Abstract

Silicon-based antiresonant reflecting optical waveguide (ARROW) devices were studied by means of a scanning near-field optical microscope. Various structures such as a Y junction of a Mach–Zehnder interferometer and a directional optical coupler were characterized, showing the propagation of the light inside the devices simultaneously with the topography. Scattering on the splitting point of the Y junction was shown, as well as a partial coupling of the light between the two branches of the coupler. Measurements on the decay length of the evanescent field were also performed to study the use of the ARROW waveguide for sensor purposes.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Hunsperger, Integrated Optics (Springer, Berlin, 1995).
  2. S. Valette, S. Renard, J. P. Jadot, P. Gidon, C. Erbeia, “Silicon-based integrated optics technology for optical sensor applications,” Sensors Actuat. A 21–23, 1087–1091 (1990).
    [CrossRef]
  3. J. Janata, M. Josowicz, P. Vanysek, D. M. DeVaney, “Chemical sensors,” Anal. Chem. 70, 179R–208R (1998).
    [CrossRef]
  4. X. Borrisé, D. Jiménez, N. Barniol, F. Pérez-Murano, X. Aymerich, “Scanning near-field optical microscope for the characterization of optical integrated waveguides,” J. Lightwave Technol. 18, 370–374 (2000).
    [CrossRef]
  5. S. Bourzeix, J. M. Moison, F. Mignard, F. Barthe, “Near-field optical imaging of light propagation in semiconductor waveguides structures,” Appl. Phys. Lett. 73, 1035–1037 (1998).
    [CrossRef]
  6. M. L. M. Balistreri, D. J. W. Klunder, F. G. Blom, A. Driessen, H. W. J. M. Hoekstra, J. P. Korterik, L. Kuipers, N. F. Van Hulst, “Visualizing the whispering gallery modes in a cylindrical optical microcavity,” Opt. Lett. 24, 1829–1831 (1999).
    [CrossRef]
  7. T. Baba, Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides: numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
    [CrossRef]
  8. M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
    [CrossRef]
  9. C. M. Kim, R. V. Ramaswamy, “Modeling of graded-index channel waveguides using nonuniform finite difference method,” J. Lightwave Technol. 7, 1581–1589 (1989).
    [CrossRef]
  10. I. Garcés, F. Villuendas, J. A. Vallés, C. Domı́nguez, M. Moreno, “Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol. 14, 798–805 (1996).
    [CrossRef]
  11. C. D. Poweleit, D. H. Naghski, S. M. Lindsay, J. T. Boyd, H. E. Jackson, “Near field scanning optical microscopy measurements of optical intensity distributions in semiconductor channel waveguides,” Appl. Phys. Lett. 69, 3471–3473 (1996).
    [CrossRef]
  12. B. P. Pal, “Guided-wave optics on silicon: physics, technology and status,” Prog. Opt. 32, 1–59 (1994).
    [CrossRef]
  13. L. M. Lechuga, A. T. M. Lenferink, R. P. H. Kooyman, J. Greeve, “Feasibility of evanescent wave interferometer immunosensors for direct detection of pesticides: chemical aspects,” Sensors Actuat. B 24-25, 762–765 (1995).
    [CrossRef]

2000 (1)

1999 (1)

1998 (2)

S. Bourzeix, J. M. Moison, F. Mignard, F. Barthe, “Near-field optical imaging of light propagation in semiconductor waveguides structures,” Appl. Phys. Lett. 73, 1035–1037 (1998).
[CrossRef]

J. Janata, M. Josowicz, P. Vanysek, D. M. DeVaney, “Chemical sensors,” Anal. Chem. 70, 179R–208R (1998).
[CrossRef]

1996 (2)

I. Garcés, F. Villuendas, J. A. Vallés, C. Domı́nguez, M. Moreno, “Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol. 14, 798–805 (1996).
[CrossRef]

C. D. Poweleit, D. H. Naghski, S. M. Lindsay, J. T. Boyd, H. E. Jackson, “Near field scanning optical microscopy measurements of optical intensity distributions in semiconductor channel waveguides,” Appl. Phys. Lett. 69, 3471–3473 (1996).
[CrossRef]

1995 (1)

L. M. Lechuga, A. T. M. Lenferink, R. P. H. Kooyman, J. Greeve, “Feasibility of evanescent wave interferometer immunosensors for direct detection of pesticides: chemical aspects,” Sensors Actuat. B 24-25, 762–765 (1995).
[CrossRef]

1994 (1)

B. P. Pal, “Guided-wave optics on silicon: physics, technology and status,” Prog. Opt. 32, 1–59 (1994).
[CrossRef]

1992 (1)

T. Baba, Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides: numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[CrossRef]

1990 (1)

S. Valette, S. Renard, J. P. Jadot, P. Gidon, C. Erbeia, “Silicon-based integrated optics technology for optical sensor applications,” Sensors Actuat. A 21–23, 1087–1091 (1990).
[CrossRef]

1989 (1)

C. M. Kim, R. V. Ramaswamy, “Modeling of graded-index channel waveguides using nonuniform finite difference method,” J. Lightwave Technol. 7, 1581–1589 (1989).
[CrossRef]

1986 (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Aymerich, X.

Baba, T.

T. Baba, Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides: numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[CrossRef]

Balistreri, M. L. M.

Barniol, N.

Barthe, F.

S. Bourzeix, J. M. Moison, F. Mignard, F. Barthe, “Near-field optical imaging of light propagation in semiconductor waveguides structures,” Appl. Phys. Lett. 73, 1035–1037 (1998).
[CrossRef]

Blom, F. G.

Borrisé, X.

Bourzeix, S.

S. Bourzeix, J. M. Moison, F. Mignard, F. Barthe, “Near-field optical imaging of light propagation in semiconductor waveguides structures,” Appl. Phys. Lett. 73, 1035–1037 (1998).
[CrossRef]

Boyd, J. T.

C. D. Poweleit, D. H. Naghski, S. M. Lindsay, J. T. Boyd, H. E. Jackson, “Near field scanning optical microscopy measurements of optical intensity distributions in semiconductor channel waveguides,” Appl. Phys. Lett. 69, 3471–3473 (1996).
[CrossRef]

DeVaney, D. M.

J. Janata, M. Josowicz, P. Vanysek, D. M. DeVaney, “Chemical sensors,” Anal. Chem. 70, 179R–208R (1998).
[CrossRef]

Domi´nguez, C.

I. Garcés, F. Villuendas, J. A. Vallés, C. Domı́nguez, M. Moreno, “Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol. 14, 798–805 (1996).
[CrossRef]

Driessen, A.

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Erbeia, C.

S. Valette, S. Renard, J. P. Jadot, P. Gidon, C. Erbeia, “Silicon-based integrated optics technology for optical sensor applications,” Sensors Actuat. A 21–23, 1087–1091 (1990).
[CrossRef]

Garcés, I.

I. Garcés, F. Villuendas, J. A. Vallés, C. Domı́nguez, M. Moreno, “Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol. 14, 798–805 (1996).
[CrossRef]

Gidon, P.

S. Valette, S. Renard, J. P. Jadot, P. Gidon, C. Erbeia, “Silicon-based integrated optics technology for optical sensor applications,” Sensors Actuat. A 21–23, 1087–1091 (1990).
[CrossRef]

Greeve, J.

L. M. Lechuga, A. T. M. Lenferink, R. P. H. Kooyman, J. Greeve, “Feasibility of evanescent wave interferometer immunosensors for direct detection of pesticides: chemical aspects,” Sensors Actuat. B 24-25, 762–765 (1995).
[CrossRef]

Hoekstra, H. W. J. M.

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics (Springer, Berlin, 1995).

Jackson, H. E.

C. D. Poweleit, D. H. Naghski, S. M. Lindsay, J. T. Boyd, H. E. Jackson, “Near field scanning optical microscopy measurements of optical intensity distributions in semiconductor channel waveguides,” Appl. Phys. Lett. 69, 3471–3473 (1996).
[CrossRef]

Jadot, J. P.

S. Valette, S. Renard, J. P. Jadot, P. Gidon, C. Erbeia, “Silicon-based integrated optics technology for optical sensor applications,” Sensors Actuat. A 21–23, 1087–1091 (1990).
[CrossRef]

Janata, J.

J. Janata, M. Josowicz, P. Vanysek, D. M. DeVaney, “Chemical sensors,” Anal. Chem. 70, 179R–208R (1998).
[CrossRef]

Jiménez, D.

Josowicz, M.

J. Janata, M. Josowicz, P. Vanysek, D. M. DeVaney, “Chemical sensors,” Anal. Chem. 70, 179R–208R (1998).
[CrossRef]

Kim, C. M.

C. M. Kim, R. V. Ramaswamy, “Modeling of graded-index channel waveguides using nonuniform finite difference method,” J. Lightwave Technol. 7, 1581–1589 (1989).
[CrossRef]

Klunder, D. J. W.

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Kokubun, Y.

T. Baba, Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides: numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[CrossRef]

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Kooyman, R. P. H.

L. M. Lechuga, A. T. M. Lenferink, R. P. H. Kooyman, J. Greeve, “Feasibility of evanescent wave interferometer immunosensors for direct detection of pesticides: chemical aspects,” Sensors Actuat. B 24-25, 762–765 (1995).
[CrossRef]

Korterik, J. P.

Kuipers, L.

Lechuga, L. M.

L. M. Lechuga, A. T. M. Lenferink, R. P. H. Kooyman, J. Greeve, “Feasibility of evanescent wave interferometer immunosensors for direct detection of pesticides: chemical aspects,” Sensors Actuat. B 24-25, 762–765 (1995).
[CrossRef]

Lenferink, A. T. M.

L. M. Lechuga, A. T. M. Lenferink, R. P. H. Kooyman, J. Greeve, “Feasibility of evanescent wave interferometer immunosensors for direct detection of pesticides: chemical aspects,” Sensors Actuat. B 24-25, 762–765 (1995).
[CrossRef]

Lindsay, S. M.

C. D. Poweleit, D. H. Naghski, S. M. Lindsay, J. T. Boyd, H. E. Jackson, “Near field scanning optical microscopy measurements of optical intensity distributions in semiconductor channel waveguides,” Appl. Phys. Lett. 69, 3471–3473 (1996).
[CrossRef]

Mignard, F.

S. Bourzeix, J. M. Moison, F. Mignard, F. Barthe, “Near-field optical imaging of light propagation in semiconductor waveguides structures,” Appl. Phys. Lett. 73, 1035–1037 (1998).
[CrossRef]

Moison, J. M.

S. Bourzeix, J. M. Moison, F. Mignard, F. Barthe, “Near-field optical imaging of light propagation in semiconductor waveguides structures,” Appl. Phys. Lett. 73, 1035–1037 (1998).
[CrossRef]

Moreno, M.

I. Garcés, F. Villuendas, J. A. Vallés, C. Domı́nguez, M. Moreno, “Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol. 14, 798–805 (1996).
[CrossRef]

Naghski, D. H.

C. D. Poweleit, D. H. Naghski, S. M. Lindsay, J. T. Boyd, H. E. Jackson, “Near field scanning optical microscopy measurements of optical intensity distributions in semiconductor channel waveguides,” Appl. Phys. Lett. 69, 3471–3473 (1996).
[CrossRef]

Pal, B. P.

B. P. Pal, “Guided-wave optics on silicon: physics, technology and status,” Prog. Opt. 32, 1–59 (1994).
[CrossRef]

Pérez-Murano, F.

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Poweleit, C. D.

C. D. Poweleit, D. H. Naghski, S. M. Lindsay, J. T. Boyd, H. E. Jackson, “Near field scanning optical microscopy measurements of optical intensity distributions in semiconductor channel waveguides,” Appl. Phys. Lett. 69, 3471–3473 (1996).
[CrossRef]

Ramaswamy, R. V.

C. M. Kim, R. V. Ramaswamy, “Modeling of graded-index channel waveguides using nonuniform finite difference method,” J. Lightwave Technol. 7, 1581–1589 (1989).
[CrossRef]

Renard, S.

S. Valette, S. Renard, J. P. Jadot, P. Gidon, C. Erbeia, “Silicon-based integrated optics technology for optical sensor applications,” Sensors Actuat. A 21–23, 1087–1091 (1990).
[CrossRef]

Valette, S.

S. Valette, S. Renard, J. P. Jadot, P. Gidon, C. Erbeia, “Silicon-based integrated optics technology for optical sensor applications,” Sensors Actuat. A 21–23, 1087–1091 (1990).
[CrossRef]

Vallés, J. A.

I. Garcés, F. Villuendas, J. A. Vallés, C. Domı́nguez, M. Moreno, “Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol. 14, 798–805 (1996).
[CrossRef]

Van Hulst, N. F.

Vanysek, P.

J. Janata, M. Josowicz, P. Vanysek, D. M. DeVaney, “Chemical sensors,” Anal. Chem. 70, 179R–208R (1998).
[CrossRef]

Villuendas, F.

I. Garcés, F. Villuendas, J. A. Vallés, C. Domı́nguez, M. Moreno, “Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol. 14, 798–805 (1996).
[CrossRef]

Anal. Chem. (1)

J. Janata, M. Josowicz, P. Vanysek, D. M. DeVaney, “Chemical sensors,” Anal. Chem. 70, 179R–208R (1998).
[CrossRef]

Appl. Phys. Lett. (3)

S. Bourzeix, J. M. Moison, F. Mignard, F. Barthe, “Near-field optical imaging of light propagation in semiconductor waveguides structures,” Appl. Phys. Lett. 73, 1035–1037 (1998).
[CrossRef]

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

C. D. Poweleit, D. H. Naghski, S. M. Lindsay, J. T. Boyd, H. E. Jackson, “Near field scanning optical microscopy measurements of optical intensity distributions in semiconductor channel waveguides,” Appl. Phys. Lett. 69, 3471–3473 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Baba, Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides: numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[CrossRef]

J. Lightwave Technol. (3)

C. M. Kim, R. V. Ramaswamy, “Modeling of graded-index channel waveguides using nonuniform finite difference method,” J. Lightwave Technol. 7, 1581–1589 (1989).
[CrossRef]

I. Garcés, F. Villuendas, J. A. Vallés, C. Domı́nguez, M. Moreno, “Analysis of leakage properties and guiding conditions of rib antiresonant reflecting optical waveguides,” J. Lightwave Technol. 14, 798–805 (1996).
[CrossRef]

X. Borrisé, D. Jiménez, N. Barniol, F. Pérez-Murano, X. Aymerich, “Scanning near-field optical microscope for the characterization of optical integrated waveguides,” J. Lightwave Technol. 18, 370–374 (2000).
[CrossRef]

Opt. Lett. (1)

Prog. Opt. (1)

B. P. Pal, “Guided-wave optics on silicon: physics, technology and status,” Prog. Opt. 32, 1–59 (1994).
[CrossRef]

Sensors Actuat. A (1)

S. Valette, S. Renard, J. P. Jadot, P. Gidon, C. Erbeia, “Silicon-based integrated optics technology for optical sensor applications,” Sensors Actuat. A 21–23, 1087–1091 (1990).
[CrossRef]

Sensors Actuat. B (1)

L. M. Lechuga, A. T. M. Lenferink, R. P. H. Kooyman, J. Greeve, “Feasibility of evanescent wave interferometer immunosensors for direct detection of pesticides: chemical aspects,” Sensors Actuat. B 24-25, 762–765 (1995).
[CrossRef]

Other (1)

R. G. Hunsperger, Integrated Optics (Springer, Berlin, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Geometry and refractive index structure of the ARROW. The width, W, and the height, H, of the waveguide are varied depending on the device.

Fig. 2
Fig. 2

Calculation of the attenuation versus thickness of the first cladding (Si3N4 layer) of the ARROW for a wavelength λ=633 nm. Only the fundamental mode TE0 has a very low attenuation that achieves a virtual monomode propagation.

Fig. 3
Fig. 3

(A) 28-µm×88-µm topographic image of an ARROW and a profile showing waveguide dimensions. (B) 3.7-µm×3.7-µm zoom over the top of the waveguide.

Fig. 4
Fig. 4

(A) 18-µm×45-µm optical image corresponding to the waveguide of Fig. 3, showing an optical beating along the waveguide. (B) Topographic and optical profiles, clearly showing the intensity corresponding to the mode beating.

Fig. 5
Fig. 5

(A) 17-µm×40-µm optical image of a 4-µm-wide ARROW. (B) Profile showing single-mode behavior. The lateral peak remains out of the waveguide and corresponds to the lateral evanescent field.

Fig. 6
Fig. 6

Two-dimensional FDM simulation of the optical intensity of the fundamental mode of the ARROW superimposed on the topography of the waveguide. The structure corresponds to Fig. 1 with a rib of 2.5 µm and a width of 4 µm. The resulting effective refractive index is neff=1.456. (B) Magnification of the rib zone of the waveguide showing the real profile made by the fiber tip (heavy dotted curve).

Fig. 7
Fig. 7

(A) 300-µm-long topographic image of a Y junction. The measured splitting angle is 1.5°. (B) Profiles showing the dimensions of the structure before (upper profile) and after (lower profile) the splitting point.

Fig. 8
Fig. 8

Optical image of the Y junction measured in Fig. 7. Lateral dimensions are the same as in Fig. 7, and the vertical dimension is 400 µm. The lateral profiles show the optical interference pattern produced along the waveguide.

Fig. 9
Fig. 9

Plot of the evanescent field. The log plot reveals the exponential nature that is due to the evanescent field. The three curves correspond to a point before the splitting and at each branch of the Y junction after the splitting. The decay length measured is 42.5 nm.

Fig. 10
Fig. 10

Topographic and optical images of a directional coupler. (A) Before the coupling zone: Dimensions are 48.4 µm×88.4 µm. (B) In the coupling region without apparent coupling: Dimensions are 30.4 µm×297.6 µm for the topographic image and 22.7 µm×146.5 µm for the optical image. (C) 400 µm farther from the previous image in the coupling region. In this case a partial coupling can be seen. Dimensions are 38.3 µm×297.6 µm for the topographic image and 30.4 µm×297.6 µm for the optical image. (D) Topographic and optical profile of Fig. 10(C).

Metrics