Abstract

There has been a recent renewal of interest in anomalously high energy transfer through otherwise opaque metal film geometries. One of the earliest such systems, that of surface plasmon cross coupling in a sinusoidally corrugated continuous metal film, was studied by Gruhlke et al. [Phys. Rev. Lett. 56, 2838 (1986)]. We show that it is possible to use a nonperturbative method to accurately predict this coupling, and we use this method to analyze both intrinsic coupling in symmetric structures and grating-assisted cross coupling in asymmetric structures.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980); M. C. Hutley, Diffraction Gratings (Academic, London, 1982).
  2. Y. Kuwamura, M. Fukui, O. Tada, “Experimental observation of long-range surface plasmon polaritons,” J. Phys. Soc. Jpn. 52, 2350–2355 (1983).
    [CrossRef]
  3. J. C. Quail, J. G. Rako, H. J. Simon, “Long-range surface-plasmon modes in silver and aluminum films,” Opt. Lett. 8, 377–379 (1983).
    [CrossRef] [PubMed]
  4. A. E. Craig, G. A. Olson, D. Sarid, “Experimental observation of the long-range surface-plasmon polariton,” Opt. Lett. 8, 380–382 (1983).
    [CrossRef] [PubMed]
  5. T. Inagaki, M. Motosuga, E. Arakawa, J. Goudonnet, “Coupled surface plasmons excited by photons in a free-standing thin silver film,” Phys. Rev. B 31, 2548–2550 (1985).
    [CrossRef]
  6. T. Inagaki, M. Motosuga, E. Arakawa, J. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B 32, 6238–6245 (1985).
    [CrossRef]
  7. S. Dutta Gupta, G. V. Varada, G. S. Agarwal, “Surface plasmons in two-sided corrugated thin films,” Phys. Rev. B 36, 6331–6335 (1987).
    [CrossRef]
  8. R. W. Gruhlke, W. R. Holland, D. G. Hall, “Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin metal film,” Phys. Rev. Lett. 56, 2838–2841 (1986).
    [CrossRef] [PubMed]
  9. R. W. Gruhlke, W. R. Holland, D. G. Hall, “Optical emission from coupled surface plasmons,” Opt. Lett. 12, 364–366 (1987).
    [CrossRef] [PubMed]
  10. M. L. Tuma, R. W. Gruhlke, “Integrated thin film fluorescence NOx sensor: concept,” in Optical Technology in Fluid, Thermal and Combustion Flow III, S. S. Cha, J. D. Trolinger, M. Kawahashi, eds., Proc. SPIE3172, 98–105 (1997);M. L. Tuma, R. W. Gruhlke, “Integrated fluorescence sensor,” U.S. Patent5,841,143 (Nov.24, 1998).
    [CrossRef]
  11. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
    [CrossRef]
  12. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
    [CrossRef]
  13. U. Schroter, D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998).
    [CrossRef]
  14. R. A. Depine, “Backscattering enhancement of light and multiple scattering of surface waves at a randomly varying impedance plane,” J. Opt. Soc. Am. A 9, 609–618 (1992).
    [CrossRef]
  15. M. L. Tuma, R. W. Gruhlke, T. G. Brown, “Evidence of enhanced fluorescence via cross coupling in an integrated thin-film fluorescence sensor,” in Optical Diagnostics for Fluids/Heat/Combustion and Photomechanics for Solids, S. S. Cha, P. J. Bryanston-Cross, C. R. Merces, eds., Proc. SPIE3783, 339–346 (1999).
    [CrossRef]
  16. D. Maystre, “Integral methods,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), Chap. 3, pp. 63–100.
  17. P. Vincent, “Differential methods,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), Chap. 4, pp. 101–121.
  18. J. Chandezon, M. T. Dupuis, G. Cornet, D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72, 839–846 (1982).
    [CrossRef]
  19. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
    [CrossRef]
  20. J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
    [CrossRef]
  21. M. Specht, J. D. Pedarnig, W. M. Heckl, T. W. Hansch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
    [CrossRef] [PubMed]
  22. J. C. Tsang, J. R. Kirtley, J. A. Bradley, “Surface-enhanced Raman spectroscopy and surface plasmons,” Phys. Rev. Lett. 43, 772–775 (1979).
    [CrossRef]
  23. J. C. Quail, J. G. Rako, H. J. Simon, R. T. Deck, “Optical second harmonic generation with long-range surface plasmons,” Phys. Rev. Lett. 50, 1987–1989 (1983).
    [CrossRef]
  24. P. M. Van den Berg, J. T. Fokkema, “The Rayleigh hypothesis in theory of reflection by a grating,” J. Opt. Soc. Am. 69, 27–31 (1979);T. C. Paulick, “Applicability of the Rayleigh hypothesis to real materials,” Phys. Rev. B 42, 2801–2824 (1990).
    [CrossRef]
  25. A. Koch, W. Beinstingl, K. Berthold, E. Gornik, “Surface plasmon polariton enhanced light emission from Schottky diodes,” Appl. Phys. Lett. 52, 184–186 (1988).

1998 (3)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

U. Schroter, D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998).
[CrossRef]

1992 (2)

R. A. Depine, “Backscattering enhancement of light and multiple scattering of surface waves at a randomly varying impedance plane,” J. Opt. Soc. Am. A 9, 609–618 (1992).
[CrossRef]

M. Specht, J. D. Pedarnig, W. M. Heckl, T. W. Hansch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
[CrossRef] [PubMed]

1988 (1)

A. Koch, W. Beinstingl, K. Berthold, E. Gornik, “Surface plasmon polariton enhanced light emission from Schottky diodes,” Appl. Phys. Lett. 52, 184–186 (1988).

1987 (2)

R. W. Gruhlke, W. R. Holland, D. G. Hall, “Optical emission from coupled surface plasmons,” Opt. Lett. 12, 364–366 (1987).
[CrossRef] [PubMed]

S. Dutta Gupta, G. V. Varada, G. S. Agarwal, “Surface plasmons in two-sided corrugated thin films,” Phys. Rev. B 36, 6331–6335 (1987).
[CrossRef]

1986 (3)

R. W. Gruhlke, W. R. Holland, D. G. Hall, “Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin metal film,” Phys. Rev. Lett. 56, 2838–2841 (1986).
[CrossRef] [PubMed]

M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
[CrossRef]

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

1985 (2)

T. Inagaki, M. Motosuga, E. Arakawa, J. Goudonnet, “Coupled surface plasmons excited by photons in a free-standing thin silver film,” Phys. Rev. B 31, 2548–2550 (1985).
[CrossRef]

T. Inagaki, M. Motosuga, E. Arakawa, J. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B 32, 6238–6245 (1985).
[CrossRef]

1983 (4)

Y. Kuwamura, M. Fukui, O. Tada, “Experimental observation of long-range surface plasmon polaritons,” J. Phys. Soc. Jpn. 52, 2350–2355 (1983).
[CrossRef]

J. C. Quail, J. G. Rako, H. J. Simon, “Long-range surface-plasmon modes in silver and aluminum films,” Opt. Lett. 8, 377–379 (1983).
[CrossRef] [PubMed]

A. E. Craig, G. A. Olson, D. Sarid, “Experimental observation of the long-range surface-plasmon polariton,” Opt. Lett. 8, 380–382 (1983).
[CrossRef] [PubMed]

J. C. Quail, J. G. Rako, H. J. Simon, R. T. Deck, “Optical second harmonic generation with long-range surface plasmons,” Phys. Rev. Lett. 50, 1987–1989 (1983).
[CrossRef]

1982 (1)

1979 (2)

Agarwal, G. S.

S. Dutta Gupta, G. V. Varada, G. S. Agarwal, “Surface plasmons in two-sided corrugated thin films,” Phys. Rev. B 36, 6331–6335 (1987).
[CrossRef]

Arakawa, E.

T. Inagaki, M. Motosuga, E. Arakawa, J. Goudonnet, “Coupled surface plasmons excited by photons in a free-standing thin silver film,” Phys. Rev. B 31, 2548–2550 (1985).
[CrossRef]

T. Inagaki, M. Motosuga, E. Arakawa, J. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B 32, 6238–6245 (1985).
[CrossRef]

Beinstingl, W.

A. Koch, W. Beinstingl, K. Berthold, E. Gornik, “Surface plasmon polariton enhanced light emission from Schottky diodes,” Appl. Phys. Lett. 52, 184–186 (1988).

Berthold, K.

A. Koch, W. Beinstingl, K. Berthold, E. Gornik, “Surface plasmon polariton enhanced light emission from Schottky diodes,” Appl. Phys. Lett. 52, 184–186 (1988).

Bradley, J. A.

J. C. Tsang, J. R. Kirtley, J. A. Bradley, “Surface-enhanced Raman spectroscopy and surface plasmons,” Phys. Rev. Lett. 43, 772–775 (1979).
[CrossRef]

Brown, T. G.

M. L. Tuma, R. W. Gruhlke, T. G. Brown, “Evidence of enhanced fluorescence via cross coupling in an integrated thin-film fluorescence sensor,” in Optical Diagnostics for Fluids/Heat/Combustion and Photomechanics for Solids, S. S. Cha, P. J. Bryanston-Cross, C. R. Merces, eds., Proc. SPIE3783, 339–346 (1999).
[CrossRef]

Burke, J. J.

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Chandezon, J.

Cornet, G.

Craig, A. E.

Deck, R. T.

J. C. Quail, J. G. Rako, H. J. Simon, R. T. Deck, “Optical second harmonic generation with long-range surface plasmons,” Phys. Rev. Lett. 50, 1987–1989 (1983).
[CrossRef]

Depine, R. A.

Dupuis, M. T.

Dutta Gupta, S.

S. Dutta Gupta, G. V. Varada, G. S. Agarwal, “Surface plasmons in two-sided corrugated thin films,” Phys. Rev. B 36, 6331–6335 (1987).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Fokkema, J. T.

Fukui, M.

Y. Kuwamura, M. Fukui, O. Tada, “Experimental observation of long-range surface plasmon polaritons,” J. Phys. Soc. Jpn. 52, 2350–2355 (1983).
[CrossRef]

Gaylord, T. K.

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Gornik, E.

A. Koch, W. Beinstingl, K. Berthold, E. Gornik, “Surface plasmon polariton enhanced light emission from Schottky diodes,” Appl. Phys. Lett. 52, 184–186 (1988).

Goudonnet, J.

T. Inagaki, M. Motosuga, E. Arakawa, J. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B 32, 6238–6245 (1985).
[CrossRef]

T. Inagaki, M. Motosuga, E. Arakawa, J. Goudonnet, “Coupled surface plasmons excited by photons in a free-standing thin silver film,” Phys. Rev. B 31, 2548–2550 (1985).
[CrossRef]

Gruhlke, R. W.

R. W. Gruhlke, W. R. Holland, D. G. Hall, “Optical emission from coupled surface plasmons,” Opt. Lett. 12, 364–366 (1987).
[CrossRef] [PubMed]

R. W. Gruhlke, W. R. Holland, D. G. Hall, “Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin metal film,” Phys. Rev. Lett. 56, 2838–2841 (1986).
[CrossRef] [PubMed]

M. L. Tuma, R. W. Gruhlke, “Integrated thin film fluorescence NOx sensor: concept,” in Optical Technology in Fluid, Thermal and Combustion Flow III, S. S. Cha, J. D. Trolinger, M. Kawahashi, eds., Proc. SPIE3172, 98–105 (1997);M. L. Tuma, R. W. Gruhlke, “Integrated fluorescence sensor,” U.S. Patent5,841,143 (Nov.24, 1998).
[CrossRef]

M. L. Tuma, R. W. Gruhlke, T. G. Brown, “Evidence of enhanced fluorescence via cross coupling in an integrated thin-film fluorescence sensor,” in Optical Diagnostics for Fluids/Heat/Combustion and Photomechanics for Solids, S. S. Cha, P. J. Bryanston-Cross, C. R. Merces, eds., Proc. SPIE3783, 339–346 (1999).
[CrossRef]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Hall, D. G.

R. W. Gruhlke, W. R. Holland, D. G. Hall, “Optical emission from coupled surface plasmons,” Opt. Lett. 12, 364–366 (1987).
[CrossRef] [PubMed]

R. W. Gruhlke, W. R. Holland, D. G. Hall, “Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin metal film,” Phys. Rev. Lett. 56, 2838–2841 (1986).
[CrossRef] [PubMed]

Hansch, T. W.

M. Specht, J. D. Pedarnig, W. M. Heckl, T. W. Hansch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
[CrossRef] [PubMed]

Heckl, W. M.

M. Specht, J. D. Pedarnig, W. M. Heckl, T. W. Hansch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
[CrossRef] [PubMed]

Heitmann, D.

U. Schroter, D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998).
[CrossRef]

Holland, W. R.

R. W. Gruhlke, W. R. Holland, D. G. Hall, “Optical emission from coupled surface plasmons,” Opt. Lett. 12, 364–366 (1987).
[CrossRef] [PubMed]

R. W. Gruhlke, W. R. Holland, D. G. Hall, “Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin metal film,” Phys. Rev. Lett. 56, 2838–2841 (1986).
[CrossRef] [PubMed]

Inagaki, T.

T. Inagaki, M. Motosuga, E. Arakawa, J. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B 32, 6238–6245 (1985).
[CrossRef]

T. Inagaki, M. Motosuga, E. Arakawa, J. Goudonnet, “Coupled surface plasmons excited by photons in a free-standing thin silver film,” Phys. Rev. B 31, 2548–2550 (1985).
[CrossRef]

Kirtley, J. R.

J. C. Tsang, J. R. Kirtley, J. A. Bradley, “Surface-enhanced Raman spectroscopy and surface plasmons,” Phys. Rev. Lett. 43, 772–775 (1979).
[CrossRef]

Koch, A.

A. Koch, W. Beinstingl, K. Berthold, E. Gornik, “Surface plasmon polariton enhanced light emission from Schottky diodes,” Appl. Phys. Lett. 52, 184–186 (1988).

Kuwamura, Y.

Y. Kuwamura, M. Fukui, O. Tada, “Experimental observation of long-range surface plasmon polaritons,” J. Phys. Soc. Jpn. 52, 2350–2355 (1983).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Maystre, D.

J. Chandezon, M. T. Dupuis, G. Cornet, D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72, 839–846 (1982).
[CrossRef]

D. Maystre, “Integral methods,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), Chap. 3, pp. 63–100.

Moharam, M. G.

Motosuga, M.

T. Inagaki, M. Motosuga, E. Arakawa, J. Goudonnet, “Coupled surface plasmons excited by photons in a free-standing thin silver film,” Phys. Rev. B 31, 2548–2550 (1985).
[CrossRef]

T. Inagaki, M. Motosuga, E. Arakawa, J. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B 32, 6238–6245 (1985).
[CrossRef]

Olson, G. A.

Pedarnig, J. D.

M. Specht, J. D. Pedarnig, W. M. Heckl, T. W. Hansch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
[CrossRef] [PubMed]

Petit, R.

See, for example, R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980); M. C. Hutley, Diffraction Gratings (Academic, London, 1982).

Quail, J. C.

J. C. Quail, J. G. Rako, H. J. Simon, “Long-range surface-plasmon modes in silver and aluminum films,” Opt. Lett. 8, 377–379 (1983).
[CrossRef] [PubMed]

J. C. Quail, J. G. Rako, H. J. Simon, R. T. Deck, “Optical second harmonic generation with long-range surface plasmons,” Phys. Rev. Lett. 50, 1987–1989 (1983).
[CrossRef]

Rako, J. G.

J. C. Quail, J. G. Rako, H. J. Simon, R. T. Deck, “Optical second harmonic generation with long-range surface plasmons,” Phys. Rev. Lett. 50, 1987–1989 (1983).
[CrossRef]

J. C. Quail, J. G. Rako, H. J. Simon, “Long-range surface-plasmon modes in silver and aluminum films,” Opt. Lett. 8, 377–379 (1983).
[CrossRef] [PubMed]

Sarid, D.

Schroter, U.

U. Schroter, D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998).
[CrossRef]

Simon, H. J.

J. C. Quail, J. G. Rako, H. J. Simon, R. T. Deck, “Optical second harmonic generation with long-range surface plasmons,” Phys. Rev. Lett. 50, 1987–1989 (1983).
[CrossRef]

J. C. Quail, J. G. Rako, H. J. Simon, “Long-range surface-plasmon modes in silver and aluminum films,” Opt. Lett. 8, 377–379 (1983).
[CrossRef] [PubMed]

Specht, M.

M. Specht, J. D. Pedarnig, W. M. Heckl, T. W. Hansch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
[CrossRef] [PubMed]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Tada, O.

Y. Kuwamura, M. Fukui, O. Tada, “Experimental observation of long-range surface plasmon polaritons,” J. Phys. Soc. Jpn. 52, 2350–2355 (1983).
[CrossRef]

Tamir, T.

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Thio, T.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Tsang, J. C.

J. C. Tsang, J. R. Kirtley, J. A. Bradley, “Surface-enhanced Raman spectroscopy and surface plasmons,” Phys. Rev. Lett. 43, 772–775 (1979).
[CrossRef]

Tuma, M. L.

M. L. Tuma, R. W. Gruhlke, T. G. Brown, “Evidence of enhanced fluorescence via cross coupling in an integrated thin-film fluorescence sensor,” in Optical Diagnostics for Fluids/Heat/Combustion and Photomechanics for Solids, S. S. Cha, P. J. Bryanston-Cross, C. R. Merces, eds., Proc. SPIE3783, 339–346 (1999).
[CrossRef]

M. L. Tuma, R. W. Gruhlke, “Integrated thin film fluorescence NOx sensor: concept,” in Optical Technology in Fluid, Thermal and Combustion Flow III, S. S. Cha, J. D. Trolinger, M. Kawahashi, eds., Proc. SPIE3172, 98–105 (1997);M. L. Tuma, R. W. Gruhlke, “Integrated fluorescence sensor,” U.S. Patent5,841,143 (Nov.24, 1998).
[CrossRef]

Van den Berg, P. M.

Varada, G. V.

S. Dutta Gupta, G. V. Varada, G. S. Agarwal, “Surface plasmons in two-sided corrugated thin films,” Phys. Rev. B 36, 6331–6335 (1987).
[CrossRef]

Vincent, P.

P. Vincent, “Differential methods,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), Chap. 4, pp. 101–121.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

A. Koch, W. Beinstingl, K. Berthold, E. Gornik, “Surface plasmon polariton enhanced light emission from Schottky diodes,” Appl. Phys. Lett. 52, 184–186 (1988).

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (2)

J. Phys. Soc. Jpn. (1)

Y. Kuwamura, M. Fukui, O. Tada, “Experimental observation of long-range surface plasmon polaritons,” J. Phys. Soc. Jpn. 52, 2350–2355 (1983).
[CrossRef]

Nature (London) (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. B (6)

T. Inagaki, M. Motosuga, E. Arakawa, J. Goudonnet, “Coupled surface plasmons excited by photons in a free-standing thin silver film,” Phys. Rev. B 31, 2548–2550 (1985).
[CrossRef]

T. Inagaki, M. Motosuga, E. Arakawa, J. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B 32, 6238–6245 (1985).
[CrossRef]

S. Dutta Gupta, G. V. Varada, G. S. Agarwal, “Surface plasmons in two-sided corrugated thin films,” Phys. Rev. B 36, 6331–6335 (1987).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

U. Schroter, D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998).
[CrossRef]

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Phys. Rev. Lett. (4)

M. Specht, J. D. Pedarnig, W. M. Heckl, T. W. Hansch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476–479 (1992).
[CrossRef] [PubMed]

J. C. Tsang, J. R. Kirtley, J. A. Bradley, “Surface-enhanced Raman spectroscopy and surface plasmons,” Phys. Rev. Lett. 43, 772–775 (1979).
[CrossRef]

J. C. Quail, J. G. Rako, H. J. Simon, R. T. Deck, “Optical second harmonic generation with long-range surface plasmons,” Phys. Rev. Lett. 50, 1987–1989 (1983).
[CrossRef]

R. W. Gruhlke, W. R. Holland, D. G. Hall, “Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin metal film,” Phys. Rev. Lett. 56, 2838–2841 (1986).
[CrossRef] [PubMed]

Other (5)

M. L. Tuma, R. W. Gruhlke, “Integrated thin film fluorescence NOx sensor: concept,” in Optical Technology in Fluid, Thermal and Combustion Flow III, S. S. Cha, J. D. Trolinger, M. Kawahashi, eds., Proc. SPIE3172, 98–105 (1997);M. L. Tuma, R. W. Gruhlke, “Integrated fluorescence sensor,” U.S. Patent5,841,143 (Nov.24, 1998).
[CrossRef]

M. L. Tuma, R. W. Gruhlke, T. G. Brown, “Evidence of enhanced fluorescence via cross coupling in an integrated thin-film fluorescence sensor,” in Optical Diagnostics for Fluids/Heat/Combustion and Photomechanics for Solids, S. S. Cha, P. J. Bryanston-Cross, C. R. Merces, eds., Proc. SPIE3783, 339–346 (1999).
[CrossRef]

D. Maystre, “Integral methods,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), Chap. 3, pp. 63–100.

P. Vincent, “Differential methods,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), Chap. 4, pp. 101–121.

See, for example, R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980); M. C. Hutley, Diffraction Gratings (Academic, London, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the structure of two-sided sinusoidally corrugated thin film. Λ denotes the corrugation period and a the corrugation amplitude.

Fig. 2
Fig. 2

(a) Zero-order reflectance from a free-standing sinusoidally corrugated silver film. The fields and energy flow distributions are shown when (b) the LRSP is excited at an incident angle of 42.8°, (c) the SRSP is excited at an incident angle of 47.2°, and (d) when no SP is excited at an incident angle of 30°. The TM-polarized plane wave is incident from above the silver film. The profile of the silver film can be seen clearly in the electric field distribution. Parameters are grating period 1888 nm, grating depth 20 nm, silver film thickness 40 nm, incident wavelength 633 nm, dielectric constant of silver -16.3+0.53i, refractive indices of media on both sides of the silver film 1.0.

Fig. 3
Fig. 3

Fields and energy flow distribution for SP cross coupling. (a) Refractive index of the glass, 1.5; (b) refractive index of the glass, 1.6. Other parameters used in (a) and (b) are grating period 1085 nm, incident angle θ 26.66°, incident wavelength 633 nm, silver film thickness 70 nm, grating corrugation a=15 nm, dielectric constant of silver -16.3+0.53i. The TM-polarized plane wave is incident from above the silver film.

Fig. 4
Fig. 4

Calculated local intensity in the photoresist at the photoresist–silver interface (grating period 866 nm, θ=10°20°). The experimental data were taken from Ref. 15.

Fig. 5
Fig. 5

Local intensity of -1 order transmission for contradirectional coupling (air–silver–glass structure, Λ=260 nm, silver film thickness h=80 nm, a=20 nm, glass refractive index=1.5).

Equations (43)

Equations on this page are rendered with MathJax. Learn more.

H1z=exp[i(γ0x-β0 y)]
+n=-B1nexp[i(γnx+β1n y)],
y>y1,
H2z=n=-exp(iγnx)[A2nexp(-iβ2n y)
+B2nexp(iβ2n y)],y1<y<y2,
HN-1,z=n=-exp(iγnx)[AN-1,nexp(-iβN-1,n y)
+BN-1,nexp(iβN-1,n y)],
yN-1<y<yN-2,
HN,z=n=-AN,nexp[i(γnx-βN,ny)],
y<yN-1.
γ0=k01sin(θ),γn=γ0+nK,
βjn2=k02j-γn2,k0=2π/λ.
E=iωxˆ Hzy-yˆ Hzx.
{Hj,z=Hj+1,z}|y=yj,1jHj,zn=1j+1Hj+1,zny=yj
(j=1 ,, N-1),
n=1+yjx2-1/2y-yjxx.
H1z|y=y1=H2z|y=y1 ,
HN-1,z|y=yN-1=HN,z|y=yN-1,
(E1xtx+E1y ty)|y=y1=(E2xtx+E2yty)|y=y1,
 
 (EN-1,xtx+EN-2,yty)|y=yN-2
=(EN-1,xtx+EN-1,y ty)|y=yN-2,
EN-1,x|y=yN-1=EN,x|y=yN-1.
t={1+[aK cos(Kx)]2}1/2[1, aK cos(Kx),0].
n=-[B1nexp(iβ1nh)Jm-n(β1na)-A2n
×exp(-iβ2nh1)Jm-n(-β2na)
-B2n×exp(iβ2nh1)Jm-n(β2na)]
=-exp(-iβ0h)Jm(-β0a),
n=-B1nk021-γnγmβ1n×exp(iβ1nh1)Jm-n(β1na)+A2n12k022-γnγmβ2n×exp(-iβ2nh)Jm-n(-β2na)-B2n12k022-γnγmβ2n×exp(iβ2nh)Jm-n(β2na)
=k021-γ0γmβ0exp(-iβ0h1)Jm(-β0a),
n=-[A2nexp(-iβ2nh2)Jm-n(-β2na)+B2nexp(iβ2nh2)×Jm-n(β2na)-A3nexp(-iβ3nh2)Jm-n(-β3na)-B3nexp(iβ3nh2)Jm-n(β3na)]=0,
n=-A2nk022-γnγmβ2n×exp(-iβ2nh2)Jm-n(-β2na)-B2nk022-γnγmβ2n×exp(iβ2nh2)Jm-n(β2na)-A3n××23k023-γnγmβ3nexp(-iβ3nh2)×Jm-n(-β3na)+B3n23k023-γnγmβ3n×exp(iβ3nh2)Jm-n(β3na)=0,
AN-1,mexp(-iβN-1,mhN-1)+BN-1,mexp(iβN-1,mhN-1)
-AN,mexp(-iβN,mhN-1)=0,
AN-1,mexp(-iβN-1,mhN-1)-BN-1,mexp(iβN-1,mhN-1)
-AN,mN-1βN,mNβN-1,mexp(-iβN,mhN-1)=0,
exp[ib sin(Kx)]=p=-exp(ipKx)Jp(b)
ksp=k0mdm+d1/2.
± Re(ksp)=k0dsin θ+nK.
Re(ksp2)=Re(ksp1)±K.

Metrics