–2086 (1989).

T. Ueno, J. Pokorny, V. C. Smith, “Reaction times to chromatic stimuli,” Vision Res. 25, 1623–1627 (1985).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

Snelgar, R.

D. Foster, R. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour processes?” Vision Res. 23, 787–797 (1983).
[CrossRef] [PubMed]

Sperling, H. G.

H. G. Sperling, R. S. Harwerth, “Red–green cone interaction in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

Starita, R. J.

J. Felius, W. H. Swanson, R. L. Fellman, J. R. Lynn, R. J. Starita, “Spatial summation for selected ganglion cell mosaics in patients with glaucoma,” in Perimetry Update 1996/1997M. Wall, ed. (Kugler, Amsterdam, 1997), pp. 213–221.

Stiles, W. S.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

Stromeyer, C.

C. Stromeyer, J. Lee, R. Eskew, “Peripheral sensitivity for flashes: a post-receptoral red–green aymmetry,” Vision Res. 32, 1865–1873 (1992).
[CrossRef] [PubMed]

Stromeyer, C. F.

C. F. Stromeyer, P. D. Gowdy, A. Chaparro, R. E. Kronauer, “Second-site adaptation in the red–green detection pathway: only elicited by low-spatial-frequency test stimuli,” Vision Res. 39, 3011–3023 (1999).
[CrossRef]

A. Chaparro, C. F. Stromeyer, G. Chen, R. E. Kronauer, “Human cones appear to adapt at low light levels: measurements on the red–green detection mechanism,” Vision Res. 22, 3103–3118 (1995).
[CrossRef]

G. R. Cole, C. F. Stromeyer, R. E. Kronauer, “Visual interactions with luminance and chromatic stimuli,” J. Opt. Soc. Am. A 7, 128–140 (1990).
[CrossRef] [PubMed]

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[CrossRef]

Swanson, W. H.

W. H. Swanson, E. E. Birch, “Extracting thresholds from noisy psychophysical data,” Percept. Psychophy. 51, 409–422 (1992).
[CrossRef]

J. Felius, W. H. Swanson, R. L. Fellman, J. R. Lynn, R. J. Starita, “Spatial summation for selected ganglion cell mosaics in patients with glaucoma,” in Perimetry Update 1996/1997M. Wall, ed. (Kugler, Amsterdam, 1997), pp. 213–221.

Thornton, J.

D. Calkins, J. Thornton, E. Pugh, “Monochromatism determined at a long-wavelength/middle-wavelength cone-antagonistic locus,” Vision Res. 32, 2349–2367 (1992).
[CrossRef] [PubMed]

J. Thornton, E. Pugh, “Relationship of opponent-colours cancellation measures to cone-antagonistic signals deduced from increment threshold data,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 361–373.

Thornton, J. E.

J. E. Thornton, E. N. J. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[CrossRef] [PubMed]

Ueno, T.

T. Ueno, J. Pokorny, V. C. Smith, “Reaction times to chromatic stimuli,” Vision Res. 25, 1623–1627 (1985).
[CrossRef] [PubMed]

Uvijls, A.

G. Verriest, A. Uvijls, “Spectral increment thresholds on a white background in different age groups of normal subjects and in acquired ocular diseases,” Doc. Ophthalmol. 43, 217–248 (1977).
[CrossRef] [PubMed]

van Doorn, A.

Verriest, G.

G. Verriest, A. Uvijls, “Spectral increment thresholds on a white background in different age groups of normal subjects and in acquired ocular diseases,” Doc. Ophthalmol. 43, 217–248 (1977).
[CrossRef] [PubMed]

Vingrys, A.

S. Alvarez, G. Pierce, A. Vingrys, S. Benes, P. Weber, P. King-Smith, “Comparison of red–green, blue–yellow and achromatic losses in glaucoma,” Vision Res. 37, 2295–2301 (1997).
[CrossRef] [PubMed]

Virsu, V.

J. Rovamo, V. Virsu, R. Nasanen, “Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision,” Nature 271, 54–56 (1978).
[CrossRef] [PubMed]

Watson, A. B.

Weber, P.

S. Alvarez, G. Pierce, A. Vingrys, S. Benes, P. Weber, P. King-Smith, “Comparison of red–green, blue–yellow and achromatic losses in glaucoma,” Vision Res. 37, 2295–2301 (1997).
[CrossRef] [PubMed]

Weinreb, R.

P. Sample, G. Martinez, R. Weinreb, “Short-wavelength automated perimetry without lens density testing,” Am. J. Ophthalmol. 118, 632–641 (1994).
[PubMed]

Weinreb, R. N.

P. A. Sample, M. E. Madrid, R. N. Weinreb, “Evidence for a variety of functional defects in glaucoma-suspect eyes,” J. Glaucoma 3 (suppl. 1), S5–S18 (1994).
[CrossRef] [PubMed]

P. A. Sample, G. A. Martinez, R. N. Weinreb, “Color visual fields: a five-year prospective study in suspect eye and eyes with primary open angle glaucoma,” in Perimetry Update 1992/1993, R. P. Mills, ed. (Kugler, Amsterdam, 1993), pp. 473–476.

White, A. J. R.

P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536–1541 (1997).
[CrossRef] [PubMed]

Wild, J. M.

C. Hudson, J. M. Wild, “The influence of pre-receptoral absorption on blue/yellow automated perimetry,” in Perimetry Update 1992/1993, R. P. Mills, ed. (Kugler, Amsterdam, 1993), pp. 451–457.

Wilder, H. D.

P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536–1541 (1997).
[CrossRef] [PubMed]

Wolf, S.

A. Nagy, S. Wolf, “Red–green color discrimination in peripheral vision,” Vision Res. 33, 235–242 (1993).
[CrossRef] [PubMed]

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

Yeh, T.

T. Yeh, J. Pokorny, V. C. Smith, “Chromatic discrimination with variation in chromaticity and luminance: data and theory,” Vision Res. 33, 1835–1845 (1993).
[CrossRef] [PubMed]

V. Smith, J. Pokorny, T. Yeh, “Pigment tests evaluated by a model of chromatic discrimination,” J. Opt. Soc. Am. A 10, 1773–1784 (1993).
[CrossRef]

T. Yeh, J. Pokorny, V. C. Smith, “S-cone discrimination sensitivity and performance on arrangement tests,” Doc. Ophthalmol. Proc. Series. 56, 293–302 (1993).
[CrossRef]

T. Yeh, V. C. Smith, J. Pokorny, “The effect of background luminance on cone sensitivity functions,” IOVS 30, 2077–2086 (1989).

V. Smith, J. Pokorny, T. Yeh, “The Farnsworth–Munsell 100-hue test in cone excitation space,” in Colour Vision Deficiencies XI, B. Drum, ed., Vol. 56 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Boston, Mass., 1993), pp. 281–291.
[CrossRef]

Zaidi, Q.

A. Shapiro, Q. Zaidi, D. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vision Res. 32, 1297–1318 (1992).
[CrossRef] [PubMed]

Zimmerman, S.

H. Krastel, W. Jaeger, S. Zimmerman, B. Heckman, M. Krystek, “Systematics of human photopic spectral sensitivity,” Doc. Ophthalmol. Proc. Ser. 54, 323–339 (1991).
[CrossRef]

Am. J. Ophthalmol.

P. Sample, G. Martinez, R. Weinreb, “Short-wavelength automated perimetry without lens density testing,” Am. J. Ophthalmol. 118, 632–641 (1994).
[PubMed]

Am. J. Optom. Physiol. Opt.

M. Johnson, “Color vision in the peripheral retina,” Am. J. Optom. Physiol. Opt. 63, 97–103 (1986).
[CrossRef] [PubMed]

Arch. Ophthalmol.

C. A. Johnson, A. J. Adams, E. J. Casson, J. D. Brandt, “Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss,” Arch. Ophthalmol. 111, 645–650 (1993).
[CrossRef] [PubMed]

Clin. Vision Sci.

V. C. Greenstein, D. C. Hood, “The effects of light adaptation on L-cone sensitivity in retinal disease,” Clin. Vision Sci. 7, 1–7 (1992).

Color Res. Appl.

V. Smith, J. Pokorny, “The design and use of a cone chromaticity space: a tutorial,” Color Res. Appl. 21, 375–383 (1996).
[CrossRef]

R. M. Boynton, N. Kambe, “Chromatic difference steps of moderate size measured along theoretically critical axes,” Color Res. Appl. 5, 13–23 (1980).
[CrossRef]

Doc. Ophthalmol.

G. Verriest, A. Uvijls, “Spectral increment thresholds on a white background in different age groups of normal subjects and in acquired ocular diseases,” Doc. Ophthalmol. 43, 217–248 (1977).
[CrossRef] [PubMed]

Doc. Ophthalmol. Proc. Ser.

H. Krastel, W. Jaeger, S. Zimmerman, B. Heckman, M. Krystek, “Systematics of human photopic spectral sensitivity,” Doc. Ophthalmol. Proc. Ser. 54, 323–339 (1991).
[CrossRef]

Doc. Ophthalmol. Proc. Series.

T. Yeh, J. Pokorny, V. C. Smith, “S-cone discrimination sensitivity and performance on arrangement tests,” Doc. Ophthalmol. Proc. Series. 56, 293–302 (1993).
[CrossRef]

Eur. J. Neurosci.

P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536–1541 (1997).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci.

T. M. Nork, S. A. McCormick, G. M. Chao, J. V. Odom, “Distribution of carbonic anhydrase among human photoreceptors,” Invest. Ophthalmol. Visual Sci. 31, 145–1457 (1990).

R. S. Harwerth, E. L. Smith, L. DeSantis, “Mechanisms mediating visual detection in static perimetry,” Invest. Ophthalmol. Visual Sci. 34, 3011–3023 (1993).

IOVS

T. Yeh, V. C. Smith, J. Pokorny, “The effect of background luminance on cone sensitivity functions,” IOVS 30, 2077–2086 (1989).

J. Acoust. Soc. Am.

H. Levitt, “Transformed up–down methods in psychophysics,” J. Acoust. Soc. Am. 49, 467–477 (1971).
[CrossRef]

J. Comp. Neurol.

C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991).
[CrossRef] [PubMed]

J. Glaucoma

P. A. Sample, M. E. Madrid, R. N. Weinreb, “Evidence for a variety of functional defects in glaucoma-suspect eyes,” J. Glaucoma 3 (suppl. 1), S5–S18 (1994).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

G. R. Cole, C. F. Stromeyer, R. E. Kronauer, “Visual interactions with luminance and chromatic stimuli,” J. Opt. Soc. Am. A 7, 128–140 (1990).
[CrossRef] [PubMed]

A. Nagy, J. Doyal, “Red–green color discrimination as a function of stimulus field size in peripheral vision,” J. Opt. Soc. Am. A 10, 1147–1156 (1993).
[CrossRef] [PubMed]

M. Kalloniatis, R. Harwerth, “Spectral sensitivity and adaptation characteristics of cone mechanisms under white-light adaptation,” J. Opt. Soc. Am. A 7, 1912–1928 (1990).
[CrossRef] [PubMed]

M. Kalloniatis, R. Harwerth, “Effects of chromatic adaptation on opponent interactions in monkey increment-threshold spectral-sensitivity functions,” J. Opt. Soc. Am. A 8, 1818–1831 (1991).
[CrossRef] [PubMed]

V. Smith, J. Pokorny, T. Yeh, “Pigment tests evaluated by a model of chromatic discrimination,” J. Opt. Soc. Am. A 10, 1773–1784 (1993).
[CrossRef]

E. Miyahara, V. Smith, J. Pokorny, “How surrounds affect chromaticity discrimination,” J. Opt. Soc. Am. A 10, 545–553 (1993).
[CrossRef] [PubMed]

M. J. Sankeralli, K. T. Mullen, “Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space,” J. Opt. Soc. Am. A 14, 2633–2646 (1997).
[CrossRef]

J. v. Esch, E. Koldenhof, A. van Doorn, J. Koenderink, “Spectral sensitivity and wavelength discrimination of the human peripheral visual field,” J. Opt. Soc. Am. A 1, 443–450 (1984).
[CrossRef] [PubMed]

A. B. Watson, “Estimation of local spatial scale,” J. Opt. Soc. Am. A 4, 1579–1582 (1987).
[CrossRef] [PubMed]

J. Physiol. (London)

S. Anderson, K. Mullen, R. Hess, “Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors,” J. Physiol. (London) 442, 47–64 (1994).

Nature

J. Rovamo, V. Virsu, R. Nasanen, “Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision,” Nature 271, 54–56 (1978).
[CrossRef] [PubMed]

D. M. Dacey, B. B. Lee, “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature 24, 731–735 (1994).
[CrossRef]

Optom. Vision Sci.

C. Johnson, “Early losses of visual function in glaucoma,” Optom. Vision Sci. 72, 359–370 (1995).
[CrossRef]

Percept. Psychophy.

W. H. Swanson, E. E. Birch, “Extracting thresholds from noisy psychophysical data,” Percept. Psychophy. 51, 409–422 (1992).
[CrossRef]

Psychol. Mon.

L. L. Sloan, “The effect of intensity of light, state of adaptation of the eye, and size of photometric field on the visibility curve,” Psychol. Mon. 38, 1–87 (1928).

Science

J. E. Thornton, E. N. J. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[CrossRef] [PubMed]

H. G. Sperling, R. S. Harwerth, “Red–green cone interaction in the increment-threshold spectral sensitivity of primates,” Science 172, 180–184 (1971).
[CrossRef] [PubMed]

Vision Res.

S. Alvarez, G. Pierce, A. Vingrys, S. Benes, P. Weber, P. King-Smith, “Comparison of red–green, blue–yellow and achromatic losses in glaucoma,” Vision Res. 37, 2295–2301 (1997).
[CrossRef] [PubMed]

E. Miyahara, J. Pokorny, V. C. Smith, “Increment threshold and purity discrimination spectral sensitivities of X-chromosome-linked color-defective observers,” Vision Res. 36, 1597–1613 (1996).
[CrossRef] [PubMed]

T. Yeh, J. Pokorny, V. C. Smith, “Chromatic discrimination with variation in chromaticity and luminance: data and theory,” Vision Res. 33, 1835–1845 (1993).
[CrossRef] [PubMed]

J. Pointer, R. Hess, “The contrast sensitivity gradient across the human visual field: with emphasis on the low spatial frequency range,” Vision Res. 29, 1133–1151 (1989).
[CrossRef] [PubMed]

K. Mullen, “Colour vision as a post-receptoral specialization of the central visual field,” Vision Res. 31, 119–130 (1991).
[CrossRef] [PubMed]

K. Mullen, F. Kingdom, “Losses in peripheral colour sensitivity predicted from ‘hit and miss’ post-receptoral cone connections,” Vision Res. 36, 1995–2000 (1996).
[CrossRef] [PubMed]

C. Stromeyer, J. Lee, R. Eskew, “Peripheral sensitivity for flashes: a post-receptoral red–green aymmetry,” Vision Res. 32, 1865–1873 (1992).
[CrossRef] [PubMed]

A. Nagy, S. Wolf, “Red–green color discrimination in peripheral vision,” Vision Res. 33, 235–242 (1993).
[CrossRef] [PubMed]

J. G. Robson, N. Graham, “Probability summation and regional variation in contrast sensitivity across the visual field,” Vision Res. 21, 409–418 (1981).
[CrossRef] [PubMed]

C. Noorlander, J. J. Koenderink, R. J. den Ouden, B. W. Edens, “Sensitivity to spatiotemporal colour contrast in the peripheral visual field,” Vision Res. 23, 1–11 (1983).
[CrossRef] [PubMed]

D. Calkins, J. Thornton, E. Pugh, “Monochromatism determined at a long-wavelength/middle-wavelength cone-antagonistic locus,” Vision Res. 32, 2349–2367 (1992).
[CrossRef] [PubMed]

D. Foster, R. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour processes?” Vision Res. 23, 787–797 (1983).
[CrossRef] [PubMed]

C. F. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red–green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[CrossRef]

C. F. Stromeyer, P. D. Gowdy, A. Chaparro, R. E. Kronauer, “Second-site adaptation in the red–green detection pathway: only elicited by low-spatial-frequency test stimuli,” Vision Res. 39, 3011–3023 (1999).
[CrossRef]

A. Shapiro, Q. Zaidi, D. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vision Res. 32, 1297–1318 (1992).
[CrossRef] [PubMed]

B. B. Lee, “Receptive field structure in the primate retina,” Vision Res. 36, 631–644 (1996).
[CrossRef] [PubMed]

A. Chaparro, C. F. Stromeyer, G. Chen, R. E. Kronauer, “Human cones appear to adapt at low light levels: measurements on the red–green detection mechanism,” Vision Res. 22, 3103–3118 (1995).
[CrossRef]

D. C. Hood, V. Greenstein, “Models of the normal and abnormal rod system,” Vision Res. 30, 51–68 (1990).
[CrossRef] [PubMed]

K. Kranda, P. E. King-Smith, “Detection of coloured stimuli by independent linear systems,” Vision Res. 19, 733–745 (1979).
[CrossRef] [PubMed]

T. Ueno, J. Pokorny, V. C. Smith, “Reaction times to chromatic stimuli,” Vision Res. 25, 1623–1627 (1985).
[CrossRef] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[CrossRef] [PubMed]

T. Kuyk, “Spectral sensitivity of the peripheral retina to large and small stimuli,” Vision Res. 22, 1293–1297 (1982).
[CrossRef] [PubMed]

Other

J. Felius, W. H. Swanson, R. L. Fellman, J. R. Lynn, R. J. Starita, “Spatial summation for selected ganglion cell mosaics in patients with glaucoma,” in Perimetry Update 1996/1997M. Wall, ed. (Kugler, Amsterdam, 1997), pp. 213–221.

C. Hudson, J. M. Wild, “The influence of pre-receptoral absorption on blue/yellow automated perimetry,” in Perimetry Update 1992/1993, R. P. Mills, ed. (Kugler, Amsterdam, 1993), pp. 451–457.

M. Kalloniatis, R. S. Harwerth, “Differential adaptation of cone mechanisms explains the preferential loss of short-wavelength cone sensitivity in retinal disease,” in Colour Vision Deficiencies IX, B. Drum, G. Verriest, eds., Vol. 52 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Dordrecht, The Netherlands, 1989), pp. 353–364.
[CrossRef]

D. Judd, Colorimetry and Artificial Daylight, , Proceedings of the Twelfth Session of the CIE, Stockholm, 1951, pp. 1–60.

G. Wyszecki, W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, New York, 1982).

E. Miyahara, “Spectral sensitivity functions of X-chromosome-linked color defective observers,” Ph.D. dissertation (University of Chicago, Chicago, Ill., 1993).

Y. LeGrand, Light, Color and Vision (Chapman & Hall, London, 1968).

V. Smith, J. Pokorny, T. Yeh, “The Farnsworth–Munsell 100-hue test in cone excitation space,” in Colour Vision Deficiencies XI, B. Drum, ed., Vol. 56 of Documenta Ophthalmologica Proceedings Series (Kluwer Academic, Boston, Mass., 1993), pp. 281–291.
[CrossRef]

P. A. Sample, G. A. Martinez, R. N. Weinreb, “Color visual fields: a five-year prospective study in suspect eye and eyes with primary open angle glaucoma,” in Perimetry Update 1992/1993, R. P. Mills, ed. (Kugler, Amsterdam, 1993), pp. 473–476.

J. Thornton, E. Pugh, “Relationship of opponent-colours cancellation measures to cone-antagonistic signals deduced from increment threshold data,” in Colour Vision, J. D. Mollon, L. T. Sharpe, eds. (Academic, London, 1983), pp. 361–373.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the three-channel direct-view optical system used to present the stimuli. L’s indicate collimating and decollimating lenses, and M’s indicate masks.

Fig. 2
Fig. 2

Schematic representing the spatial configuration of the stimuli. The test, A, and the pedestal, B, were spatially contiguous 3.1° circular stimuli; the background, C, was 30° square. Both the pedestal and the background were white lights; the test stimulus was white, blue, or red.

Fig. 3
Fig. 3

Thresholds obtained in the fovea (solid symbols) and at 12° eccentricity (open symbols) for both observers (PP, top panels; WS, bottom panels) as a function of adapting illuminance for white (left panels), blue (middle panels), and red (right panels) increments. The functions depict the fits of Eqs. (1)–(3) to the thresholds. The parameters for these functions are shown in Table 2.

Fig. 4
Fig. 4

Thresholds obtained at 12° eccentricity for both observers (PP, top panel; WS, bottom panel) as a function of retinal illuminance for the blue (solid symbols) and yellow (open symbols) increments. The functions depict the fits of Eq. (4) to the thresholds. The parameters obtained from the fits are shown in Table 3.

Fig. 5
Fig. 5

Chromatic contrast sensitivity (solid symbols) for the white adapting field as a function of the wavelength of the test increment and achromatic contrast sensitivity (open symbol) for an increment with the same chromaticity as the adapting field. The functions represent the predictions for each of the mechanisms as determined by Eq. (1) (achromatic mechanism, dotted curve), (4) (SWS cone opponent mechanism, thick black curves), and (5) (red–green mechanism, thin black curves) with the parameters determined from the TVI curves shown in Figs. 3 and 4. Since the background and the pedestal were white in this portion of the experiment, opp was equal to 0. The vector sum of the responses of the mechanisms is represented by thick gray curves.

Fig. 6
Fig. 6

Chromatic contrast sensitivity (solid symbols) for the 500-nm adapting field as a function of the wavelength of the test increment and achromatic contrast sensitivity (open symbol) for a 500-nm increment. The predictions shown for the achromatic and blue mechanisms are determined by Eqs. (1) (achromatic mechanism, dotted curves) and (4) (SWS cone opponent mechanism, thick black curves) with the parameters determined from the TVI curves shown in Tables 2 and 3. The fit of Eq. (5) (red–green mechanism), based on the parameters in Table 2 and Lopp, is represented by the thin black curves. The vector sum of the responses of the mechanisms is represented by thick gray curves.

Fig. 7
Fig. 7

Predicted sensitivity of the red–green (thin black lines), SWS cone opponent (thick black lines), and the luminance mechanism (dotted line) for one subject (PP) is shown in cone contrast space. The left panel depicts the predictions for the white background and the right panel depicts the predictions on the 500-nm background. Predictions were obtained by fixing the absolute thresholds and gain constants to those values obtained from the TVI fits shown in Tables 2 and 3. The vector sum is represented by the thick gray curves.

Tables (3)

Tables Icon

Table 1 Equivalent Wavelengths for the White, Blue, Red, and Yellow Broadband Stimuli for Three Cone Types

Tables Icon

Table 2 Parameters of the Model Obtained by Fitting the Thresholds Shown in Fig. 3

Tables Icon

Table 3 Parameters of the Model Obtained by Fitting with Eq. (4) the Blue and Yellow Increment Thresholds Shown in Fig. 4

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

L=l(λ)lmaxV(λ),M=m(λ)mmaxV(λ),S=s(λ)smaxV(λ),
log ΔI=log Ta-logpLT11+GaLAI+(1-p)MT11+GaMAI,
log ΔI=log TR-logLT11+GRLAI-MT11+GRMAI,
log ΔI=log TS-logz¯(λT)V(λ)-1-log11+GSI,
log ΔS=log TS-logST11+GSSAI-1ΔILM
log ΔI=log ΔIR+opp,
opp=log1+Lopp|lA-lW|3.008I11+GRLWI

Metrics